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Abstract, Let T be a power-hounded linear operator in a real Banach space X. We
study the equality
< 00}.

For X separable, we show that if 1" satisfies (%) and is not uniformly ergodic, then (I — X
containg an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if
X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach
gpacey, then () is equivalent to uniform ergodicity. As an application, sufficient conditions
for uniform ergodicity of irreducible Markov chains on the (positive) integers are obtained.

n
ZTkz

(%) (I—T)X———{zeX:sup
" k=0

1. Introduction. Von Neumann's mean ergodic theorem {e.g., [K, p. 4])
led to the study of operator ergodic theory: For T': X — X a linear operator
in a Banach space X, study the convergence of the averages n™ 1Y ;_, T®
(in the strong operator topology). The fellowing results are well known [K,
p. 73] for T power-bounded (i.e., sup,.q ||[T™]| < cc-—an assumption made
throughout this note):

T
(1.1) {z EX:n“lZT’“z—rO} = T7DX,
el
K
(1.2) {:L € X :limn™! ZT% exists} ={yeX Ty=yr® ([ -T)X.
fizem,
We shall denote {y € X : Ty = y} by F. It follows from (1.2) that
F @ (I -T)X is closed. Using the power-boundedness for the first inclu-
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sion below and (1.1) for the second, we obtain

(1.3) (I-TXcC {z € X :sup “ ZT’“zH < oo} c(I-T)X.
n k=0

If the averages n~! 3., T® converge in the strong operator topology {i.e,
the subspace in (1.2) is all of X), we call T’ mean ergodic (ME). T' is called
uniformly ergodic (UE) if the averages converge in the uniform operator
topology (i.e., in operator norm).

TuEOREM 1.1. Let T be power-bounded in X. Then the following are
equivolent:

(i) T is uniformly ergodic.
(i) (I = T) X is closed.
(iii) 7 — T is an isomorphism of (I —T)X.
(iv) {z € X :sup, | Sop_o T*2l| < oo} is closed.
The equivalence of the first 3 conditions is in [L»], and (ii) implies (iv) by

(1.3). (iv) implies equality in the second inclusion of (1.3), so we can apply
Corollary 1 of [Ls] to obtain (i).

Define Xo = {z € X : sup, || Yp_o T*#|| < co}. Thus, a power-bounded
T is uniformly ergodic if and only if Xy = (I —T)X, and then also Xy =
(I = IX (so we have equalities in both inclusions of (1.3)). An example of
T mean ergodic for which both inclusions of (1.3) are strict is given in [LS].

Butzer and Westphal [BuW] proved that for X reflexive and T power-
bounded,

(%) (I—T)X:{zeX:sup

| émn < oo},

This was extended in [L;]: If X is a dual Banach space and T is a dual
operator, then () holds (independently of whether T is UE or not). Equality
(%) also holds for any contraction in Iy(u) of a probability space [LS], for
irreducible Markov operators in C(K) [KoL], and for Markov transition
operators on the space of bounded measurable functions [Kol|. Thus, in
general, (%) does not imply mean ergodicity, so () and mean ergodicity are
not comparable, nor do both of them together imply uniform ergodicity.
In this paper we prove that equality () is equivalent to (I — 7).X being
an F, set, and also to (I —T\U C (I — T)X, where U is the unit ball
of X. This result is used to show that for X separable, if T' satisfies ()
and is not uniformly ergodic, then (I — T).X contains an isomorphic copy of
an infinite-dimensional dual Banach space. Consequently, if X is separable
and does not contain an isomorphic copy of an infinite-dimensional dual
Banach space, then () is equivalent to uniform ergodicity of T (in contrast
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to the above mentioned result of [L;]). As an application, we prove that an
irreducible Markov matrix which preserves ¢ is uniformly ergodic if and only
if it does not preserve cg.

2. Condition (*) and the image of the unit ball under 7 — 7.
Throughout this section, T' is a power-bounded linear operator in the real
Banach space X, with sup,,»q [T = €. The closed unit ball of X will be
denoted by U, and we define Vi = {z € X :sup, | S, T%2| < 1}.

PrOPOSITION 2.1. Vi C (I - TYU < (C + 1)V.

Proof. (i) Let 2 € (I ~ T')U. Then there is a sequence z; with ||z;|| < 1
such that z = lim;(J — T)z;. For z* € X* we have

%, 2)| = T [{z", (T = T)zg}| = lim [{(T - T7)a", z5)| < [|(T - T")2"]|

Hence for every n we have

Km}ci}wzﬂ - iT*kw»«’ZN <a- S ek
= k=0 k=0
= [|(I = 7" | < (C 4+ 1)|l2"].

Since this holds for any #* € X*, we conclude that | S5 _, T*2|| < C + 1.
Hence z € (C+ 1)W1,

(i) Let z € V4. Assume z ¢ (I — T)U. By the separation theorem, there
exist a functional z* € X* and a number o such that (z* z) > o and
supgepr (2™, (I — T)x) < a. Hence [[(I ~ T*)a*|| = supyep (2, (I — T)x)
< a. Clearly o > 0. If @ = 0, then T*2* = z*, so (z*,2) = 0 (since
=t S0 _o T*z|| — 0)—a contradiction. Hence a > 0. Since 33 _ Tz € U,
we have

o> <m (I-T) gﬂ:ﬂcz) = (z*, (I ~ T""1)z)

for any n > 0. Averaging yields o > {z*, 2z —~ N~ Ei\;l Tk2) — (z*,2), a
contradiction. Hence z € (I —-TY)U.
COROLLARY 2.2. {z € X :sup, | Soreo 72| < 00} = o nll — T)U.

THROREM 2.3. The following are equivalent for o power-bounded operator
T in a Bonach space X with unit ball U:

(1) {2 € X : sup,, || Dheg T%2]l < 00} = (I ~ T)X.
(1) (I -=T)X is an F, set.
(i) T -1 < (I - TX.

Proof. (i) implies (i) by the previous corollary.
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(i1)=>(1). Let F}, be closed sets with (I —T).X = |J,, Fn. Define A = I-T.
Then X = |J, A7(F,), and by the Baire category theorem there exist
2o € X and r > 0 such that 2o + v/ C A™'(Fn) for some m. Hence
A(zo + rU) C Fpn, and since Fy, is closed, A(U) C r=Y(Fn — Azg). By
Proposition 2.1, Vi ¢ A(U) C r~Y{(Fm ~ Azp) € A(X). Since Xp is the
linear span of V1, we have Xo C (I T)X . Together with (1.3) we obtain (i).

(i)=(iii). By Proposition 2.1, A(U) C Xo, and Xg = (I—T)X is assumed

i

((211):,(1) Vi ¢ A(U) € A(X) by Proposition 2.1 and (iii). Hence (i)
holds.

Remarks. 1. If X is a dual space (with its dual norm), and 7T is a dual
operator, then (I —T)U is closed, by wealk™ compactness of U. In particular,
if X is reflexive, then (I —T)U" is closed for the unit ball U’ of any equivalent
norm.

2. We show below that uniform ergodicity does not imply that (I —T)U
ig closed. Hence () does not imply it.

3. The result is also true in complex Banach spaces. The modifications
of the proof of Proposition 2.1 are obvious.

THEOREM 2.4. Let Y £ {0} and Z be closed subspaces of o Banach space
X such that X =Y @ Z, and let P be the corresponding projection onto Y.
The image under P of the unit ball of any equivalent norm on X is closed if
and only if Z is reflezive.

Proof. (i) We assume that Z is reflexive, and fix a norm in X. Let
|zn]l €1 with Pz, — yo (clearly yo € V). Set y, = Pz and zp = Ty — UYn.
Since {z,} is a bounded subset of the reflexive space Z, by the Eberlein—
Shmulian theorem it has a weakly convergent subsequence, and by passing
to the corresponding indices we may assume 2, weakly convergent, say to
29 € Z. Thus, z,, — yo+2g weakly. Clearly |yo+20l| < 1, and P(yo+20)=

{ii) Assume now Z is not reflexive. We have to find an equivalent norm
with unit ball V such that P(V) is not closed. For the norms ||- ||y, |- ||z on
Y and Z respectively, we define the norm ||z|| = max{|| Pz|y, ||({ — P)z| 5}
in X, and denote its unit ball by U. In this equivalent norm, [|P| = 1.

Since Z is not reflexive, it containg a sequence of norm 1 vectors which
is not weakly conditionally compact. Applying [Si, p. 53], we obtain in Z
a basic sequence {z,} with ||z,| = 1 and a constant a > 0 such that for
any finitely many a,..., 0y, > 0 we have || 3577 loz;,z;,|| > aZ L @5 By

assumption there is y € Y with [ly|| = 2; define y, = ;17y. We now define

V' = closed co{{£(yn + 2n}}nz1 UT).
Cleaxly V' is a bounded closed convex symmetric body, so by a standard
result (e.g., [BoR, p. 157]) there exists an equivalent norm on X with V as
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unit ball. We now show that P{V) is not closed. Assume that it is. Then

by definition, y = imy, 4, = limy, P(y, + z,) € P(V), so there exists z € V
with Pz = y. By the definition of V, there are

Wi €U, wm €co{t(yn+2,)}, and 0<i, <1
such that the sequence wy, = £, + (1 — ¢y )wm, converges to z. Then
y= Pz = IimPum = lim (tmPvm + (1 — 1) Py, ).
From || P = 1, |lyn + 2] = max{llynl, | za |} <2 and um] < 1, ve obtain
| Pomf €2 and | Pum|| < 1. Since ||y|| = 2, we must have t,, — 1, and thus

U — L.

For each vy, we have a representation

I 9m
Um = Y 0™ Yo+ 2m)  with Y oM = 1.
n=l n=1
Since Pur, — Pz =y, we obtain ) i ol ™y — ¥ a8 m — co. Since Yn =
5y, we find that Impm-ee 507, @™n/(n + 1) = 1. Since En_lj af™|

= 1, we have limy, oo 3 omy Ia(m)|n/(n+1) = 1. Hence E Tl ™|/ (n+1)
— 0 as m — 00, so for fixed & (when k > g,, we have ai =0)

a{™|/(k+1) < Z |a<m>|/(n+1) 0.

n=1

Thus limp, e o™ = 0 for every n. We also have limpy, 24", of™ = 1,
since

‘Za(m) Za(m n/(n+1) l < Zla(m)l/ n+1)—»0

n=l nw=1
The above implies that ¢, — oo. Let v/, = ¥, |a ™)\ (y + 2). Since

llyn + 2nl| < 2, we have

G
e = ] < o~ 2+ | Y006 -+ 20)
n=l
Im
< om =l +2 > [lef™| — o] 0.

sl

Since t, — 1, algo tyvf, + (1 ~ by ) — @, so if we replace o by |a(m)|,

we may assume that a(m) > 0 for every n, m. From the above, lim,, ai™ = 0
for every n.
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We now construct a subsequence as follows. Let my = 1. Given my, = j,

let
Gm ag‘n.)
D D N L L
n=q;+1 Lei=q;+1 Q)

Since limy, o™ =0for 1 < n < g4, we easily obtain limy, [|vm — Om| = 0.

We pick mpi1 as a value of m with [[v,, — || < 27% (and gm > ¢;). As:

before, we replace vy, by Um,, and keeping only the subsequence, we may

now assume also that for each n we have cxg,m“) w0 forl<n<gm.
We also have

Im Im
Y alMa= el =(1- Plim— I~ Plo=s-v.
n=gm-1-+1 n=1

Since {z,,} is a basic sequence, it follows (from [D, p. 88]) that there is a
constant ¢ such that

| 3 e,

n=gm—1+1

dm Tm+1
<of ¥ aa- 3 artal

n=gp—1+1 n=gm+1

Since we have non-negative weights, the special property of the sequence
{zn} yields that for every m,

Jrn dm
s=5, 5 sl £
n=gmpm.1+1 n=gm-1+1
G gm1
<| 3 e Y ol
n=gm—1+1 n=gm+1

This contradicts the convergence of {3 2™

R —1 41 aﬂ(%m)zn}. Hence P{V) is
not closed.

THEOREM 2.5. Let T # I be a power-bounded uniformly ergodic operator
in a Banach space X, The image under I —T' of the unit ball of any equivalent
norm is closed if and only if the fived-point space F is reflexive.

Proof LetY = (I—-T)X. By Theorem 1.1, Y is closed, and X = Y F.
Let P be the corresponding projection onto Y. Fix a norm. on X, and let U/
be its unit ball. For z € U we have z = y+z withy = Pz € P(U) and z € F.
Hence (f —Tyz=(I-T)y € I -T)P(U). Thus (I - T)U = (I - T)P(U).
Since (I —T')jy is an isomorphism, (I —T)P(U) is closed if and only if P(U}
is. The theorem now follows from the previous one, by taking Z = F.

ExaMPLE. Let Z be a non-reflexive Banach space, Y any non-zero Ba-
nach space, and let X =Y @ Z. Let T be the corresponding projection onto
Z. Then T is obviously UE (so satisfies (%)), with fixed-point space Z. By
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the previous theorem, there exists an equivalent norm on X with unit ball
V such that (I — TV is not closed.

THEOREM 2.6. Let T be a power-bounded operator in a Banach space X
satisfying (). Then there exists an equivalent norm in X, with unit ball U,
such that (I —TYU' is closed.

~ Proof. By Theorem 2.3, (I —T)X is an F, set. The result now follows
from the following proposition (which extends a result of Saint-Raymond in
[BoR, p. 156], where the operator is assumed one-to-one).

ProrosiTioN 2.7. Let S be o bounded linear operator from o Banach
space X into a Banach space Z such that S(X) is an F, set in Z. Then
there exists an equivalent norm on X, with unif ball V', such that S(V) is
closed.

Proof. Let N = Ker(5), define X = X/N, and let g : X — X be the
quotient map. Since z; = zo implies Sz = Szq, we can define an operator
3 éi: — Z such that Sg = S. Clearly § is one-to-one, and by the definition
S(X) = 8(X), which is an F, set by assumption. We can apply to S the
result of Saint-Raymond [BoR, p. 156], to obtain an equivalent norm on X
with unit ball W such that g(W) is closed. Let U be the unit ball of X in
the quotient norm induced by the norm of X. Without loss of generality, we
may assume that W C U.

Let U be the unit ball of X, and define V = ¢~} (W) N 2U. Clearly V
is a bounded closed convex symmetric body in X, so there is an equivalent
norm on X which has V as unit ball. To complete the proof, we show
that S(V) = S(W), which is closed. Since Sg = S, it is enough to show
q(V) = W. By definition, (V) C W. The definition of the quotient norm
yields int U < (1), so

W c U cint2l ¢ q(20).
Thus, for w € W thereis ¢ € 2U with g(z) = w,sox € V. Hence ¢(V) = W.

PROPOSITION 2.8. Let T be a contraction of Li(p) of a o-finite measure
space. Then (I — TYU is closed.

Proof We identify Lny(j), via the Radon—Nikodym theorem, with the
space M (p) of countably additive finite signed measures < p. Let n, € U
with (I — T, — w. Since Leo(p)* is the space of finitely additive signed
measures < 4, we can find o finitely additive, || gf] < 1,such that (I-T"*)¢ =
v, by taking any weak* limit point of {n,} as ¢

We now adapt some arguments of [LS]. Let g = 7 + go be the Hewitt—
Yosida [YH] decomposition of g, with n countably additive and gy a pure
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charge (i.e., |oo] does not bound a countably additive measure). Then
v=(I-T")e=n-T""n+0e —T" 00

Since T**n = Ty € M(p), we conclude that ' = gy — T™" g is countably
additive, Since v/ (countably additive) and gg (a pure charge) are mutually
singular [YH], and |T| < 1, we have

lgoll = 1 T** eoll = lloo — v'l| = [leall + [I"||-
Hence v’ =0,s0 v = (I —T**)p = (I-T)y € (I~T)U, since 7| < |lo]| < L.

Let K be a compact Hausdorff space. A Markov operator on C(K) is a
positive contraction T with 71 = 1. The transition probability P(z, A) =
T*6.(4) ylelds an extension of T (still denoted by ") to all bounded Baire-
measurable functions [K, p. 177]. A non-empty closed subset A is called
absorbing if T*m is supported in A whenever rn ¢ C(X)* is supported in
A (equivalently, if T14 = 14). T is called irreducible if the only absorbing
closed set is K.

ProposiTION 2.9. Let T be an irreducible Markov operator on C(K) of
a compact Hausdorff space. Then (I — T)U is closed.

Proof Let f = lim(I — Tg, with g, € U. By the main theorem of
[KoL), condition (i} of Theorem 2.3 is satisfied. Hence f € {I — TVC(K), so
there is g € C(K) with (I —T)g = f.

Now let g be an extreme point of the set of all probabilities v with
T*v = v (which is non-empty; see, e.g., [K, p. 178]}. Since T*p = p, it follows
that M(p) is a T*-invariant Banach space, and Th = 0 a.e. if h = 0 a.e.
Let S be the restriction of 7% to M (x). Then 8% on Lo (u) is given by (the
extended) T'. It is well known that u is an ergodic T-invariant probability
(i.e., Th = h a.e, for k € L., implies that & is a.e. consta.nt).

By weak* compactness of the unit ball of L, a weak™® Kmit point (in La)
of {gn} yields h bounded measurable with ||A||z,, < 1suchthat (I-T)h = f
a.e. Hence T(g — h) = g — h a.e. By ergodicity of u, there is a constant
¢ with § —h = ¢ a.e, Hence [g — ¢/ < 1 a.e. Since T is irreducible, the
support of i is K, so continnity of g — ¢ implies that g — ¢ € U, and thus
F=(I-T)g—c)e(I-T)U.

Wittmann has proved (see {KoL]) that (x) is satisfied by the Markov
operator T induced on the space of bounded measurable functions by a
transition probability. We do not know if (I —T)U is closed also in this case.

3. Uniform ergodicity and dual subspaces. In this section we study
the relationship between uniform ergedicity and equality () in real Banach
spaces. We will need the following notion [LPPJ:
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DEFINITION. Let Z and X be Banach spaces. A semi-embedding (of Z in
X) is a one-to-one bounded linear operator S : Z — X such that the image
S(Uz) of the unit ball of Z is closed in X.

Theorem 2.6 and (1.2) yield that if T is ME and satisfies (%), then for an
equivalent norm I — T becormes a semi-embedding of (I — T)X into itself.
For uniform ergodicity it should be an isomorphism, by Theoremn 1.1.

TueoreM 3.1. Let Z and X be Banach spaces, and S : Z — X a semi-
embedding.

(i) ([Fa], (Fa]) If S(Z) 1s not closed, then Z contains en infinite-dimen-
sional closed subspace isometrically isomorphic to a dual Banach space.

(ii} [F4] If Z is separable, then every closed subspace Y of Z such that
S(Y) is not closed contains an infinite-dimensional closed subspace isomet-
rically isomorphic to a dual Banach space.

When T is not assumed ME, (1.2) does not cover the whole space, so
instead of the decomposition {1.2) we use quotient spaces. This requires the
following lemma (its standard proof is left to the reader).

LeMMA 3.2. Let Zy and Zo be closed subspaces of a Banach space X
such that the direct sum 21 ® Zs is closed, and let g be the quotient map of
X onto X/Zy. Then q,z, 15 an isomorphism.

TrEOREM 3.3. Let T be o power-bounded linear operator in a separ-
uble Banach space X. If T satisfies (*) and is not uniformly ergodic, then
(I—-T)X contains an infinite-dimensional closed subspace isomorphic to a
dual Banach space.

Proof Let F = {y € X : Ty = y} and consider the quotient Banach
space X = X/F, with quotient map g. Since gz = gaa implies (I-Tzy =
(I — T)xg, we can define an operator §: X — X such that Sq=1-T.
Clearly § is bounded and one-to-one, and S(X) = (I - T)X.

By (1.2), F @ (I = T)X is closed, so by Lemuna 3.2, ¢ is an isomorphism
of T~ TX and ¥ = g(T = T)X). Now 8(V) = (I - TH(I - T)X),s0 T
is UE (by Theorem 1.1) if and only if 5(¥) is closed.

Assume that T is not UE. Since T' satisfies (), (I - T)X is an F, set by
Theorem 2.3, 80 S(J? ) is an Fy, set. By Proposition 2.7, there is an equivalent
norm on X in which S is a semi-embedding of X. Since by assumption
S(Y) is not closed, Theorem 3.1(ii) yields an infinite-cimensional closed
subspace of Y isomorphic to a dual Banach space. Since ¥ and (I —TYX
are isomorphic (Lemma 3.2), the proof is complete.

Remark. For X not separable, the proof of Theorem 3.3 shows th_Lat if
T satisfles (%) and is not UE, then X contains a closed infinite-dimensional
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subspace isomorphic to a dual Banach space (we apply Theorem 3.1(1), since
$(X) is not closed if T is not uniformly ergodic).

Condition (*) is always necessary for uniform ergodicity (see the discus-
sion following Theorem 1.1) but is not always sufficient.

COROLLARY 3.4. Let X be o Bunach space which does not contain any
infinite-dimensional closed subspace isomorphic to a dual Banach space, and
let T be o power-bounded operator.

(1) If X is separable, then T is uniformly ergodic if and only if it satis-
fies (x).

(i) If T has no non-zero fized points, then T is uniformly ergodic if and
only if @ satisfies (x).

Proof. (i) is an immediate corollary of Theorem 3.3.

(i) When F = {0} and T satisfies (%), § = I — T is a semi-embedding
in an equivalent norm by Theorem 2.6. If T" is not UK, then I — T is not an
isomorphism, so by Theorem 3.1(i), X contains a closed infinite-dimensional
subspace isomorphic to a dual space, a contradiction.

For a set I, we denote by £1(I") the space of absolutely summable func-
tions on I', so £ = £1{N).

‘THEOREM 3.5. Let X be a Banoch space with X* = £,(I"), and let T be
power-bounded.

(i) If X* = £y, then T is uniformly ergodic if and only if it satisfies (+).
(ii) If T has no non-zero fized points, then T' is uniformly ergodic if and
only if it satisfies ().

Proof Since X* = 4(I'), every infinite-dimensional closed subspace
of X contains a subspace isomorphic to ¢y (see [F1]). If X is an infinite-
dimensional subspace of X isomorphic to a dual space, then by [BP] it con-
tains a subspace iscmorphic to £, since it contains ¢y. But this implies that
every infinite-dimensional subspace of £, contains cg-—a contradiction, since
£y contains a Hilbert space. Hence X has no infinite-dimensional subspace
isomorphic to a dual space, so X satisfies the hypothesis of the previous
corollary.

THEOREM 3.6. Let K be a compact metric space. Then K s countable

if and only if every power-bounded operator on C(K) satisfysing (%) s uni-
formly ergodic.

Proof. (i) If K is countable, then C(K)* = £;, and Theorem 3.5 vields
the result. '

(ii) Assume that K is uncountable. By Milyutin’s theorem ([M], [P]),
C(K) of K compact metric uncountable is isomorphic to C(T), where T
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is the unit circle. Hence it suffices to exhibit T power-bounded on C(T)
satisfying (#) but not UE,

Let ¢ : T — T be an irrational rotation, and define T on C(T) by T f(¢) =
f{#1). Since ¢ is a minimal homeomorphism, (+) is satisfied by [{GHe, p. 135]
(see also {KoL]). However, T is not uniformly ergodic (see, e.g., [La]).

Remark. Inpart (i) of the proof of Theorem 3.6, Theorem 11 of [LPP]
may be used instead of Theorem 3.5.

DEFINITION. A linear operator T is called quasi-compact if there exist
an integer n and a compact operator S such that |7" — 8| < 1. Yosida
and Kakutani [YKa] proved that a quasi-compact contraction is UE. A
UR contraction with finite-dimensional fixed-point space need not be quasi-
compact [La]. However, a UE power-bounded positive operator on a Banach
lattice with finite-dimensional fixed-peint space is quasi-compact [L3].

Wittmann [W] proved that an irreducible Markov operator 7' on. C{K)
is uniformly ergodic if and only if T™ is mean ergodic. For related results,
see also [Lo].

THEOREM 3.7. Buery irreducible Markov operator on C(Q) of a countable
compact metric space Q is quasi-compact (hence uniformly ergodic).

Prool Let T be an irreducible Markov operator on C(Q). Since irre-
ducible Markov operators satisfy (x) by [KoL], T is uniformly ergodic by
Theorem 3.6. The fixed-point space is one-dimensional (an irreducible mean
ergodic Markov operator on C(K) is uniquely ergodic; see, e.g., [K, p. 178]).
Hence, by [Ls], 7" is quasi-compact.

We now obtain another version of the previous results, which may be
applicable to non-separable spaces. For separable spaces the previous results
are stronger.

ProprosiTiON 3.8. Let T be a power-bounded mean ergodic operator on
X satisfying (%), and let Y be o closed T-invariant subspace. Then Ty also
satisfies (%).

Proof. Let y &€ ¥ satisfy sup, || Y jwo T%¥| < co. Then by (¥) for T
in X, there is « € X with (I — T2 = y. Since T is mean ergodic, we can
assume (using (1.2)) that im, e Y g_y T*z = 0. Hence

1 N n-1 1 N n-~l1 1 N
WﬁZZT“y:—N—ZZT’“(IWT)m: —NZ(I—T“)w
na=l k=0 n=] ke n=1
L
= — — T — 7,
5= ;

This shows that z € Y, so T}y satisfies (*).
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Remark. Without mean ergodicity, the previous result is false [LS].

THEOREM 3.9, Let T be a power-bounded mean ergodic linear operator
in a Banach space X. If T satisfies (¥) and is not uniformly ergodic, then
(I —T)X contains o separable infinite-dimensional closed subspace isomor-
phic to o dual Banoch space.

Proof. Since T is not uniformly ergodic, (J —T)X is not closed. Hence
there exists a sequence {z,} with (I — Tz, = 2 ¢ (I —T)X. Let Y’ be the
closed linear manifold generated by {T7z, : § = 0, n > 0}, Then ¥ is a
separable T-invariant subspace, and since (I — T)Y is also not closed, Ty
is not uniformly ergodic. Since T is assumed mean ergodic and satisfies (+),
also Tjy satisfies (¥) by the previous proposition. Applying Theorem 3.3
to Ty we conclude that (F —T)Y contains an infinite-dimensional closed
subspace isomorphic to a dual space, which is separable since Y is.

CoroLLARY 3.10. Let X be o Banach space which does not contain any
infinite-dimensional separable closed subspace isomorphic to a dual Banach
space, and let T be a power-bounded operator. Then T is uniformly ergodic
if and only if it is mean ergodic and satisfies (#).

Remark. Anexample to which Corollary 3.10 applies, but Corollary 3.4
does not, must be {(or contain) a non-separable dual space which does not
contain separable duals. The existence of such an example is an open prob-
lem.

4, Uniform ergodicity of Markov chains. Markov chains with N as
state space are defined by a Markov transition matrix P = (ps;)i,j>0. Such
a matrix defines a contraction P on £, by multiplying column vectors (on
the left) by P. In this section we study the uniform ergodicity and mean
ergodicity of operators on £,, defined by certain Markov transition matrices.
We first need the following lemma.

Lemma 4.1. The operator defined by o Markov metriz P = (pi)ii>0
preserves ¢ (the space of convergent sequences) if and only if lim;_, . pij
exists for every j. It preserves cp if and only if lim;_.o pi; = 0 for every j.

Proof. Let e; be the jth unit vector written as a column. Then Pe; is
the jth column of P. Since P1 = 1, where 1 is the vector with all components
1, ¢ (cp) is invariant if and only if Pe; € ¢ (cp) for every j. The result is now
immediate,

Remark. The corollary that ¢ is P-invariant if ¢g is P-invariant follows
directly from P1 =1.

A Markov matrix P = (p;;); >0 is called irreducible if for every non-
empty subset A there exists i € A with 3. pi; < 1.
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THEOREM 4.2. Let P be an irreducible Markov matriz such #hat ¢; 1=
iy o0 Piy exists for every f. If ij ¢j > 0, then P has a (unigue) invari-
ant probability vector, and the operator induced by P on fos is quasi-compact

and UE.

Proof. By Lemma 4.1, ¢ is an invariant subspace for multiplication by
P, and the restriction to ¢ is represented by a Markev operator on C(Q),
where @ = NU{oc} is the one-point compactification. In this representation,
$; is the probability of passing from oo to 7, so the condition of the theorem
means that oo is not an absorbing state, and, together with the irreducibility
of the original matrix, yields the irreducibility of the Markov operator on
C(@). Uniform ergodicity on ¢ follows from Theorem 3.7. Hence the operator
of multiplication of £; rows by the matrix P is also UE. Since P1 = 1, the
limit projection preserves the set of probability row vectors. Finally, the
dual of the operator on ¢ rows is P on £, which is now also UE. By [Ls]
(or even [L1]), P is also quasi~compact.

Remwarks. 1. A result analogous to Theorem 4.2 holds for Markov
chains on Z, given by matrices (py;); jez. The proof uses the two-point com-
pactification of Z.

2, The assunptions of Theorem 4.2 do not imply uniformity (in 7} of the
convergence to ¢;, as seen in the example p;1 = p;i41 = 1/2.

3. Y. Derrienuic has remarked that Doeblin’s theory can be used to prove
a stronger regult:

Let P = (pij)ij»0 be an trreducible Markov matriz. If there are j > 0
and § > 0 such that {i : pij < 6} is finite, then P on Ly is quasi-compact
and UE.

Proof We note that P is UE if and only if (I + P) is UE (by Theo-
rem 1.1(ii)), so we may assume p;; > 0, and by changing §, also py; > 4.

Define A = {i: piy; < §}. For i & A, we have P&?) > 6™ for every n, since
one of the paths is to go from 4 to § in the first step, and then stay n—1 steps
at 7. For ¢ € A there is a &k with pfj") > 0 by irreducibility. Hence pg;;) >0
for every n 2 k (one path ig to go from ¢ to § in k steps, and then stay at
J for the remaining steps). Since A is finite, there is a k with pgf) > 0 for
every 4 € A, so finiteness again yields that there is £ > 0 with pg.“) > e for
every 4. Hence P satisfies Doeblin’s condition [Loe, p. 451} (with p = §;),
80 it is quasi-compact and thus UE. :

PROTOSITION 4.3. Let P be an irreducible Markov matriz. If the operator
induced by P on £oo 18 ME, then ¢p is not invariant under P.

Proof. Assume that P preserves cg. By mean ergodicity on £o, P has an
invariant probability distribution (for any initial distribution row vector p,
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the averages N1 Eﬁ_l pP* form a weak Cauchy sequence). By irreducibil-
ity, there is a unique invariant probabilif Ny distribution A, and A; > 0 for
every 1. By the ergodic theorem, N ! > h= P’“ Ff converges to the constant
vector § fdA for each f € £oo. For 0 < f E cp the limit is not zero. But if
P preserves ¢y, the limit must be in ¢p—and a constant, so the limit is 0, a
contradiction.

COROLLARY 4.4. Let P be an irreducible Markov matriz which preserves
c. Then the following are equivalent:

(i) The operator induced on £ is quasi-compact und UE.
(ii) The operator induced on £oy is ME.
(iif) co s not P-invariant.

Remarks. 1. When cg is invariant under the irreducible matrix P (so
P is not ME on £), the Markov chain may be transient, null-recurrent or
positive recurrent:

(i) Let p1y = p12 = 1/2, and ps 41 = piy—1 = 1/2 for ¢ > 1, with the
remaining entries zero. Then the only fixed row vector is constant, so P has
no invariant probability, However, P is recurrent (null-recurrent).

(ii) Let pyy == 277 for j > 0, and p;;—1 = 1 for i > 1, with remain-
nig entries zerc. Then P is irreducible and preserves cp, and has invariant
probability distribution (A; = 27%);50.

2. If P is an irreducible Markov matrix preserving ¢p, then T, the re-
striction to c of the operator induced by P, does not satisfy (x).

3. The proof of Theorem 4.3 shows that if P is an irreducible Markov
matrix preserving ¢o and the Markov chain ig posﬂ;we recurrent, then the
restriction of P to ¢ is not ME.

4. The equivalence of (i) and (ii) in Corollary 4.4 is true for any irre-
ducible Markov matrix (even if ¢ is not P-invariant): (i) implies that the
Markov chain is necessarily positive recurrent (see proof of 4.3), and [Ho]
implies quasi-compactness and UE.

5. Irreducible random walks on Z can be taken as P preserving ¢g, such
that the restriction to ¢ is ME, but not UE. For other examples, see Propo-
sition 4.6 below.

The following example [R] shows that P may preserve ¢p and have count-
ably many absorbing sets, and still the restriction to ¢ will not be ME. Qur
proof is entirely different.

EXAMPLE. Let P = (pi5)i 550 be a lower triangular Markov matrix (ie.,
ii = 0 for 7 > ¢) which preserves ¢p and has {4 : pis = 1} finite. Then the
restnctlon of P to ¢ is not ME. .
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Proof. For every j, the set {1,...,4} is absorbing. The only recurrent
states are the absorbing ones, since it is impossible to return to a state
once it is left. Denote by C the set of absorbing states, which is finite by
assumption. Then the sequence defined by a; = 1o(7) is in ¢p. But clearly
limpo0 PM1e(f) = 1 for every j. Thus, N=1SY | P*1s cannot converge
uniformly to a cp-sequence, so the restriction of P to ¢g is not ME.

A Markov transition matrix P = (pi;)i 50 is tridiagonal if p;; = 0 for
|i —j| > 1. By Lemma 4.1, a tridiagonal matrix preserves cg.

PROPOSITION 4.5. Let P be a tridiagonal Markov matriz with pi1,:; # 0
for every 1 € N, such that
(4.1) lim s0p p; i1 /pewis < L.
00

Then the restriction of P to ¢ is not ME.

Proof Let T be the restriction of P to ¢g. Then T™ operates on £; by
multiplying row vectors on the right by P.

Cram 1. T has no non-zero fized points.

Let z = (®1,2%2,...) be a bounded sequence satisfying Pz = = as a
column vector, Then piiey -+ prags = @y implies pry(xy — 22) = 0, and
Pj, i 1% j1 + P &g - Py j4185+1 = € implies
(4.2) p3,5-1(T5 = Bj-1) = Pijpa(@isn —z5)  Vi> L
If pjj+1(jp1 — 25) = 0, then z; = m;_3 since pj ;-1 # 0. Hence z; = «; for
all 1 <4 < 4. Thus, if pjj+1(®01 — ;) = 0 for infinitely many j, then z
is a constant vector. Since the only constant vector in ¢p is 0, the claim is
proved in this case. We now deal with the case where p; ;11(z;41 — 25) 7 0
for 7 > N. Multiplying the equations (4.2) for N < j < m and cancelling
the factors 2.1 — ©; (which are non-zero by assumption), we obtain

L m
H Pij-1(Ey —Ey-1) = H 05,5+1(Emt1 — Tm}-

j=N jaN
Hence
m_lp 1
PN N~ . i1,
Ll ™ Bm = """‘“_"(mN - J’;N—-J.) .
PmmA1 jml Pji+t

We may take N large enough so that by (4.1), pjjr1/pia1,s < @ < 1 for
iz N. Hence

NN=1
|mm+,1-—wm|>£—~————|'n;v an_i|e¥ ™ 00 asm — 00,
Pram L
contradicting the boundedness of (z;). Hence we are in the previous case,

and z is a constant seguence.
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CLAM 2. T* has non-zero fuved points.

The fixed points of T* are the solutions in £; of the equation yP = y for
row vectors y = {¥1,¥2,...). The first equation of the system, 11 = p11y: +
po1%2, yields parys = proy1. By induction we obtain pjiai¥ir1 = Pij41¥s
(using y; = Dj-1,i¥i-1 + Pis¥; + Dj+1,¥5+1 and the induction hypothesis).
Hence {again by induction)

]
Pii+l
Yi+1=U1 —.
7 };—Il: Dil,i
By the ratio test and (4.1), 3, [y;| converges, and for 1 = 1 we have a
non-zero solution.

End of proof of Proposition 4.5. The two claims show that the
fixed points of T' do not separate the fixed points of T*. By Sine’s criterion
K, p. 74}, T is not ME.

PrROPOSITION 4.6. Let P be a tridiagonal Markov matriz with p; 1 % 0
Jor every i € N such that
(4.3) lilfnsuppij,;_l/pi,ﬂl < 1.
T— 00
Then the restriction of P to ¢ is ME, and is not UE.

Proof. Let T be the restriction of P to ¢y. For z € ¢p the equation

(I — Tz = z (with column vectors) leads to the system of equations
P2z —22) = 21, Ppii-1(Ti — 2io1) — Piiri(Tipn — %) =2, 1> 1
Thus, any value of z; yields a solution sequence (x;). Assume now that
7 = 0 for every ¢ > N. Then for ¢+ > N the equations become z;11 — z; =
(5 — Bi-1)Pi i1/ Piit1- By (4.3), >, (wsy1 — ) is absolutely convergent, so
the solution sequence is in e¢. By subtracting a constant vector we obtain a
solution in ¢p. Hence (I — T)eg is dense in ¢g, so T is ME. Hence also the

restriction of P to cis ME.

In order to show that I — T is not invertible on cg, we now show that
the sequence (1/7);»1 is not in its range (and in fact is not in (I — P)4y,).
Set b, = l/pz',‘:'-i-lg and ¢; = pi+1’-,;/pi,.j+l. Clea.rly for any sequence 2 we can
obtain a solution sequence z of (I — Tz = » with z; = 0. The system of

equations yields xg = —by 21, and 2341 = z; + (2 — 2i—1)Psie1/Dii+1 — bids
By induction we obtain
i1
;= — Zzi(b,; +ibig .+ Titien .o .tj..zbj_l).
i=]

For z; = 1/7, we obtain —z; > 5277 bi(1/i) >. E;:ll(l/v,), since b; > 1.

Hence the solution sequence (z;) is not bounded. If we had a bounded
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solution 2', by subtracting a constant vector we obtain a bounded solution
T with 21 == O~-a contradiction.

5. Problems. The results of Section 3 raise some questions. The first is
about the converse of Corollary 3.4(i). Since the assumption on X there is
inherited by all subspaces, we formulate the question as follows.

PrOBLEM 1. Let X be a separable Banach space such that every power-
bounded operator on any closed subspace of X satisfying (%) is uniformly
ergodic. Is it true that X does not confain any infinite-dimensional closed
subspace tsomorphic to a dual Banech space?

In an attempt to solve Problem 1, we were led to the following problem.

PROBLEM 2. Does every inﬁmte-dimensional Bonach space have a power-
bounded operator which is not uniformly ergodic?

Remark. A positive solution to Problem 2 will show that every infinite-
dimensional dual Banach space has a power-bounded operator satisfying ()
which is not UE, yielding a positive solution to Problem 1.

THEOREM 5.1. Let ¥ be o Banach space with an unconditional basis.
Then there erists a power-bounded operator on Y which is not uniformly
ergodic.

Proof. Let {y;} be an unconditional basis in ¥ with ||y;]| = 1. Define
an operator T on Y by T(X aiys) = L (1 ~ i Hasy; (for Yasys € Y). By
the well-known properties of unconditional bases (see [D], (4)b on p. 79 and
Theorem 1 on p. 95), it follows that T maps Y into itself, and is power-
bounded. By the uniqueness of the coefficients, T' has no fixed points. T' is
mean ergodic since the averages converge strongly (to 0) for each y;. Hence,
by (1.2),Y = (I - T)Y. However, I —T is not invertible (1 is in the spectrum
of T, so by Theorem 1.1, T' is not UE. '

Remark If Y in Theorem 5.1 is not reflexive, then in X = ¥™* there
is an equivalent norm with unit ball V such that for T' constructed above,
(I —T*)V is not closed (and T* clearly satisfies (x)).

It is well known that every power-bounded operator in a reflexive space
is mean crgodic. An old question. is the following.

PROBLEM 3. Let X be o Banach space such that every power-bounded
operator is mean ergodic. Is X reflexive?

The original (still unsolved) question [Su] assumed mean ergodicity only
for contractions. The answer is negative if we assume only mean ergodicity
of all isometries—Davis [Da] constructed an equivalent norm on the real
¢y for which the only isometries are I. Zaharopol [Z] has shown that if
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X is a countably order complete Banach lattice such that every positive
power-bounded operator is mean ergodic, then X is reflexive, and deduced
a positive answer for dual Banach lattices. Brunel and Sucheston [BrSu;],
[BrSug] showed that super-ergodicity is equivalent to super-reflexivity (we
refer the reader to these papers for the definitions. Super-reflexivity charac-
terizes the existence of an equivalent norm which makes the space uniformly
convex, and also characterizes the existence of an equivalent norm which
makes the space uniformly smooth [D, p. 169]).
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