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The multiplicity of solutions and geometry
of a nonlinear elliptic equation

by

Q-HEUNG CHOI (Incheon), SUNGKI CHUN (Incheon)
and TACKSUN JUNG (Kunsan)

Abstract. Let {2 be a bounded domain in R™ with smooth boundary 412 and let
L denote a second order linear elliptic differential operatar and a mapping from Lz( 2)
into itgelf with compact inverse, with eigenvalues —);, each repeated according to its
multiplicity, 0 < A < Ap < A3 £... £ A £... — oo. We consider a semilinear elliptic
Dirichlet problem Lu + but —au™ = f {(#) in £2, v = 0 on 8. We assume that a < Aj,
Az < b < Az and f is generated by ¢y and ¢2. We show a relation between the multiplicity
of solutions and source terms in the equation.

0. Introduction. Let f2 be a bounded domain in R® with smooth
boundary 842 and let L denote the differential operator

8 ( e,
L= 2 ai-(m)w-—),

where a;; = a;; € C°°(f2). We consider the semilinear elliptic: Dirichlet
boundary value problem

Lu+bu®™ —au™ = f(x) in &2,
u=10 on 2.

Here L is a second order linear elliptic differential operator and a mapping
from L?({2) into itself with compact inverse, with eigenvalues —J;, each
repeated acccording to its multiplicity,

D <l <... S <. —o0.
In [8, 4, 8, 10, 15], the authors have investigated the multiplicity of

(0.1)

solutions of (0.1) when the forcing term f is supposed to be a multiple of
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the first positive eigenfunction and the nonlinearity —(but — au™) crosses
eigenvalues. According to the result of [8, 10], we have: When a < Ay,
Az < b < Ag, and f = s¢1, equation (0.1) has at least 4 solutions if s > 0
and has no solution if s < 0.

Hence it is natural to consider the case where f is generated by the
eigenfunctions ¢é1, ¢z, ..., ¢n.

In this paper, we assume that a < A1, Az < b < A3 and f is generated
by ¢ and ¢a. Our goal is to find the multiplicity of solutions of (0.1) when
f belongs to a cone of the two-dimensional subspace of L%(12) spanned by
¢1 and ¢a.

In Sections I and 2, we study the relation between the multiplicity of so-
lutions and the geometry of the semilinear elliptic boundary value problemn.

THEOREM A. Let a < A and As < b < Asz. Let V be the two-dimensional
subspace of L?(12) spanned by ¢1 and $a. Then there are two cones Ry, Ry
{R1 C R3) in the right half plane of V such that the following hold.

(i) If f belongs to the interior IntRy of Ry, then (0.1) has a positive
solution, a negative solution, and at least two solutions changing sign.

(iiy If f belongs to the boundary OR;y of Ry, then (0.1) has o posilive
solution, a negative solution, and at least one solution changing sign.

(itiy If F belongs to Int(Rs\Ry), then (0.1) has a negutive solution and
at least one solution changing sign.

{(iv) If f belongs to OR3, then (0.1} has a negative solution.
(v) If f does not belong to Rs, then (0.1) has no solution.

In Section 3, we show the following sharp result for the multiplicity of
solutions of (0.1).

THEOREM B. Assume a < Ay < Ay < b < A3. If f belongs to IntR;,
then equation (0.1) has exactly four solutions and they are nondegenerate.

1. Multiplicity of solutions and source terms. Let 2 be a bounded
domain in R™ with smooth boundary 842 and let I, denote the differential

operator
a d
L= Z B"‘f(@m‘j(m)%})a

1<ig<n 0%

where a;; = ay; € C°°(2). Suppose that L is an elliptic operator and a
mapping from L?(12) into itself with compact inverse, with eigenvalues —);,
each repeated according to its multiplicity,

I<h <. S <.,. =
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We consider the semilinear boundary value problem
Lu+bu™ ~au™ = f(z) in 2,
%= on 2.

Let ¢ be the eigenfunction corresponding to A, (n =1,2,...). Then
the set {¢n [n=0,1,2,...} is orthogonal in L2(£2).

In this section, we suppose that a < A\ < Ay < b < A3. Under this
assumption, we are concerned with the multiplicity of solutions of (1.1) only

when f is generated by the eigenfunctions ¢y and ¢9. That is, we study the
equation

(1.2) Lu+but —au™ =f in L*(£),

where we suppose f = s1¢1 + s2¢h2 (81,82 € R).

To study equation (1.2), we use the contraction mapping principle to
reduce the problem from an infinite-dimensional one in L?(2) to a finite-
dimensional one.

Let V' be the two-dimensional subspace of L?(12) spanned by {¢1, 2} and
W be the orthogonal complement of V in L?(£2). Let P be the orthogonal
projection of L?(£2) onto V. Then every u € L2(£2) can be written as u =
v+ w, where v = Pu and w = (I — P)u. Then equation (1.2) is equivalent
to .

(1.3) Lw + (I - PY(b{v +w)" — alv+w)") =0,
(1.4) Lo+ Pb(v+w)t ~alv+w)7) = s1¢h + s06a.

We regard (1.3) and (1.4) as a system of two equations in the two unknowns
v and w.

(1.1)

Lemma 1.1, For fized v € V, {1.3) has a unique solution w = 6(v).
Furthermore, 8(v) is Lipschitz continuous in v.

Proof. We use the contraction mapping theorem. Let § = %(a. + b).
Rewrite (1.3) as
(=L = 8w = (I = P)(b(v +w)" —alv +w)” — (v +w)),

or equivalently,

(1.5) w = (=L~ 6) 71 — P)gu(w),
where
gu(w) = bl +w)* —a(v+w)” - v +w).
Since
lgu(w1) — golwa)| S 10— 6] w1 — wal,
we have

llgo(w1) — go{wa)l| < 1o = 8] - flwon —wal,
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where || || is the norm in L?(£2). The operator (—L ~ §)7*(I — P) is a self-
adjoint compact linear map from W = (I — P)H into itself. Its eigenvalues
in W are (A, — 6)~!, where A, > A3. Therefore its L? norm is 1/(As — 6).
Since |b — 8] < Az — 4§, it follows that for fixed v € V, the right hand side of
(1.5) defines a Lipschitz mapping of W into itself with Lipschitz constant
v < 1. Hence, by the contraction mapping principle, for each v € V, there
is a unique w € W which satisfies (1.3).

Also, it follows, by the standard argument principle (cf. [4]), that 6{v) is
Lipschitz continuous in v. m

By Lemma 1.1, the study of the multiplicity of solutions of (1.2} is re-
duced to the study of the multiplicity of solutions of an equivalent problem

(1.6) Lo+ P(b(v + ()t — a(v + 8(v)) ) = s11 + s06ba

defined on the two-dimensional subspace V spanned by {1, ¢2}.

‘While one feels instinctively that (1.6) ought to be easier to solve, there
is the disadvantage of an implicitly defined term #(v). However, in our case,
it turns out that we know 6(v) for some special v’s.

Ifv > 0 or v <0, then #(v) = 0. For example, take v > 0 and #(v) = 0.
Then equation (1.3) reduces to

Lo+ (I - P)(bwt —av™) =0,
which is satisfied because v = v, v~ = 0 and {I — P)v = 0, since v € V.

Since V' is spanned by {1, d2} and ¢; is a positive eigenfunction, there
exists a cone C defined by

Cr={v=cid +cads| e1 20, |ea < kes}
for some k > 0 so that v > 0 for all v € (4, and a cone Cy defined by
Cs ={v=c1d1 +eago | c1 <0, [co| < Klea|}

so that v <0 for allv € Cs.
Thus, even if we do not know 8(v) for all v € V, we know 6(v) = 0 for

ve CiUCs.

Now, we define amap $: V — V by
(1.7} (v) = Lo+ Pb(v-+8(v))" —alv +0(v))™), veV.
Then & is continuous on V' and we have the following lemma.

LEMMA 1.2. Forv € V and ¢ > 0, $(cv) = cB(v).

Proof. Let ¢ > 0. If v satisfies

Lo(v) + (I - P){(b(v +8(v))* ~ alv + 8(v))~) =0,
then
L(cB(v)) + (I — P)(b(cv + cf(v))™ — afcw + cf(v))") =0
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and hence 8(cv) = ef{v). Therefore we have
P{ev) = L(cv) + P(b{cv + 8(cv))™ — alcw + 8{cv)) ™)
= L(cv) + P(b(ev + cf(v})™ ~ alcv + cf(v)) ™) = cB(v). =

We investigate the image of the cones €1, C5 under &. First we consider
the image of Ch. If v = ¢1¢y + cady > 0, we have

&(v) == L(v) + P{b{v + 8(v))T — a(v +6(v))”}
= —c1M1¢1 — cadavg + bleidy + cagn)
= cg(b— A1)o1 + ca(b— A2)po.

Thus the images of the rays ¢; g1t kei1¢g (c1 > 0) can be explicitly calculated
and they are

61(19 et )\1)¢1 + k:cl(b - )\2)@52 (Cl > 0)
Therefore & maps C onto the cone

h— A
R1={d1¢1+d2¢2 di >0, |d2|£k(b ,\"’*)dl}.

- Al

Second, we consider the image of Ca. If
v=—cidr+eadp KO0 (o1 >0, lea| < key),
we have
&(v) = L(v) + P(b(v + 6(v))*" —a(v + 6(0))”) = Lv + P(av)
== cp A — eadage — acidy + acodn
=e1{M — a)d1 — e2(Az — a)go.

Thus the images of the rays —cyén £ keygs (e = 0) can be explicitly caleu-
lated and they are

Cl()\_g_ — a.)qh ¥ kcl(/\g i G)¢2 (Cl 2 0)
Therefore & maps C3 onto the cone

. Ao —
Ry = {d1¢1+dz¢z dy > 0, Edzlék( 2 a)dl}-

A]_ —Q
We note that By C Rg since a < Ay < Ag < b < Aa.
Lastly, we investigate the images of the cones Cy, C4 under @, where
Cy = {c1¢n + cagpz | c2 2 0, klea| < o},
Cy = {c1 + eadha | €2 <0, klea| < e}
We need the following lemma.

LEMMA 1.3. For every v = ci¢y + Cathz, there ezists a constant d > 0
such that :

(B(v), ¢1) 2 dleal. .
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Proof Wiite f(u) = but — au~. Let u = c11 + cacbz + 8(c1, c2). Then
B(v) = L{cygn + cadpa) + P(F(cros + cagpa + 8{ca, c2))).
Hence we have
(B(v), 1) = (L + M)(c1¢1 + cada), 1) + (F(1) — M, é1).

The first term is zero because (L + A1)¢y = 0 and L is self-adjoint. The
second term satisfies

fluy = Mu=but —av™ — \ut + M
= (b= A)ut + (M —a)u™ = v|ul,
where v == min{b — M, Ay — a} > 0. Therefore
(B(v), ¢1) = 7 [ulgr.
Now there exists d > 0 so that v¢1 > d|¢2| and therefore
’YS|UJ¢1 2 ds ul - |¢2] = dJ Su%-’ = dleg).
This proves the lemma. =

Lemma 1.3 means that the image of & is contained in the right half-plane.
‘That is, #{C) and #(C4) are cones in the right half-plane. The image of Cs
under @ is a cone containing

Ry = {d1¢1+d2¢2 dy >0, ——k()‘z Wa)dl <ds < /ﬂ()\2 —b>d1}
Alm{l, )\1Wb

and the image of C4 under # is a cone containing

_.,.b —a
R4={d1¢1+d2¢2 20, k(270 g < gy <2279 g, L
/\1_b )\1—&

We note that all the cones Ro, Rs, R4 contain Ry. Also Rz, Ry contain the
cone Ry\ Ry, and Ry, R4 contain the cone R4\R;.
If a solution of (1.1) is in (', then it is positive. If it is in Cf, then it is
negative. If it is in the interior of Cy N Cj, then it has both signs.
Therefore we have the following theorem:

THEOREM 1.1. Suppose a < Ay and Ay <b < A3, Let f = 8y¢by - 890y,

() If f € IntRy, then (1.1) has a positivé solution, o negative solution,
and at least two solutions changing sign.

(i) If f € ORy, then (1.1) has a positive solution, a negative solution,
and at least one solution changing sign.

(i) If f € Int(Rg\Ry), (1.1) has a negative solution and of least onc
solution changing sign.

(v) If f € ORs, then (1.1) has a negative solution.
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Remark. If f = 5161 + 5243 and s; < 0, then (1.1) has no solution.
Also, if f = s1¢1 + s2¢h2 and s3 = 0, sp # 0, then (1.1) has no solution.
For the proof we rewrite (1.1) as

(L + )\1)” + (b - )\1)'Lb+ - (CI, b )\1)‘&_ = Sld)l 4 Sgd’ﬁg.
Multiplying by ¢1 and integrating over {2, we have
§I0 = X)ut = (@ A)u"lgy = 51 | 0.
n 2

Here we used the self-adjointness of I and the orthogonality of eigenfunc-
tions, The first statement follows since the integral of the left hand side is
nonnegative. If 81 = 0, then % = 0 is a candidate for a solution. But it does
not satisfy (1.1) when sy # 0, and the second statement follows.

ExamMpLE 1.1. We consider the boundary value problem on {—=/2,7/2)
(1.8) ' +5ut = f, w(-m/2) = u(r/2) =0,
where f = s1¢1 + $2¢2. The eigenvalue problem
—y = Ay, u(-7/2)=u(r/2)=0,
has eigenvalues A, = n? (n=1,2,...) and the corresponding eigenfunctions
¢n (n=1,2,...) are given by
Gon+1 = cos(2n+ 1)z, ¢an =sin2nz, n=12,...
Hence we have the following. '
(i) If |s2| < §s1 (51 > 0), then (1.6) has a positive solution, a negative
solution, and at least two solutions changing sign.
(if) If sy = =381 (s1 > 0), then (1.6) has a positive solution, a negative
solution, and at least one solution changing sign.
(iii) If 51 < |s2| < 281 (81 > 0), then (1.8) has a negative solution and
at least one solution changing sign.
(iv) If 82 = =281 (51 > 0), then (1.6) has a negative solution.

To prove that if f does not belong to Ry then (1.1) has no solution, we
need to investigate more properties of the map &: V — V.

2, A remark on the map $: V — V. We consider the same semilinear
eguation as in Section 1:
(2.1) Lu+ bt ~au™ = f(z) in L*(R),
where we assume ¢ < A, Az < b < Az and f = s1¢1 + 8202 (81-, 52 € R).
The study of the map & : V — V defined in (L7) will aid the study
of the multiplicity of solutions of (2.1). We consider the restrictions Blo,
(1 < i < 4) to the cones Ci. Let &; = &, Le., &;: Ci; V.
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First, we consider @;. It maps (y onto Ry. Let I be the segment defined

oy b— A
l1:{¢1+d2¢'2 Id2|sk(b—)\j)}

Then the inverse image 7 '(l1) is the segment

Ly = {3—_1—3\—1-(% + cada) [le2| £ k}

It follows from Lemma 1.2 that & : Cy — Ry ig a bijection.
Second, we consider $3 : C3 — V. It maps Cs onto Ry, If we let I3 be

the segment defined by
G—)\z
= <
Is {¢1 + daga | |dz| < k(am )\1)}’
ICzI < ]ﬂ}

then @37 (I3) is the segment
1
La =
3 {a -5 (#1 + cate)
It follows from Lemma 1.2 that &3 : C3 — Rj is also a bijection.
Now, we study the restrictions $, and @4. Define the segments lg, 4 as

follows:
)\2“& )\g—b
- < o < gl 220
k(Al—G)_dz"k(Alwf)}’

Ag——b )\2-0.
-— < < .
H(ms) s (520) )

We investigate the inverse images 5 1(l3) and &, (14). We note that &, (Cy)
(i = 2,4) contains R; (i = 2,4). The following lemma is important to inves-
tigate the nonexistence and the multiplicity of solutions of (2.1).

Iy = {¢1 + dago

la = {¢1 + dags

LEMMA 2.1. For i = 2,4, let v be any simple path in B; with end points
on 9R;, where each ray in B; (starting from the origin) intersects only one
point of -y, Then the inverse image 7 () of v is also a simple path in C;
(t = 2,4) with end points on 8C;, where any ray in Oy (starting from the
origin) intersects only one point of this path.

Proof. We note that $;*(v) is closed since & is continuous and 7y s
closed in V. Suppose that there is a ray (starting from the origin) in ¢
which intersects two points of &;(v), say, p and ap (@ > 1). Then by
Lemma 1.2,

S:(ap) = ad;(p),
which implies that &;(p) € v and &;(ap) & ~. This contradicts the AgSUmp-

tion that each ray (starting from the origin) in Cj intersects only one point
of ~.
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We regard a point p € V' as a radius vector in the plane V. Then we
define the argument argp to be the angle from the positive ¢y-axis to p.

We claim that $;*(v) meets all the rays (starting from the origin) in
C;. In fact, if not, ;1 (7) is disconnected in €. Since &7 () is closed and
meets at most one point of any ray in C;, there are two points p; and py in
C; such that fTJf] {7) does not contain a point p € C; with

argp < argp < arg pa.

On the other hand, if we let | be the segment with end points p1 and pa,
then &;(1) is & path in Ry, where &;(p;) and ®i(pz) belong to . Choose a
point ¢ in P4(l) such that arg ¢ is between arg @;(p1) and arg @,(ps). Then
there exists a poiut ¢' of v such that ¢’ = Bq for some 8 > 0. By Lemma
1.2, ;M (¢") and #;1(g) are on the same ray (starting from the origin) in
s and

argpy < arg 7 (q) < arg po,
which is a contradiction. This completes the proof. m

Lemma 2.1 implies that &; (i = 2,4) is surjective. Hence we have the
following theoremn.

Tuporem 2.1, For 1 < ¢ < 4, the restriction &; maps C; onto R;.

Therefore, ¢ maps V' onto Ry, In particular, &, and $3 are bijective.
The abeve theorem also implies the following nonexistence result.

THBOREM 2.2. If [ does not belong to the cone Rg, then equation (2.1)
has no golution.

3. A sharp multiplicity result. In this section, we give a sharp result
on the wmultiplicity of solutions of equation (1.1) when the source term f
belongs to IntRy, i.e.,

b— Ay
fe=didy +dade, di1 20, |dg Sk(b—)\l)dl'

Before we deal with the semilinear equation, we give some well known
definitions and facts about the semilinear problem. Given & function m €
L(42), consider the linenr eigenvalue problem
(3.1) ~Lu= Xmu inf), u=0 ondf2

where L ix the sawne linear elliptic differential operator as in Section 1.

Lemya 3.1 (Comparison Property, [15]). Assume L is an elliptic opera-
tor, If m < M in (2, then Ag(m) = Me(M); if m < M in a subset of positive
measure, then Ap(m) > MN(M). In particular, if m < Xy (resp. > M), then
Me{m) > 1 (resp. < 1). :
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Given u, we denote by x the characteristic function of the positive set
of 4, that is,
1, u(z)>0,
e = {3 w20

We set ar(u) = by (u) — ax(—u) when the measure of {z | u(z) = 0} is zero.
DEeFINITION 3.1 [15]. We say that u is a nondegenerate solution of (1.1)
if the problem
~Iv=qafuy inR, v=0 ondf
has only the trivial solution.

Here we only consider the case where L is the Laplacian operator. We
dencte by K the operator (—A)~! from H~*(£2) into Hj (£2) and we consider
it as a compact operator.

Given m € L*/2((2) we consider the eigenvalue problem

(3.2) ~Av=vmv Inf2, v=0 ondf

It is well known (cf. [15]) that if m > 0 in a set of positive measure, then the
positive numbers 1 for which (3.2) has a nontrivial solution form a sequence
vi(m),va{m), ..., diverging to -+oo. In this sequence, each eigenvalue vy is
repeated according $o its (finite) multiplicity.

We now go back to the semilinear equation

(3.3) Au+but —au” = f(z)  in LAHQ).

LEMMA 3.2, Assume f = ¢1 -+ 8202 € IntRy. Let a < Ay and b < Ay for
o gwen integer k > 2. Then if u is a solution of (3.3) which changes sign
in {2, we have

v (o)) < 1 < vy (afw)).

Proof Since f € IntR;, equation (3.3) has a positive solution w, =
(b— M) "tg1 +s2(b— Az) " ¢2 and a negative solution uy, = (a — Ay)"Lepy +
sa(@ — A2) " o, If u is a solution of (3.3) which changes sign in 2, then, by
writing (3.3) for v and u, and subtracting, we have

(3.4) ~A{up — ) = blup — ut) +au”.
We write
ot -
4= blug —ut) + au
Then
(3.5) a < a(u) < é&<hb,

where each inequality holds on a subset of positive meagure in 2. By equa-
tion (3.4), v;(&) = 1 for some 5 and by (3.5) this j belongs to {1,...,k~1}.
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We have similar computations with %, and find a function & such that
vy (&) =1 for some j' € {1,...,k~ 1} and

(3.6) a < &< au) <b,

where each inequality holds on a subset of positive measure in 2. By Lerma
3.1, we have

1= () < vpey(
I":L( (u)) < 1/1 d:

which proves the lammea. w

&) < vp—1(a(u)),
J

( )=1:

Now we have a sharp result for the multiplicity of solutions of equation

(1.1).

THEOREM 3.1. Assume 0 < Ay < Ay < b < Ag. If f € IntRy, then
equation (3.3) has exactly four solutions and they are nondegenerate.

Proof. The statement follows from Lemma 3.2 which ensures that any
solution which changes sign is nondegenerate and has local degree —1. We
know that the sclutions of constant sign are only up and vy, and they have
local degree 1. Also we know [15] that

deg(u -~ K(but — au™), B(0,7), ~K¢y) = 0
for large positive . By homotopy invariance, if f € IntR;, then
deg(u ~ K(bu™ — au™), B(0,r),~Kf) =0
for large positive 7. This complstes the proof, w
Theorem 3.1 implies that for each 1 < i < 4, the restriction
Py C;NE HInbRy) — Ry

is bijective. But we do not know whether the restriction &; : C;N®~*(Ry) —
Ry is bijective.
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(Hy, Lp)-type inequalities for the two-dimensional
dyadic derivative

by
FERENC WEISZ (Budapest)
Abstract. It i shown that the restricted maximal operator of the two-dimensional
dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic
Hardy-Lorentz space Hpg to Lpg (2/3 < p < 00, 0 < g € oo) and is of weak type

(L1, 4r). As 8 consequence we show that the dyadic integral of a two-dimensional func-
tion f & Ly 19 dyadically differentiable and its derivative is f a.e.

1. Introduction. It is known that

1 z-kh
flz) = }lﬂ})"ﬁ § f(8)ds a.e.

if f e Li[0,1). The dyadic analogue of this result can be formulated as
follows. Butzer and Wagner [5] introduced the dyadic derivative to be the
limit of

(@af)@) = S0 (f(e) — fla +277) (@ e 0,1)
FE

as n — oo where 4 denotes the dyadic addition (see e.g. Schipp, Wade,
Stmon and P4l [13]). The dyadic integral 1f is defined by the convolution of f
and the function W whose kth Walsh-Fourier coeficient is 1/k (k = 0). The
boundedness of T f == sup,,en [dn (TF)] from Lp[0,1) to Lp[0, 1) (1 < p < 00)
and the weak type (L1]0,1), L4[0, 1)) inequality

(1) supyA(papI'f > 1) S C[flls - (f € La[0,1))
acdt] nel

1691 Mr;thr*.ma.mlf:s Subfect (lasgification: Primary 42C10, 43A75; Secondary 80G42,
42130,

Key words and phrases: martingale Hardy spaces, p-atom, mterpolation, Walsh, func-
tions, dyadie derivative,
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