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Stochastic continunity and approximation
by

LEON BROWN and BERTRAM M. SCHREIBER (Detroit)

Abstract. This work is concerned with the study of stochastic processes which are
continuous in probability, over various parameter spaces, from the point of view of ap-
proximation and extension. A stochastic version of the classical theorem of Mergelyan on
polynomial approximation is shown to be valid for subsets of the plane whose boundaries
are sets of rational approximation,

In a similar vein, one can obtain a version in the context of continuity in probability
of the theorem of Arakelyan on the uniform approximation of continuous functions on a
closed set by entire functions.

Locally bounded processes continuous in probability are characterized via operators
from L'-spaces to spaces of continuons functions. This characterization is utilized in a
discussion of the problem of extension of the parameter space.

Introduction. The notion of a stochastic process which is continuous in
probability (stochastically continuous in [16]) arises in numerous contexts in
probahbility theory (see [4], [7], [8], [16], [28]). Indeed, the Poisson process is
continuous in probability, and this notion plays a role in the study of gener-
alizations of this process and, from a broader point of view, in the theory of
processes with independent increments {16]. For instance, R. K. Getoor [15]
showed that the Brownian escape process, in dimension at least three, is con-
tinuous in probability and has independent increments. The recent work of
X. Fernique [13] on random right-continuous functions with left-hand limits
(so-called cadlag functions) involves continuity in probability in an essential
way. _

The study of processes continuous in probability as a generalization of the
notion of a continuous function began with. the approximation theorems of
K. Fan [11], [8, Thms. VLIILIIL, VLIILIV] and D. Dugué [8, Thm. VLIILV]
on the unit interval. These results were generalized to convex domains in
higher dimensions in [18], where the problem was raised of describing all
compact sets in the complex plane on which every random function contin-
uous in probability can be uniformly approximated in probability by random

. 1991 Mathematics Subject Classification: 30B10, 60G17, 47BO7,

i3]
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polynomials. This problem, as well as the corresponding question for rational
approximation, were taken up in [1]. Along with some stimulating examples,
the authors of [1] prove that random polynomial approximation holds over
Jordan curves and the closures of Jordan domains (when the probability
space is nonatomic). In the latter case they assume that the function to be
approximated is random holomorphic on the domain itself.

Motivated by [1], we shall show that random polynomial approximation
obtains for a very large class of compact sets. Sets without interior in this
class include those on which every continuous function can be uniformly
approximated by rational functions (with poles off the set). For compact
sets with interior, we show that random polynomials approximate uniformly
in probability if this is the case over the boundary of the set. In particular, if
K is a compact set with the property that every continuous function on 0K
can be uniformly approximated by rational functions, then every function
continuous in probability on K (with respect to a nonatomic measure) and
random holomorphic on the interior of K can be uniformly approximated
in probability by random polyncmials.

The paper concludes with a discussion of the extension of a process con-
tinuous in probability to one with the same property over a larger parameter
space. These results hinge on the relationship between processes continmuous
in probability and operators mapping L'-spaces to spaces of continuous
functions.

1. Preliminaries. Consider a fixed probability space (12, A, P), a mea-
surable space (X, &), and an index set S, which we take to be any topo-
logical space for the moment. We wish to study a stochastic process ¢ =
@(s) = p(s,w) taking values in X. Denote by C(S) the space of all contin-
uous, complex-valued functions on 5, equipped as usual with the topology of
uniform convergence on compacta. In concert with the point of view
of the current work, we may refer to ¢ as a random function on S or
a function on S x 2. We shall identify functions ¢ and # if for every s € §,
w(s) =1(s) as.

DerNrTION 1.1. Let F be a class of functions f : § — X. Assume that
forallw € 2, ¢(',w) € F, and for all s € §, ¢(s,") is A-measurable. Then
¢ is called a rendom element of F. Thus one speaks of random continuous
functions or random polynomials. Unless otherwise specified, in the sequel

we shall take X 4o be the complex numbers, and £ to be the Borel sets in
the plane.

DerINITION 1.2. Let ¢ be a stochastic process taking values in the locally -

convex topological vector space X. We say that ¢ is continuous in probability
at s € 5 if for every seminorm p on X and £ > 0 there is a neighborhood
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V of s in § such that Plp(p(t) — ¢(s)) = €] < € for all ¢ € V. Recall,
however, that if X is not separable, then the function ¢(t) — (s} need not
be measurable with respect to the Borel sets in X. To avoid this difficulty,
one assumes that for every s € S, ¢(s) is measurable in the sense of Bochner,
i.e., (s) is the limit a.s. of a sequence of simple, X-valued, A-measurable
functions. We shall say that ¢ is locally bounded if for each s & 5 there is a
neighborhood V of s such that ¢(V x £2) is bounded in X. If ¢ is continuous
in probability at every s € S, then ¢ is called continuous in probability on S
(or on 5 % £2). If S is a metric space, then the function ¢ is called uniformly
continuous in probability on § if it is continuous in probability on 5, and
for a given seminorm p and £ > 0, the neighborhoods V' above can all be
taken to be balls B(s, §) for some § > 0. It is easy to see that if 5 is compact
and metric, then any function continuous in probability on S is uniformly
continuons in probahility.

DEFINITION 1.3. Let @p, n = 1,2, ..., and ¢ be random functions on &
with values in X. We say p, converges uniformly in probability to ¢ if given
p and £ as above, there exists N > 0 such that Plp(pn(s) — w(s)) Ze] <&
for all s € § and n > N.If F is a family of functions from § to X and ¢ is
a process on S taking values in X, we shall say that ¢ can be approzimated
by random elements of F if there is a sequence of random elements of F
converging uniformly in probability to .

PROPOSITION 1.4. Let ¢ be continuous in probability on the compact
space S, and let gn, = min(|p], n) sgn{p}. Then @, converges uniformly in
probability to . In particular, every function continuous in probability on
S is the uniform limit in probability of bounded functions continuous in
probability on S.

Proof. Given e > 0, for each s € S choose a neighborhood V (s) of s such
that Pllo(t) = @(s)] = 1] < € for all t € V(s). By the continuity property of
measures, there is a positive integer n, such that Plle(s)| = ns] < ¢, and
hence P[jp(t)] = ns + 1] < 2 for all £ € V(s). The proposition now follows
by taking the maximum N of the numbers n; +1 corresponding to a finite
open cover of § by neighborhoods V(s) and observing that we then have

Pllp(s) — gn(s)] Z &) < Pllp(s)] = N] < 2¢
for all s€ S and n = N.

Remarks 1.5, (i) It is easy to see, using the sequential definition
of continuity, that every random continuous function on a metric space is
continuous in probability. Easy examples show that this is not true if the
space is not metric. The converse is also false [1].

(ii) The usual notion of equivalence of stochastic processes involves the
equality of the finite-dimensional distributions. It is clear that with respect
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t0 this notion of equivalence, all of the properties described in Definitions 1.2
and 1.3 are properties of equivalence classes. The reason we did not define
equivalence in this way is that equivalent functions (processes) would not
induce the same operators T, as defined in the next section.

(iii) For any S, the space of all (equivalence classes of) functions on S
continuous in probability with respect to P is an algebra over the space of
{P-equivalence classes of) .4-measurable functions.

(iv) Continuity in measure could, of course, be introduced over any mea-
sure space. One should note, however, that no real increase in generality
ensues from moving to that setting, at least if one assumes that the given
measure u is o-finite. For in that case, there is a probability measure P such
that u and P are mutually absolutely continuous. The notions of continuity
with respect to p and P will then coincide.

Recall that a topological space § is said to be of dimension n if n + 1
is the least integer m such that every open cover I of § has a refinement V
with the property that the number of elements of V containing any point of
S is at most m. In particular, R” has dimension n, and any closed subset of
R™ with void interior has dimension at most n — 1. For a recent survey of
dimension theory, see [12].

THEOREM 1.6. Let S be a normal topological space of finite dimension
and X be a locally convexr topological vector space. If ¢ : 8§ x 2 — X is

continuous in probability, then ¢ can be approzimated by random continuous
functions.

Proof. Let the dimension of § be denoted by N, and let £ > 0 and p be
a continuous seminorm on X. For each s € S, choose a neighborhood V(s)
of s such that Plp(p{t) —w(s)) > &] < e, t € V(s). By hypothesis we may
choose a refinement {Us}aer of {V(s) : s € S} such that for every s € S,
card{a: s € Up} S N+ 1. Let {ga}acs be a partition of unity subordinate
to {Ua}aer, and for each o choose s, such that U, ¢ V(sy). Let

P(5,w) = Y 0(80,w)gals).
acl

This is a sum of at most N + 1 terms on a neighborhood of each s € §.
Thus 9 is a random continuous function on S, and '

Plplp(s) () 2 €] = P[p( 3 gu(o)pls) = p(sa)) 2 ¢]

el

S P[0 aa(o)pi(sw) - @lsa,0)) 2 ¢]

acl
<{N+1e.
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ProPOSITION 1.7. Let S,, o € I, be compact topological spaces, and
set § =[], Sa Let X be a locally convez topological vector space and
w1 8 x 2 — X be continuous in probability. Then for every continuous
seminorm p on X and £ > 0 there ezists ¢ : § x 2 — X such that:

(i) ¥ is continuous in probability on S.

(ii) There exists a finite subset F of I such that y{s) = ¥(t) whenever
8o =tg forall o & F.

(ili) Plp((s) —els)) 2 €] <&, s€ 5.

Proof Given £ > 0 and a continuous seminorm p on X, let Vi,...,Vn
be an open cover of S by basic open sets such that for 7 = 1,...,n and
s5,t € V;, we have Plp(p(s) — ¢(t)) > €] < &. Let F be the union of the
n finite subsets of I included in the description of Vi,...,V,; so that for
s, t € 8, wehavet €V if and only if s € V;, whenever ¢, = 5,, @ € F. Fix
0 e S, and for s € S, let s/, = s, for & € F and s, = 2 for o g F. Set
W(s,w) = p(s',w). Since s — &' is continuous, it is easy to see that (i)—(iit)
are satisfied.

COROLLARY 1.8. Let S, S, and X be as in Proposition 1.7, and suppose
that each S, has finite dimension. Then every function continuous in prob-
ability on S with values in X can be uniformly approzimated in probability
by a random continuous function on § with values in X.

Proof. Since a finite cartesian product of compact spaces of finite di-
mension has finite dimension, the corollary follows from Theorem 1.6 and
Proposition 1.7.

For a generalization of this corollary to spaces Sa of possibly infinite
dimension, see Secticn 4, in particular Theorem 4.5.

2. The operator T,. Recall that a Hausdorff topological space § is
called a k-space if every set in S which intersects every compact set of §in
a closed set is itself closed. The class of k-spaces includes all locally compact
spaces and all spaces that satisfy the first: countability axiom, hence all
metric spaces [20, Chap. 7).

DEFINITION 2.1. Let ¢ be a locally bounded random function on S. For
feI*(f2,P) and s € S, set

T, £(s) =Elp(s, 1] = | w(s, ) f(w) dP(w).

12

THEOREM 2.2. Let ¢ be a locally bounded random function on 5.

(i) If v is continuous in probability on S, then T, f s continuous on S

for every f € L*(02,P), and T, is a continuous operator from L1($2, P) to
Cc(S). :
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(il) If S is a k-space, then @ is continuous in probability on S if and only
if T, is a continuous operator from L*(12, P} to C(S) which maps weakly
compact sets in L (02, P) into compact sets in C(9).

Proof. (i} Let ¢ be continuous in probability, and choose ¢ > 0 and
f € L}(2, P). Then there exists § > 0 such that {|f|dP < & whenever
P(F) < 6. For each s € S, there is a neighborhood V{(s) of s and M > 0
such that for all ¢ € V(s), we have |p(t,w)] < M for all w € 2, and
Ey = {w: |p(t,w) — ¢(s,w)| > ¢} has measure at most §. Thug

[T f () ~ Tef ()] < § lo®) — (s)] - |f]dP
2
<2M [ |£1dP + | |f] - le(®) - o(s)| dP
B ES

< 2Me + || fllie = (2M + || f||)e.

So T, f is continuous on S. Clearly, T, is linear and f = (T, f}| & is bounded
on L'(f2, P) for all compact K C §.

(ii} Let S be a k-space, and recall that a well-known theorem of Dunford
[6, Thm, 15, p. 76| asserts that a subset of L1(2, P) is relatively weakly
compact if and only if it is bounded and uniformly integrable. If ¢ is con-
tinuous in probability and W is a weakly compact subset of L' (2, P), then
the elements of W are uniformly absolutely continuous with respect to P.
The estimate above then shows that the image of W under T, is bounded
and equicontinuous at each point of §, hence relatively compact [20, p. 234,
Thm. 18].

Conversely, suppose ¢ is not continuous in probability on S, but T}, maps
L(£2, P) into C(S). Then there exist ¢ > 0 and s € § such that for every
neighborhood V' of s there is an element sy € V for which P(By) > &, where
By ={w : |p(sv,w) — (s, w)| 2 ). Let fy(w) = galp(sy,w) — o(s,w)).
Then fy is uniformly bounded, hence relatively weakly compact in L*(2, P).
But T, fi- is not eguicontinuous at s, since

T fv(sv) = Ty fr(8)] = [El(p(sv) — () fv]l = Blle(sv) — p(s)]]
> lplov) - p(s)|dP 2 eP(By) > <
By

CoroLLARY 2.3, For § compact, the map @ — T, defines a one-to-one
linear map from the space of bounded functions continuous in probability on
5% 12 onto the space of operators T : LY(£2, P) — C(S) which map weakly
compact sets in L' (€2, P) to norm-compact sets in C(S).

Proof. We need only show the map T, is omto. If T : L1(£2, P) —
C(S) is as in the corollary, then for each s € S, there is a function w(3) €
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L=°(£2, P) such that (T'f)(s) = Elp(s)f], f € L}(2, P). By Theorem 2.2, ¢
is continuous in probability, and clearly T, =1T.

THEOREM 2.4, Let @,, n > 1, and ¢ be continuous in probability on
and uniformly bounded. Then o, converges uniformly in probability to ¢ if

and only if ||Typ,, f T, fll — 0 uniformly for f in any weakly compact subset
of LY, P).

Proof Assume that the p, and ¢ are uniformly bounded by M > 0 and
that v, converges uniformly to ¢ in probability. Let W be a weakly compact
set in L*({2, P), and choose N > 0 such that || f]l; < N for all f € W. Given
€ > 0, choose & > 0 such that §{, fdP < & for all f € W if P(4) < §. Then
forall s € §and f & W, if we set A, = {w : [pn(s,w) — pls,w)| > €}, we
have P{A,) < § for all sufficiently large n. For such n,

Tuf(s) = Tof () < { lion(s) = @(s)| - (| dP < || fllie+ 20 | |£|dP
o} A,

< || fll1e +2Me < (N +2M)e.

The converse proceeds by analogy with the proof of the converse in
Theorem 2.2(ii); we omit the details.

3. Approximation. We now turn to the approximation questions raised
in the Introduction. We begin with the analogues of Mergelyan’s Theorem
[21] in the current coutext. Throughout this section, the symbols F and
K will denote, respectively, closed and compact subsets of C. The interior,
boundary, and complement of F are denoted by F°, 8F, and F¢, respectively.
Let Vo, V4, .. denote the components of F°; for K compact, V, will be the
unbounded component of K€

DEFINITION 3.1. The set K is called a stochastic Mergelyan set if for ev-
ery nonatomic probability space ({2, P), every function continuous in prob-
ability on K x {2 and random holomorphic on K° x {2 can be approximated
by random. polynomials.

LEMMA 3.2. Let @ be continuous in probability on K x 2 and let € > 0.
Suppose that there ezist compact sets Kq, ..., Ky, poirwise disjoint measur-
able subsets 21, ..., {2 of 12, and random polynomials p1, ... ,Pn on 2 such
that K =K1 U.. UK, 2=21U.. .U, and for all 1 < j < n, we have
0 < P(2;) < & and Pllp(z) —p;j(2)] 2 e | 1] < ¢ for z € U, K. Then
there is a random polynomial p on K x 2 such that P[|o(z) ~p(z3é[ > g] < 2e,
ze K. :

Proof Let p be the random polynomial given by p(z,w) = pi{z,w),
w & 2, 7=1,...,n For any 2z € K, choose j = j{z) such that z € Kj.
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Then for all z € K,

Plle(z) —p(2)| z €] = ZP le(2) = pi(2) = € | 15:]P(1%)
i=1
2+ Plle(z) — pil=)| = € | &]P(4%)
i)
<e+ Y eP(1) < 2.

iz4g
COROLLARY 3.3. Suppose that for each n there exist compact sete Iy,

LKy osuch that K=Ky U...UK, and for all 1 < j < n, Ule is o
stochastic Mergelyan set. Then K is a stochastic Mergelyan set.

Proof. For each £ > 0, choose a measurable partition (2,..., {2, of
2 with 0 < P(f2;) < e for all j. The hypotheses of Lemma 3.2 are then
satisfied.

DerINITION 3.4. If U and V are disjoint open sets in a topological space
S, then a strip connecting U and V is the image of a homeomorphism h of a
closed disk D of C into .S such that A(dD)NU # 0 and h(8D)NV # . For an
open set U of .9, let C(U) denote the set of connected components of /. Then
U is connectable (in ) if either I/ is connected or to each V € C(U) there
corresponds a strip Sy in § connecting V' to some other element of C(U)
such that the Sy, V € C(U), are pairwise disjoint and | J{Sy : V € C(U)}UU
is connected. We shall say that a closed set F' has finite connectivity weight
if there is a sequence Fy C Fy C ... C F, = F of closed sets such that F§ is
connected, and for all j > 0, V'\ F} is connectable in V for every component
V of Ff ;. The least m for which these conditions hold will be called the
connectivity weight of F.

ExAMPLE 3.5. (1) If F° has finitely many components, then F has a
connectable complement and hence connectivity weight 0 or 1, The converse
is false, since compact sets with connectable complements having infinitely
many corponents are easily constructed. For instance, the following two
examples of varying geometric nature arve easily verifiable.

(2) The set consisting of 0 and all circles with center 0 and radius n™!,
n = 1,2,..., has a connectable complement,.

(3) Let C denote the Cantor ternary set, let Iy, I,... be the open
intervals which constitute the components of C° in [0,1], and set K =
C U Upe.;Cn, where C, is the circle with diameter I,. Then K has a con-
nectable complement.

(4) T is not difficult to see by induction that if F° = @ and F has finite
connectivity weight, then so does any closed subset of F.
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(5) Let K denote the union of all circles of radius 1 — n~! with center
at the origin, n = 1,2, ..., along with the unit circle and all points re®®
the closed unit disk with

2mik
)

1
l_HSTSI’ 8= k=0,1,....,n—1; n=2,3,...

Then K does not have a connectable complement, since any homeomorphic
image D of the unit disk which meets Vy and some V; with 7 > 1 must
contain V; for some 4. But it is easy to see that K has connectivity weight 2.

THEOREM 3.6. Let K be a compact set with finite connectivity weight
and void interior. Then K is e stochastic Mergelyan set.

Proof Theorem 1.6 implies that ¢ can be approximated uniformly in
probability by randorm continuous functions. Suppose first that K€ is con-
nected. Then each of these random confinuous fanctions is the uniform limit
over K x £ of random polynomials by [5, Thm. 3.3].

Suppose K has a connectable complement. It is clear that each of the
strips in Definition 3.4 can be considered as the image of a homeomorphisim

hy:[0,1]x[0,1] = 5§;CcC

such that h;([0,1] x {0}) C V; and h;([0, 1] x {1}) € Vi for some (3} > 1.
Fix n, and for each i =1,...,n, let

LimKr‘;Uhj({ nl ;] 0, 1])

Set Koy = [K \ J; S5]7. Then each of the sets K; = KoU Ly, i = 1,....m,
is closed, and for ¢ = 1,...,n, [J;.; K& has a connected complement and is
thus a stochastic Mergelyan set. Our theorem now follows in this case from
Corollary 3.3.

Finally, suppose K has connectivity weight m. Assume that our theorem
is known to be valid for all sets of connectivity weight less than m, and let
Ko,..., Ky be as in Definition 3.4. Then proceeding as in the previous
argument simultaneously on all of the components of K7, _,, we can again
apply Corollary 3.3, this time to finite unions of sets of connectivity weight
at most m — 1, to conclude that X is a stochastic Mergelyan set.

DEFINITION 3.7. By a closed Jordan region we shall mean a (finitely
connected) compact subset K of C such that K° is connected, K is the
closure of K°, and the boundary of K is the disjoint union of finitely many
Jordan curves.

THeoREM 3.8. Let K be a finite disjoint union of closed Jordan regions.
Then K is a stochastic Mergelyan set.



24 L. Brown and B, M, Schreiber

Proof. If K is simply connected, this is [1, Thm. 3.2].

Suppose K is the disgjoint union of simply connected closed Jordan re-
gions Ki,...,Kn. Let ¢ be continuous in probability on A and random
holomorphic on K°. Given ¢ > 0, for each j = 1,...,n there is a random
polynomial p; on K; x {2 such that Pll¢(z) —p;(z)] > €] <€, z € K;. Let
¥(z) = pi{z), z € K;, j = 1,...,n. Then + and K satisfy the hypothe-
ses of {5, Thm. 3.3}, so there is a random polynomial p on K such that
Pll(2) — p(2)| = €] < ¢, and hence Pllp(z) — p(z)| 2 2] < 2, z€ K.

Now let K be a closed Jordan region. Then K has connectivity weight
either zero or one, since it is finitely connected. And the removal from K of
the interiors of any finite collection of strips connecting the components of
K¢ leaves a finite union of simply connected closed Jordan regions, to which
the argument in the proof of Theorem 3.6 applies.

Finally, if K is the disjoint union of finitely many closed Jordan regions
K;,...,K,, then there is a disjoint collection of open sets Uy,..., U, such
that K; C U;, 1 < 7 < n. Hence K has connectivity weight at most one.

THEOREM 3.9. Let ¢ be o function on K x {2 that is continuous in
probability on K and random holomorphic on K°. If the resiriction of ¢
to the boundary of K can be approzimated by random polynomials, then so
can o itself.

Proof By hypothesis, given £ > 0, there exits a random polynomial p
such that P[|e(z) —p(2)| 2 €/2] < /2, z € K. Since K is compact, ¢ —p is
uniformly continuous in probability on K. Hence there is a neighborhood ¥V
of 0K such that Pl|p(2}—p(2)| 2 ] < &, 2 € VNK. Assuring that K° # 0,
let K' = K\V, and consider K’ as a compact subset of K°. It is well known
that VN K® contains a finite collection 1, ..., vm of oriented Jordan curves,
each consisting of a finite union of line segments parallel to the axes, which
define a finitely connected region—-a finite union of disjoint, closed Jordan
regions—which contains K’ (e.g., see [25, p. 269]). For 1 < § < m, let Vi
be a Jordan curve in V' N K° consisting of segments parallel to those of v;,
oriented in the same direction as «y;, such that ; mfy; =@, d=1,...,m, and
the closed regions defined by i, . .., 7, contain those defined by v1,..., ¥m.
Let K; be the closed annular set bounded by v and —v;.

Let D be a closed disk whose interior contains K. The set

L=K\(KJU...UK®)

consists of the finite union L; of closed Jordan regions contained in K and
bounded by v1,.. ., T, along with the intersection with K of the finite union
Ly of closed Jordan regions defined by 0D, ~~{,...,—v.,; in particular,
LoNK CV. Thus I* = Ly U Ly is a finite disjoint union of closed Jordan
regions, hence a stochastic Mergelyan-set by Theorem 3.8, and Ly M Le = (.
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Let
— (P(z), Z E Llu
o(2) = {p(z), z € La.
Then p is continuous in probability on L* and random holomorphic on L*°,
so there is a random polynomial g such that Plle(z)—g(z)| = ¢] < &,z € L*,
and hence P[lp(z} — q(2)] > 2¢] < 2¢, z € L.

For j = 1,...,m, and for each positive integer n, K; can be written as
the union of n closed annular regions Kj;, 1 < i < n, each bounded by
curves paralle]l to y; and fy;-. By the argument above, for each i == 1,...,n
there is a random polynomial ¢; such that

Pllp(s) a2l <z, zeK\|JE% =K\ Kn) -

=1 j=1
Our theorem now follows from Lemma 3.2.

Combining Thecrems 3.6 and 3.9, we have the following.

THEOREM 3.10. If the boundary of K has finite connectivity weight, then
K is a stochastic Mergelyan set.

For an infinite compact set K in C, let A(K) and R(K) denote the
spaces of all continuous functions on K which are holomorphic in K° (if it
is nonvoid) and which are uniform limits over K of restrictions of rational
functions with poles in K¢, respectively. Recall that the celebrated theorems
of A. G. Vitushkin [29], [30] (cf. {14, Chap. 5], [31]) provide necessary and
sufficient conditions for a compact set K in C to have the property that
R(K) = A(K). As we shall see, this property also has implications for the
problem of random polynomial approximation.

The characterizations developed by Vitushkin involve notions of capac-
ity, and we shall not reproduce them here. Let us cite, however, several
consequences of and motivating results for Vitushkin’s work:

(1) (Mergelyan) If every point of 8K lies in the bonndary of a com-
ponent of K¢, then R(K) = A(K). In particular, if K° has finitely many
components, then R(K) = A(K). -

(2) (Hartogs-Rosenthal) If K has planar measure zero, then R(K) =
C(K).

( (32} (Garnett) Let F be the set of all points in K each neighborhood of
which intersects infinitely many components of K¢ If F is countable, then
R(K) = A(K). :

(4) (Mergelyan) If the diameters of the components of K are bounded
away from zero, then R(K) = A(K).

(5) If R(K) = A(K), then R(JK) = C(8K), but not conversely.
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By a random rational function on K x f2 we mean a random element,
in the sense of Definition 1.1, of the class F of restrictions to K of rational
functions. In this case we can take X to be the Riemann sphere C* and £ to
be its Borel o-fleld. For a countable subset Z of K°, let Rz(K) denote the
algebra of functions on K which are the restrictions of rational functions
with poles in Z.

LemMma 3.11. Let r = r(z,w) be a random element of Rz(K). For
each w, also denote by v == v(-,w) the unique extension to C of the given
random function r on K. Then r is a random rational function on C,

Proof. Let z be a cluster point of K. If f is a random function on X
which is a.s. holomorphic at zg, and we write f(2) = ¥;7, ax(z — z0)*, then
each of the coefficients ar is A-measurable. Indeed, ap = f(z) is measur-
able. If z,, € K such that z, — 2o, and if ag,...,an_1 are known to be
measurable, set g(z) = f(z) ~ ZZ__"_& ap(z — 20)*. Then g(2) is a measurable
function for all z € K, and

N ICARYICON
n—oe 2y — zo)n
80 a4, is measurable.

For each monic polynomial ¢ all of whose roots lie in Z (including ¢ = 1),
it follows from the remark above that

(1) the set
By ={w:¢(-)r(-,w) is a polynomial}
is measurable, and

(2) the function q{z)r(z,-) is a (relatively) measurable function on By
forall z € C.

The set of all such ¢ is countable, so by choosing, for each w 2, the monic
polynomial of lowest degree such that ¢(-)r(-,w) is a polynomial, we can
write {2 as a disjoint union, 2 = U2, Ej, where B; C E,, for some monic
polynomial g; as above. '

Let z € C. If g;(2) = 0, then r(z,w) = oo, w € Ej. If ¢;(z) # 0, then
¢;(z)r(2,w) is measurable on Ej, so r(z) is measurable on E;, Hence r(z) is
measurable for all z € C,

LEMMA 3.12. Let Z be a countable subset of K©. Every random element
of Rz(K) can be approzimated by random polynomials,

Proof. Identify a rational function with its restriction to K. Let r =
7(2,w) be a random element of Rz(K). For any subset W of Z, Lemma 3.11
implies that Ay = {w : r{-,w) () C W} &€ A Thus, given ¢ > 0,
there is a finite subset F of Z such that P(A%) < e. Let us assume that
F # 0 and write F = {21,...,2,}. Let Dy,..., Dy be pairwise disjoint,
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closed disks such that z; € D; and D; MK =8,i=1,...,n. Let D bea
sufficiently large, closed disk so that K € Dand D; ¢ D°, i =1,...,n.
Set K’ = D\|J;_, D?. Then K C K', K’ is a closed Jordan region, and the
restriction of r to K’ x Ap is a random continuous function which is random
holomorphic on (K')° x Ap. By Theorem 3.8, there is a random polynomial
o on K' x Ap such that for all z € K', P|ir(z) - p'(2)| = € | A4F] < ¢.
Letting p(z,w) = p'(z,w) for w € Ap and p(z,w) =0 for w € A%, we have
for all z € K', so a fortiori on K,

Pllr(z) - p(2)| = €] < Pllr(z) — #'(2)] Z e | Ar]P(AF) + P(4F) < Ze.

The following lemma is the analogue in the current context of [5, Thm.
3.3

LeEMMA 3.13. Let K be a compact set for which R(K) = A(K), and let
@ be a random element of A(K). Let Z consist of one element chosen from
each component of K°, with co chosen from Vy. For everye > 0, there is a
random element v of Rz(K) such that |l¢ — rllx <€ a.s.

Proof. Recall that the hypothesis on K and Runge’s Theorem ([26],
[25, Thm. 13.6]) imply that every element of A(K') is the uniform limit over
K of elements of Rz(K). By [5, Prop. 1.1, Lemma 3.2], there is a subset £’
of 2 such that P({2') =1 and

H= {('r,w) T E RZ(K): we “Q,: Hcp(,w) —’f‘“K < 5}.

is product-measurable with respect to the restrictions of A to 2’ and the
Borel o-field of C(K) to Rz(K). By hypothesis, H(w) = {r : (r,w) € H} # 0
for all w. Our lemma now follows from the selection theorem {17, Thm. 5.7],
once we demonstrate that Rz(K) is a Souslin space.

Now, the space P(K) of polynomial functions on K is a Souslin space
as the countable union of finite-dimensional spaces. Similarly, ¢ 'P(K) is a
Souslin space for each monic polynomial g all of whose roots lie in Z. The
set Q of all such polynomials g is countable, and Rz (K) = |} quq“lp(K ).
Thus Rz(K) is Souslin, and the proof is complete.

THEOREM 3.14. If R(K) = C(K), then K is a stochastic Mergelyan set.

Proof Let ¢ be continuous in probability on K x {2. By Theorem 1.6,
we may assume i is a random continuous function. Since our hypothesis
implies that K° = @, by Lemma 3.13 there is a countable set Z a.n'dl a
sequence of random elements of Rz (K) converging uniformly in probability
{0 . Our theorem now follows from Lemma 3.12.

The notion of connectivity weight was used to prove Theorem 3.14. On
the other hand, Theorem 3.14 implies Theorem 3.6, as shown by the follow-
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ing proposition. We are grateful to P. de Paepe for suggesting the utilization
of the Bishop Splitting Lemma in the manner in which it appears below,

PrOPOSITION 3.15. Let K be a compact set with fintle connectivity weight
and empty interior. Then R(K) = C'(K).

Proof. If the connectivity weight m of K is 0, then Mergelyan’s Theorem
says R(K) = C(K).

Suppose R(K') = C{K’) for all K of connectivity weight less than m.
There is a sequence S; of strips connecting components of K such that
K' = K\|J; 57 has connectivity weight at most m — 1.

Let x be a measure on K which annihilates R(K). Since the S; are
disjoint, no component of K° can be contained in any S7. So if z € 53,
there is a neighborhood U of z such that the complement of U N K is
connected. If V is any open set not containing z such that X ¢ U UV, then
the Bishop Splitting Lemma [14, Chap. I, Lemma 10.2] implies that we may
write 4 = py+ pa, where the closed supports of u; and pg are contained in U
and V, respectively, 1 annihilates R{UNK), and p; annihilates R(VCNK).
But RUNK) = CUNK), 50 iy = 0; i.e.,, 4 = po. By the choice of z, we
see that p is supported on K’ and annihilates R(K'), which by hypothesis
implies that u = 0, and the proposition has been proven.

~ Applying Theorems 3.14 and 3.9, we obtain the following:

THREOREM 3.16. Let K be a compact set such that R(6K) = C(0K).
Then K is a stochostic Mergelyan set. In particular, ony set K for which
R(K) = A(K) is a stochastic Mergelyan set.

Remarks 3.17. (i} For examples of sets K for which R(K) # A(K)
but R(K) = C{OK), see the three examples in [14, Chap. VIII, Sec. 9].

(ii) It remains open to determine whether there exist any compact sets
in C that are not stochastic Mergelyan sets. In searching for such sets, in
light of Theorem 3.16, it suffices to examine sets K with empty interior such
that R(K) # C(K). The natural first candidates are the appropriate “Swiss
cheese” sets [14, pp. 25-26].

(i) The assumption that ¢ be a random holemorphic function on K°
is not necessary for ¢ to be approximable on K by random polynomials.
Indeed, there is an example in [1] of an approximable random function ¢ on
the closed unit disk such that for each w, (-, w) is only holomeorphic off a line
segment in the open disk. Lemma 3.2 could be invoked to allow us to assume
in Theorems 3.9 and 3.18 that each ¢(-,w) is holomorphic on an appropriate
subset of K that depends on w. In fact, the argument used to develop the
example of Andrus and Nishiura is a prototype of the one used in proving
Lemma 3.2. It would be interesting to determine the degree of analyticity
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inherent in a function ¢ that is approximable by random polynomials on X,
when K is the closure of its interior.

In a similar way, one can formulate analogues of the classical theorem
of Arakelyan [2] in the current context. Let M denote the space of all entire
functions. Recall that a subset A of C is locally connected at infinity if
for every neighborhood U of oo in C there exists a neighborhood V' of oo
contained in U such that ANV is contained in the connected component, of
oo in ANU. Corresponding to Theorem 3.6 we have the following:

THEOREM 3.18. Let F' be a closed setf with finite connectivity weight and
void interior. Then every function continuous in probobility on F can be
approzimated by rondom elements of H.

Proof. Let f be continuous in probability on F. By Theorem 1.8, we
may assume that f is a random continuous function on F.

Suppose first that F° is connected. Let {W,,} be any sequence of open
annuli centered at the origin with disjoint closures and inner radi {r,}
tending to infinity. Set B = F[..,WS. Then E° is connected and locally
connected at infinity. Indeed, F° is dense in C, so W, N F° # @ for all
n, hence B¢ is connected. And if U is any neighborhood of oo in €, then
V ={z:|z| > rp,} C U for some ng. Any connected component of V' N E€
which is disjoint from W,,, would be an open, connected set whose closure is
contained in V, hence a connected component of E°. Thus every component
of V N E® meets W,,,. Hence V' N E° is connected and unbounded, so it lies
in the connected component of oo in E° N U.

As pointed out on p. 121 of [5], one may argue as in [5, Sec. 3] to conclude
that there is a sequence of random elements of A that converge to f a.s.
If we vary the choice of the sequence {W,} and modify Lemma 3.2 and
Corollary 3.3 (replacing compact sets by closed sets and polynomials by
entire functions), we may proceed as in the proof of Theorem 3.6 to conclude
that our theorem holds i F° is connected: For each k and n, choose n
disjoint, open, concentric annuli such that the union of their closures is Wy.
The remajnder of the proof then proceeds like that of Theorem 3.6.

4. Extension. Given a stochastic process ¢ = (s, w) continuous in
probability over a parameter space S, and a space T O 5, when can ¢
be extended to a process & continuous in probability on 77 One can also
add the requirement that the extended sample functions (-, w) lie in some
prescribed space of functions on 7. The deterministic version of this question
has a long history (see [3}, [9], [19], [22], [23}, [24], [27]). Our approach to
this problem relies.on the operators T, introduced in Section 2 and results
of A. Pelczyriski on linear operators of extension.
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We begin with the following definitions from [24]. In the sequel, all maps
will be assumed to be continuous. If h: § — T, then h° : C(T") — C(S) is
the canonical induced homomorphism, i.e., h°(f) = f o h.

DEFINITION 4.1. Let S and T be compact spaces and b : § — T be
injective. An extension operator for the triple (2, S, T) is a bounded operator
u: C(8) — C(T) such that h°u(f) = f for f € C(S), i.e, h°uh® = h°. If
X is a closed subspace of C(T') and u is an extension operator such that
u(f) € X for all f € C(I), then we say u is an estension operator taking
values in X.

DEFINITION 4.2. A compact space 9 is an L-extensor if for every compact
space T and injection h : S — T, the triple (h,S,T) admits an extension
operator.

Remarks 4.3. (i) As shown in [24], a compact space S is an L-extensor
if and only if there is an injection h : § — [0, 1]™, for some cardinal m, such
that the triple (h, S,[0,1]™) admits an extension operator.

(ii) Examples of L-extensors include compact metric spaces, compact
absolute neighborhood retracts, and any cartesian product of L-extensors.

(iil) In [24], L-extensors are called “almost Dugundji spaces”. The term
“Dugundji space” n [24] is reserved for those L-extensors for which the
extension operators u can be chosen so that u(f) > 0 whenever f >
0. The term “L-extensor” appears in [27]. Remark (ii) remains valid if
“L-extensors” is replaced by “Dugundji spaces”.

We shall need the following analogue of Tietze’s Extension Theorem.

THEOREM 4.4. Let S be an L-extensor and h : § — T be an injection
of compact spaces. If ¢ is bounded and continuous in probability on 5 x {2,
then there exists o bounded function @ continuous in probability on T x 2
such that Fo (hxidp) =

Proof. Let u be an extension operator for the triple (2, 5,T'), and let T},
be the operator defined in Definition 2.1. Set Uf = u(T,f), f € L'(%2, P).
Then the operator U ; L*(2,P) — C(I') maps weakly compact subsets
of L}(£2, P) to strongly precompact sets in C(T). For ¢ € 7', the func-
tional f +— Uf(t) is bounded, so there exists $(t) ¢ L°°(.Q,P) such that
8@ < [T]], te T, and UF(t) = §, f&(1) 4P, f € L' (@2, P).

Clearly, T = U, so ¢ is continuous in probability on 7' x £2, by The-
orem 2.2. If 5 € 9, then Uf(h({z)) = u((T,f) o h(m)) = T, f(x). Hence
c,oohs)— p(s) as, s € 8S.

A corollary to Theorem 4.4 and Corollary 1.8 is the following result on

approximability by random continuous functions (in the sense of Defini-
tion 1.3).
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THEOREM 4.5. If S is an L-extensor, then every function continuous in
probability on S x 2 can be approzimated by random continuous functions.

Proof In accordance with Remark 4.3(i), let  : § — [0,1]™ be an
injection, for some cardinal m, and let v be continuous in probability on
S x {2. Proposition 1.4 says that we may assume that ¢ is bounded on
S x £2. Then by Theorem 4.4, there is a function & continuous in probability
on [0,1]™ x 2 such that $o(hxide) = p. We may now choose, in accordance
with Corollary 1.8, a sequence &y of random continuous functions on [0, 1]™
converging uniformly in probability to . The random continuous functions
@n = @n o (h x idp) then converge uniformly in probability to ¢ on 5.

When X is a Dirichlet subalgebra of C(T'), Pelczytiski obtained the fol-
lowing interesting generalization of the well-known Rudin-Carleson Theo-
rem:

THEOREM 4.6 [23]. Let h : § — T be an injection of compact spaces
and X be a Dirichlet subalgebra of C(T'). Then an eztension operator for
the triple (R, S,T) with values in X and norm one erists if and only if
{foh:feX}=C0C(8).

COROLLARY 4.7 [23]. Let 8 be a closed subset of Lebesgue measure zero of
the unit circle I, and denote by A the disk algebra, considered as an algebra
of functions on I'. Then there erists an extension operator uw : C(S) — A
with ||ufl = 1.

Arguing as in the proof of Theoremn 4.4 and using Theorem 4.6, we
obtain the following analogue of Theorem 4.6 for functions continuous in
probability:

THEOREM 4.8. Let h: 5§ — T be an injection of compact spaces and X
be o Dirichlet subalgebra of C(T) such that {foh:fe X} =C(8). If v is
bounded and continucus in probability on 5 X (2, then there exists ¥ bounded
and continuous in probability on T x 12 such that ¢ o (h X idg) = ¢ and
Tyf € X, f e LN, P).

COROLLARY 4.9. Let 8, A, and I' be as in Corollary 4.7, and let ¢ be
bounded and continuous in probability on § % £2. Then there is a bounded
function i continuous in probability on I' x 12 such that:

() Tyf € A, f € LM, P),

(ii) v,b(,w)EH""as _

Proof. Let o be the extension of ¢ whose existence is asserted by The-
orem 4.8 with X = A, so that (i) holds. By [7, Chap. 2, Thm. 2.6] we may
assume that w is measurable on I' x (2. Then for all f € L2, P) and
n=1>01,.
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S Ty f(2)z" dz = S ‘ P{z,w) flw)z" dP(w) dz
r rao
=
a

[S P(z,w)z" dz} Flw) dP(w).

r
Hence for each n, §1(z,w)2™ dz = 0 a.s. But then this holds a.s. simulta-
neously for all n > 0, so (11) follows.
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