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On Dragilev type power Kéthe spaces
by

P. B. DJAKOV (Sofia)
and V. P. ZAHARIUTA (Rostov-na-Donu and Gebaze)

Abstract. A complete isomorphic classification is obtained for Kéthe spaces X =

d
K(exp[x(p — x(8)) — i/pla;) such that X % X?; here x is the characteristic function of
the interval [0, o0), the function & : N — N repeats its values infinitely many times, and
a; — co. Any of these spaces has the quasi-equivalence property.

1. Introduction. For any matrix (aip)ier pen of positive numbers (with
countable index set I) we denote by K(asp) (or K(aip,i € I)) the Kothe
space generated by the matrix {asy).

M. M. Dragilev {1] proved that there exist Kothe spaces with regular
bases which are not distinguished by the diametral dimension

D(X) ={y={(7n): ¥p g mdn(Up,Uy) — 0},
considering the power Kdthe spaces
(1) D(k,a) = K(exp[x{p — x(i)) — 1/plas),
where (k(i)) = (1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,.. ), ¢ = (a),
a; 7 oo, x(t) = 0for t <0, x(¢) = 1 for £ > 0. We investigate here an
analogous class of power Kéthe spaces given by (1) for an arbitrary function
%' N — N that repeats its values infinitely many times and an arbitrary
sequence of positive numbers a; — o (not necessarily increasing).

Our aim is to study the structure and isomorphic classification of D(x, a)
spaces for different x and a. In order to distinguish non-isomorphic spaces of
this class we first construct appropriate invariant characteristics (generalized
linear topological invariants). The method of generalized linear topological
invariants was developed in [6], [7], [9]-[11] (see the survey [12] for more
details).
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In the following we denote by Eg(a) and E(a) respectively the finite
and infinite type power series spaces generated by the sequence ¢ = (a;)
with a; — oo, i.e.

Eo(a) = K(exp(—ai/p)),  Eola) = K(exp(pa;)).

Every infinite subset » of N = {1,2,3,...} is identified with the corre-
sponding increasing sequence of positive integers, i.e. v = {vi v, v, 0
For any set A we denote by |A| the number of elements of A if it is finite,
and oo otherwise.

A subspace of a Kéthe space generated by a subsequence of the natural
basis is called a basic subspace. As shown by the next observation the space
X = D(k,a) is similar to finite type power series spaces.

PROPOSITION 1. Any basic subspace of D(x,a) contains a busic subspace
which is isomorphic to o finite type power series space.

Proof. Obviously any basic subspace of X = D(#x,a) contains a basic
subspace generated by a set v C N of indices having one of the following
two properties:

(a) sup{s(i):iev} <oo, (b) k(i) = oo as i — 00, © € 1.

Then the basic subspace X, generated by the vectors e;, ¢ € v, is isomorphic
to the finite type power series space Ey{a”), where o” is the subsequence
of a corresponding to v, ie. af = ;. Indeed, in case (a) we have, for
large enough p, x(p — k(i)) = 1 for all 4 € v, L.e. the Kéthe matrix equals
exp[(1 ~1/p)ay], hence X, is diagonally isomorphic to Ep(a*). In case (b)
we have x(p — (7)) = 0 for all large enough 1 € v, i.e, the Kéthe matrix
equals exp(—ai/p) for ¢ € v, ¢ > iy, hence X, ~ Ey(a¥).

QOROLLARY 1. For any infinite subset v C N the basic subspace X, is
not isomorphic to a power series space of infinite type.

Indeed, by Proposition 1 the subspace X, contains a basic subgpace X
{obviously complemented) that is isomorphic to a finite type power serie:
space. On the other hand, it is known that a finite type power series space
cannot be imbedded in an infinite type Schwartz power series space gince
any operator from a finite to an infinite type power series space is compact
(see [8]).

Let us note that our interest in D(k,a) spaces was motivated by the

problem of finding an appropriate “model” Kithe space for some spaces of
analytic functions. More precisely, if

G:C\(UKSU{G}), K,={2¢C.: |z — as] < 6,), a = lim q,,
p=1 ' i
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then the space A(G) has no complemented subspaces of infinite type and in
case it has a basis it should be isomorphic to a Kéthe space with the same
property. So, it seems that D(k,a) spaces may be the desired model spaces.

2. Identity and quasi-diagonal isomorphisms. We begin with some
general facts concerning quasi-diagonal operators between K&the spaces.
Suppose X = K(aip,i € I) and ¥ = K(b;p,§ € J) are Kothe spaces.
An operator T : X — Y is called quasi-diagonal if there exist a function
@I — J and constants r;, 7 € I, such that

Te; = Tié(,p(i)a i€ I,
where (e;) and (&;) are the canonical bases in X and Y. We denote respec-
d
tively by X & Yand X %Y a quasi-diagonal isomorphic imbedding and a
quasi-diagonal isomorphism.
The next statement is well known (see, for example, [9]).
Lemma 1. If for Kithe spaces X and ¥ there are quasi-diagonal imbed-

dings X 5V and v 3 X then x B v,

Proof. If the quasi-diagonal imbeddings X LY Y and ¥V x X are
defined respectively by (r;),¢ : I — J and (g;),4 : J — I then by the
Cantor-Bernstein theorem there exist complementary subsets Iy, I € I and
Ji,Ja C J such that @(I1) = Ji and $(Jz) = L. Then putting Te; = vi€y(),
where y; = 1;,9(2) = (i) fori € I and ; = g;fl(i),g(i) =y i) forie I
we obtain a quasi-diagonal isomorphism 7' between X and Y.

The Cartesian product of m copies of a Kothe space X = K(a;p, 4 € I)
is denoted by X™. The space X™ will be identified with the Kéthe space
K(agp, I), where

IT={=(,p:icl, u=1,...,m}

Gap=ay UT={i,pu), p=1,...,m

LeMMA 2. Suppose X = K(asy, I) and Y = K(a;p, J) are Kéthe spaces
and m 28 an integer. Then

Wx*ElyraxBy, pyxrLynsxiy
Proof. (a) Let 7' : K (s, 1) K (bg, J) be a quasi-diagonal imbedding;

then T'es = 0;€,(7), where w : I — J is an injection. Put
w(d,w) =1, TGu)=4 wp=1L...m
Consider the multivalued mapping
Q:I—J, G@E)=Fp(r(1)).
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By the Hall-Ké&nig theorem ([2], Ch. 3) there exists an injection g : I — J
such that g(¢) € G{1) for all ¢ if and only if
L] < ‘ U G(z‘)l YL C I,|L| < oo
i€l
Since the mapping 7 : J — J is m-sheeted we have |B| < m|7(B)] for any
B C J. Therefore for any L C I,

5= Zin @) = Sl )] < ot @)l = || 60
i€l

Ll

S0 there exists an injection g : I — J such that g(i) € 7p(r~2(s)) for i € I.
For any i € I we fix some p = 1,...,m such that T(p(i,p)) = g(i) and
put r; = g(;,4)- It is easy to see that the operator § : X — ¥ defined by
Se; = ri€y(;y, % € I, is an isomorphic imbedding because T is.

(b) follows immediately from (a) and Lemma 1.

‘The next proposition gives necessary and sufficient conditions for coin-
cidence of two D(x,a) spaces.

PROPOSITION 2. The spaces D(k,a) and D(R,d) coincide as sets if and
only if the following conditions hold:

(i) there emists C > 0 such that o; < Cd; < C2a; for alli € N;

(ii) for all v C N with |v] = 00, s(1;) — 00 < &(r;) - ooy

(ifi) @/a; — 1 agi — oo, and (i) < const.

Proof. Since two Kéthe spaces coincide as sets if and only if their ma-
trices are equivalent (see [5], Lemma 4) we have D(x,a) = D(k,4d) if and
only if the following conditions hold:

(2) VP 3p,C>0: (xlp — w(i)) — 1/p)as <log C + (x(F— R(3)) ~ 1/5)a,
(3) V63,0 >0: (x(F~ &) — 1/B)E: <log C + (x(g — k() — 1/q)as.
(Here and in the following we denote by C any constant which does not
depend on 4.) By {(2) and (3) it follows that for some indices P1. 01 < Do, go,

De(B2 — 7(9)) — x(P1 — R(9) + 1/51 — /535
< bela2 = &(1) = x(pr — (i) + 1/p1 ~ 1/gala; + log C
and we obtain (since a; — 00)
limsup@;/a; = C < .

In an analogous way we get the symmetric relation, which proves (i).

Suppose v C N, |v| = oo and k(v;) — oo. Then (3) implies that the
sequence K(v;) is not bounded-—otherwise taking 7> max{R(y;) : i € N}
we have for all ¢ such that K(vs) > q,

(1-1/p)a,, <logC,
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which is impossible since @; — oo. If the sequence %{1;) does not tend to
o0 then passing to a subsequence if necessary we get a contradiction. Hence
#(v;) — oo implies %(v;) — 0o. Analogously by (2) it follows that (1) — oo
implies x(1;) — 00, i.e. (ii) holds.

In order to check (iii) fix an arbitrary constant K > 0 and put Ix = {3 €
N: 5(i) £ K}. Then by (ii), sup{%(i) : i € Ix} = K < co. Taking 5 > K
and ¢ > K in (3) we obtain

(1-1/p)a; <logC+(1~1/g)a; < a;

for large enough ¢ € Iy. Therefore

limsup @;/a; < lim -,::-p_» =1
i—ood€lx P p—1

Analogously we obtain

limsup a;/8; <1, and therefore Ilim inﬁ ai/a; > 1

i—o0,ielx i—00,i6 1

and we get
i-—iolv:].'\:?glel"r{ ai/ai =1
It is easy to see that the conditions (i)—(iii) are sufficient for the equality
D(k,a) = D(K, ). Indeed, let us check that they imply (2) and (3). Fix p
and choose § > Cp (where €' is the constant appearing in (i)) such that
#(t) £ p = K(9) <P (by (ii) this is possible). Then for ¢ satisfying (i) < p
the relation (2) is equivalent to

(1—1/p)a; < (1 ~1/p)d; +log C,
which holds by (iii). If £(z) > p then by (i) we have
{~1/p)a; < (~1/D)a;,
which implies (2}.
Since the conditions (i)-(iii) are symmetric with respect to D(k,a) and

D(R, @), (3) follows analogously by the same argument.

ProrosimioN 3. If T': D(x,a) — D(R, &) is a diagonal operator defined
by the formula Te; = exp(r,)€;, then T is an isomorphism if and only if the
following conditions hold:

(i) there exists C > 0 such that a; < Chy < C?ay for all 1 € N;
i+ 04 o Tit

oy s T T :
(i) im— =1, lim— =0, lim =0, lm
Ioa; L, ag Is a; Is aq

=1,

where Iy = k(i) £ const, k(i) — oo; I == (i) — oo, k(i) — o0; Iz :=
x(1) — oo, K(i) < const; Iy := k(§) < const, &(4) < const.
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Proof Suppose T is an isomorphist. Then since T and 7! are con-
tinuous there exist py, D1, P2, p2 and M > 0 such that
leilp, < M|Teils,,  [Teils, < Mleslp,

Therefore

|TeiiP2 M2 |ei':ﬁ'2

[ Teils, ~ |ilp: ’
which implies (after taking logarithms of both sides and estimating from
below and above)

1
(i__l_)at_(lmp )a,i+210gM.
D P2

Hence there exists ¢ > 0 such that limsup@;/e; < C. Analogously it follows
that limsup a;/&; < C, which proves (i).
To prove (ii) we use the fact that T is continuous if and only if
(4) Yo 3Ip,M>0:
+ (X[ — &(8)] - 1/B)a: < (x[p — s(1)] — 1/p)as +log M.
If k(i) < const = C; and %(2) — oo then takmgp > C'l we obtain r; —4; /P <
a; + log M for large enough ¢, and therefore
limsupr;/a; €14 C/p.

It follows (since 7 is arbitrary) that imsup r;/a; < 1. Using the continuity of
T~ we get by the same argument liminf r;/a; > 1, hence the first relation

in (ii) is proved. The proof of the other three is analogous.
Couversely, suppose (i) and (ii) hold. Fix an arbitrary 5. By the second

relation in (ii) there exist p; and p; > P such that
1 . o
il - < o %0 if 8(3) 2 p1, B() > P1.

Analogously by the thlrd relation in (ii) there exists ps such that
i + 34 1 e
rira < 50 if k(2) > pa, R(3) < P1.

a;
Choose p > max(p;, p2, 2C); then (4) holds, ie. T is continuous. Indeed:
1) if k(i) > p and k(i) > Py then
&y 5 1 a4
T‘z“*és (i*"gﬁ)%ﬁ“—iy
ie. (4)is true with M = 1;
2) if k(4) > p and K(1) < By then

(Lfgts(”+ﬁ—i%ws—%,
p a; Cp P

ie. (4)is true with M = 1;
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3) if k(i) < p then by the first relation in (ii) there exists pn such that
rifai — 1 < 1/(2CP) for &(i) < p and (1) > Fa, hence

Qs T 1 1 1
- e g - = )a,
= (B gg)us (o )us(i-5)e

Le. for k(i) < p and K(7) > Pa, (4) holds with M = 1;
4) if x(i) < p and K(i) < P then by the fourth relation in (ii) we have
(ri +@;)/a; <1+ 1/(2C5) for i > i, hence

ri + (1— 1) %< .(”*“‘ —ul—)aié (1—5)%
p 0 Cp P

for ¢ > 49, i.e. (4) holds with some constant M.

Thus we conclude that T is continucus. On the other hand, it is easy to
see that the relations (ii) are symmetric with respect to T and T, Hence
T-1 is also continuous, which completes the proof.

COROLLARY 2. D(k,a) S Ey(a) if and only if there exists N1 C N such
that k(i) is bounded on Ny and (i) — 0o as i — oo,t € N\ Ny.

3. Invariant characteristics. In this section we construct some in-
variant characteristics suitable for investigation of isomorphisms between
D(x,a) spaces. Our construction is based on the geometric argument de-
veloped in [11], which makes it much easier compared to similar earlier
constructions (see e.g. [9]).

Characteristic 3. Suppose F is a linear space, I/ and V are absolutely
convex sets in E and £y is the set of all finite-dimensional subspaces of E
that are spanned by elements of V. We put

BV,U)=sup{dimL:Le &y, LNUC V}
It is obvious that
Vev,uclUs=p@,0) <pv,u)
and of course if T is an injective linear operator defined on F then
BIV),TU)) =BV, U).
Let E be a sequence space with the property
T=(2a) € B, |yn| S |on| V0 = y=(ya) € B,

and A be the set of all sequences with positive terms. For any a,b £ 4 we
put

a.b={aib;), a®={(af), aAb=(min(a;b;)), aVb= (max(a;?b;)).



226 P. B. Djakov and V. P. Zahariuta

For any z = (z;) € E and a € A we also put
l|z]la = Ziwilaz‘, By ={z€ E: |z, <1}.

LEMMA 3. If a,b€ A then B(By, By) = [{i: a;/b; < 1}].
Proof Put
J={i:a; <k}, Pz= Zmiei,
ieJ
and let M be the linear span of {e; : ¢ € J}. Then obviously ||z|. < ||z
for = € M, hence M N By C B, and B{B,, By) > dim M = |J].

Conversely, suppose L is a finite-dimensional subspace in X satisfying
LN By C B, (ie ||z|a < |||l for all z € L). If dim L > |J|, then obviously
there exists * € L with x % 0 such that Pz = 0. But then &; =0fori e J
and a; > b; for @ ¢ J, and therefore ||z|[z > ||#||s, Which is a contradiction.
Hence B(B,, Bs) = |J|.

CORQLLARY 3. For all a,b,e,d € A,

. max(a4, b;)
{Z ’ min(ci,di) S 1}

< B(Ba N By, conv(B, U By))
. max{aq, b;)
< <23
= H min(ci, di) }l
Indeed, it is easy to see that

(5) Bawy ©B,NBy C 2Bavs, Bupp = CQHV(Ba U Bb)s
hence
J@(Bavln Bcl\d) < H(B N By, COD-V(BC U Bd)) < ﬁ(zBaVb; Bc/\d)-

For convenience we put B"‘B1 % = Bgepi—w. It is well known that sets
of the type B“B; * have a natural interpolation property; it is formulated
in the next lemma in the form appropriate for us.

LEMMA 4. Suppose E and E are Kithe spaces, (e;) and (eJ) are their
canonical bases and T+ E — E is a linear operator. If a,b,3,b € A and

T(B.) C B;, T(By)C Bj,
then for any « € (0,1) we have
T(B3By~%) C BEBI™,
Proof Put
Te; =) ty&;, i=1,2,...;
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then since | Tz||a < |z]l, and [Tz]; < ||z||s we have for any i,
ITeilla = D" 1505 < leclla = a5, [|Teslly = > lisle; < fleslls = bs.
J J
Therefore by the Hilder inequality it follows that

<afbl™ e,

Telamtine = 35 < (L hola)” (S lhs) ™ <
Y J
hence
ITellime < 3 bl [ elaoscn € 35 oo~ = ollasnon

If B = K(aip) is a Kéthe space and U, = {z € E : |z|, = T2, |:|asp
<1} p=1,2,..., are the corresponding unit balls then Up = B,,, where
= (aip). We also need to consider bounded subsets of Kéthe spaces of the
type
Upy = Bay  a=(a4p,),
where (p;) is an Increasing sequence of indices.

LeMMa b, If E = K(aiyp) is a Schwartz Kéthe space and B C E is a
bounded set then there exists an increasing sequence (p;) of indices such that
B C CU, for some constant C' > 0.

Proof Since F is a Schwartz space we can assume without loss of
generality that for any p = 1,2,... we have a;,/a; 541 — 0 as ¢ — oo. Since
B is bounded, for any p we have

sup (Z]mﬂaw) = Cp < 0.

2€RB
Choose integers my, k= 1,2,..., in such a way that my < mygy; and
Qik /G 1 < 27 C’k_&l for 7 > my.

Putp; =1fori=1,...,miandp; = &k for i = mp+1,...
Then for € B we obtain

,Tnk+1,k=1,2,...

o0 TMk+1l

Z |zi|asp, = Z |Zilaip, + Z Z |2 |2k

i=1 k=1 f=mmp-+1
Mgt-1
—kpy—1
<Ci+ Z 270l D lzilaira <0,
k=1 i=my+1

where C' = C 4 1.
COROLLARY 4. The sets Uy, form a basis of bounded sets in E.

THEOREM 1. If D(k,a)~ D(,d) then the following relations hold:
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(a) ¥p 3Cs,p Yg g, 70 > 0 VY7 > 70,8 > T2
6) [{i:pZs(i)<g 70 st}\
<SWHi:PLRG) ST 7/C5 <G5 < Cpt}l,
where Cg — 1 as p — o0}
{b} ¥p 35 ¥(g) 3(2;),e> 0,70 >0 V7 > 10,0 > 72
(M) Hi:e(@) <pors(i)=g; 7<a <t}
<SRG LPork; >§; v/e Ly < ctyl.
Proof. (a) For convenience we write V < W if V' C constW. Suppose
T : D(k,a) — D(®,qd) is an isomorphism. Let ¢ : (1,00} — {1, 00) be an
increasing function such that p(k) > 4k and
T(Utp(k)) - ﬁk, 59,(;@) = T(U).
Then for any 7 > ¢°(1) put
m = ‘P_l(.:ﬁ): m= 90_2(@) g = 99_3(@1}7 = ‘10(@: Gn = @(P
Further for any ¢ > ¢*(3) put
g=1p(q), T=9(@), r=¢{f), s=p{) 5 =¢s)
Then each of the indices o, m, M, I, p, G0, ¢, G, T, 7, 5, 3 is at least four times
the previous one and Us T(Us) < TU) < Uz < Uq < T(Uq) = an =
T(Up) < Us = U < T(Un) < Usmy. By Lemma 4 and the elementary

properties of B it follows that there exists a constant C > 0 such that for
any ¢ € (0,1),

BUp N U MU UL, conv(ULSUE Ue™U,))
< ﬁ(ijﬁ M etlan Ul EPffso,conv(U1 EUE Uer ;).

Let us estimate both sides of this inequality respectively from below and
above using the same argument as in the proof of Corollary 3 but with

Bavb\/c CB.,NByN B.C SBaVch
instead of the first formula in (5). Then we get

®) H% . max(aip, € "t ajy “af, < 1}’
min{a}-a m,e‘“’aw)

Leg o,
= ‘{J . max(%pje ajr,ajmn gqa) < 30} ‘
min(d; 265, €~ G;5)
Obviously the left-hand side of this inequality equals

, —t - l—g g
. @ [ ¥ QO
i- IHLp <1, 1 i <1, im g <14
. e EG,E =T o4,

g
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Since aip = exp([x(p—#~(4))—1/pla;) the first inequality in the last expression
is equivalent to

1 -
fif <
q

3(p — () — (1 e)x(m — 5(5)) - ex(q — £(i)) — ; +

We take £ = 1/m. Then the last inequality is true if and only if p < &(7) < q.
The other two inequalities give for x(4) € (p, g] respectively

1-— 1 -
(1—€—-—i— E+E)a¢§t, (1~s—1+ E+5>aizr,
r m q s m q

hence, taking into account our choice of &, we see that the left-hand side of
(8) is greater than

(9) th<m@§q,mT17£m§%m
It is easy to see that the right-hand side of (8) is less than
- > al g E

(10) Hj:~f£; 53G,§ﬁ§gagsc,iﬂiﬁ&<sc}l

i %4g g G55 e a4
Here the first inequality is equivalent to

O 1 1 - & _log(3C
KPR = (1= =R~ ex(@- 7))~ 3+ =2+ £ < PEED),
2

Note that in the case K(5) € (%, 7] this inequality unphes

1 1—¢ ¢«
_ = as <1
( 7 3 +,q,)a.3_ 0g(3C),

therefore {since ¢ = 1/m) @; < 2fmlog(3C), and by the third inequality of
(10) we get
T < log(3C) + 28, < 19 := (1 + 47) log(3C).
Thus for 7 > 7y the triple of inequalities in (10) is equivalent to
1 1-¢

P<R() L7, (l-—&‘““-i-—m*‘i‘ )aj5t+log(30),

8 My qo

Hence it is easy to see that for £ = 1/m and T > 7 the right-hand side of
(8) is less than

{j F<EG) <

7 —log(30) < (Imgx( Go — R(j ))__+1 € E),dj

i S —
4 + 1 mo+1 "= m-1 4m+1

(11)

4 'ﬁ”bo T 4ﬁ+2t}|
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Now it follows from the bounds (9) and (11) that (6} holds with
m—1 4m Tnﬁg '

Hence C — 1 as p — co because the function ™" diverges to co together
with its argument,
(b} As in (a) put for any p > *(1),
Fy= o Hp), m=9¢ ), B=¢"(p), F=e);
then
U5 < T(Up) = Uiy < T(Um) < U
Further choose successively sequences (3;), (8:), (ri). (T5), (@;}) with
Uispy < T(Us0) < T(Ury) < Uty < Uy
Since T is an isomorphism, by Lemma 5 such a choice is possible. Finally
for any sequence (g;) such that Uy = T{Uy,,)) choose a sequence (;) such

that T(Ug,)) < ﬁ@j). Then by Lemma 4 and the elementary properties of
3 it follows that there exists a constant €' > 0 such that

B(eTyN U,}l/ZUl/?, conv(UI/ZUéq/ﬁ Ue U,y U L))

< B(Cé! U(;j) N U;{zU(;z),conv(Ul/zUE/z U e"FU(é3 g U Us 5))-
Estimating from below and above as in (a), but using
Uanbpe = conv(U, U UT,)

instead of the second formula in (5), we get

max(e~*ay 1/2a,1/2)
- irg 1 Qi igy
(12) {z. TERYD < 1}
mln(a"i.m 1.q ,6 a‘i-‘liia“i}?)
~1/2-1/2
- max(e” am,aj{najéj)
SN oo <20 )
mm(a_mla,]ql,e“ @j5;, Gjp)

Obviously the left-hand side of this inequality equals
1/2 1/2 1/2 172

-1
., € iy a’:’.m Gy, Qi Sig,
1/2 1/2 €T in. ! Y -
Aim 1g; a4 P

The last inequality in the above expression is equivalent to

%[x(m ~ &(1)) + x(g — (@)] = x(p — k(7)) +

icm
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which is true if and only if x(f) < p or (i) > ¢. Then the other two
inequalities are equivalent respectively to

._i+£w+i . < f 5 1+ 1 +1 >
Yi | om i > 1, T 3 a; 27,

qu- 2qz
where «; and §; take values 0, 1/2, 1. Hence the left-hand side of (12) is
greater than

(13) [{i: k(i) < por k(i) > g, dmr < a; <t/2}|.
Analogously the right-hand side of (12) is less than
7 G G2 g
‘{j:%g2a Gntin < g, Mgza}'.
. . a‘.’isg a’jiﬁ

Here the last inequality is equivalent to

: 11 1 log(2C)
Z[X(ml_m( ) +x(@ — &)~ “"“(3))"}'5‘”“ %y 2d; ij 4,

Since @; — oo as § — oo this inequality holds for large enough j if and
only if K(j) < p or B(j) > g;. In that case the other two inequalities are
equivalent to

- 1 1 1
(’}’j - = + == 221.1)% <1+ log(20),

. 1
(5:,‘ -— :1~ + “-‘1: + —T.)Ej > 7 —log(2C},

where ¥; and gj take values 0,1/2,1. Obviously for large enough § the left-
hand side of the first inequality is greater than @; /(37 ), while the left-hand
side of the second is less than 2d;. Therefore there exists 7o > 31log(2C) such
that for 7 > 74 the right-hand side of (12) is less than

(14) {5 : ®(4) < For B(j) 2 §;; 7/3 <4y < 4mat}.
Now (b) follows from the bounds (13) and (14).

4. Main results

THEOREM 2. If X =
X E X2 then X £ Y.

Procf. If X and Y are isomorphic then the conditions (a), (b) of Theo-

rem 1 hold. Using them we construct a quasi-diagonal imbedding of X into
Y10, Analogously the corresponding symmetric conditions imply the exis-

D(k,a) and Y = D(%,d) are isomorphic and

. d
tence of & quasi-diagonal imbedding of ¥ into X0, Therefore since X ~ X2

a d d
we obtain X0 &5 ¥10, 50 by Lemma 2, X < ¥, and also ¥ < X0 L X,
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d
Hence by Lemma 1, X Ly So, by symmetry we only have to prove that
X & ywo,

Let I and J denote respectively the sets of indices of the canonical bases
in X and Y.

By Theorern 1 there exists an increasing function ¢ : N — N such that
the condition (a) of Theorem 1 holds with p = @(p) and § = ©(g). In fact,
one can consider the function ¢ used in the proof of Theorem 1. We put

pa=¢"(1), n=12...
Then by Theorem 1 there exist constants 7, >0, ¢, > 0,n=1,2,..., such
that for T > 7,
(15) |{i:pn<ﬁ(i)§pn+l: T < g St}‘
< |{J I Pp-1 < E(J) < Prs2, T/Cn < & < Cnt}l
and ¢, — 1 as n — oo.

Assume for convenience that 7, = ¢3™»~2 n = 1,2,..., where m,, are
integers, and put
Liom = {21 pn < 6(1) < Ppr1, € <oy < T,

m—1

Jn,m = {.7 tPp—1 < %(.7) < Pn+t2y Cp <oy < CZH-Z};

oo
1w |\ Iopgeeys  Brr =0,1,2,

r=zl 831y,

o0
K={i:n(@) <p}U|J{itpn < 66) € pgr, i < &2,
o=l
Then obviously we have
| Tar—g,26~] < [Jar—p3sy]s T EN, 8> my,,

as a consequence of {15). Therefore, since the sets J3rp 30y T8 = 1,2,...,

{for fixed j,v) are disjoint, we deduce that for every 8,v = 0,1, 2 there exists
an injection og,, : IP7 — J such that

0',@,7(.[3?“_)3,33_7) - Jar_ﬁ,gsmy, r& N g >m,.
It is easy to see that

1
~— 2 et . .
2 ﬂai S Oop () S Caropliy  |R(0p4 (1)) = £(1)] € Pryo ~ Ppe1,
o

for i € Ip—g 35, 7 €N, 8 > My, 8,9 = 0,1, 2. Therefore by Proposition 3
the formula

Tsx(es) = [explas ~ o, (1))|Eas - (3)
defines a quasi-diagonal isomorphic imbedding Ty, : X gy — Y, where
Xgy =5pany{e; i€ I}, B,y =0,1,2.
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On the other hand,
K c{i:x5() <por k(i) > g}
for some p € N and a sequence of indices (g;) such that g; T oo. By Theorem 1
there exist 7, (g;}, C > 0 and 7 > 0 such that (7) holds for ¢ > 7 > 7o. Let
Klﬂ{iEK!ﬂ.-i}To}:{‘ik:kEN},

L={jeN:kfH <pork(j)>q}=1{k:keN}

E =spany{e;:i € K1}, F =gpany{¢,:je€ L}
Then by Corollary 1,

EL Bye), FX Ey(d),
where ¢ = (cr) = (a;,) and d = (di) = (d;, ). In this notation (7) means
that
Hek:r<e <t} <[Hk:7/C < di < Ct}.
Then the result of Mityagin [7] (see also [12] for a simple proof, without
using the Hall-Kénig theorem) implies that Ep{c) a Eqo(d), and therefore

ESFEy
Since the space G == 5pani{e; : ¢ € K, a; < 79} is finite-dimensional, we have
EaG & Y. Finally, taking into account that X is the direct sum of Xg ,,
8,7y=0,1,2, and E,G we get X &y,

CorOLLARY 5. Conditions (a), (b) of Theorem 1, together with the sym-
metric conditions oblained by interchanging the roles of a,b and E,g, deter-
mine o complete lineor topological invariant in the class of D{r,0) spoces
which are quasi-diagonally isomorphic to their Cartesian square.

Finally, we consider the question of quasi-equivalence of absolute bases
in D(k,a) spaces. Recall that two absolute bases {x;) and (y;) are quasi-
equivalent if and only if the corresponding Kothe spaces K(|z;|p) and
K(|y;lp) are quasi-diagonally isomorphic.

THBOREM 3. If X == D(k,a) 15 quasi-diagonally isomorphic to its Carte-
sian square then any two absolute bases in X are quasi-equivalent.

Proof. Of course it is enough to show that any absolute basis (z;) in X is
quasi-equivalent to the canonical basis (e;). By [4] (see also [3]), the bases (e;)
and (z;) are weakly quasi-equivalent, i.e. there exist constants r; > 0 and
a finite-to-one function i(j) : J — I such that the Kdthe matrices {|r;z;|p)
and (|eys)lp) are equivalent, Hence K (|r;z;p) and K (ley;lp) coincide and
we obtain

K(lrjzils) = D(%, @),
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where E(j) = (i(j)) and @; = a;(;). Since the spaces D(x,a) and D(%, )
are isomorphic it follows by Theorem 1 that they are quasi-diagonally iso-
morphic. This proves the theorem.
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A non-regular Toeplitz flow with preset pure point spectrum
by

T. DOWNAROWICZ (Wroctaw) and Y. LACROIX (Brest)

Abstract. Given an arbitrary countable subgronp op of the torus, containing in-
finitely many rationals, we construct a strictly ergodic 0-1 Toeplitz low with pure poing
spectrum equal to oo, For a large class of Toeplitz flows certain eigenvalues are induced
by eigenvalues of the flow ¥ which can be seen along the aperiodic parts.

Introduction. In this paper we continue the study of Toeplitz flows ini-
tiated in 1984 by S. Williams in her work [W]. Toeplitz sequences have been
known earlier {e.g. [O], [G-H], [J-K]), but it is the construction of Williams
that is exploited in most of later works on Toeplitz sequences (e.g. [B-K1],
[D], [B-K2], [I-L], [D-K-L], [I]). Spectral properties of Toeplitz flows have
been studied in [I-L] and [I]. In this note we develop the method introduced
by A. Iwanik in [I]. Each eigenvalue v obtained there satisfies a certain
equation formulated in Section I of this paper as (3). In [I], however, this
equation remains unsolved, and an irrational v is obtained by constructing
uncountably many Toeplitz flows with different eigenvalues.

We have succeeded in solving the equation (3) simuitaneously for an
arbitrary countable set of v’s. This enables us to prove the existence of
strictly ergodic Toeplitz flows with an arbitrarily preset pure point spectrum
containing infinitely many rationals.

Section I contains slightly modified formulations of the results of [I]. We
rid the constructions of technical details used in [I] to produce uncountably
many sequences. For a large class of Toeplitz flows we identify certain eigen-
values not arising from the maximal uniformly continuous factor. We also
adapt the cohomology statement of [I} to the countable product of tori.
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