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Uniform approximation with linear combinations
of reproducing kernels

by

JAN MYCIELSKI (Boulder} and
STANISEAW SWIERCZKOWSKI (Muscat)

Abstract. We show several theorems on uniform approximation of functions. Each
of them is based un the cheice of a special reproducing kernel in an appropriate Hilbert
space. ‘The theorems have a commen generalization whose proof is founded on the idea of
the Kacamars projection algorithm.

1. Introduction and results. The purpose of this paper is to give some
new applications and a new geometric interpretation of an algorithm A for
uniform approximation of functions. A was introduced in [3]; it derives from
our attempts to explain some learning processes in the brain (see [8]). Of
all algorithms for approximating functions A is probably the simplest. The
analysis of A presented here relies on the idea of the Kaczmarz projection
algorithm (see [2, 5]). Other related results are given in [3, 6, 7). Here we
will apply reproducing kernels and the Fourier transform to obtain new ap-
plications, and we will show the connection with the algorithm of Kaczmarz
(which was not known to us when we wrote the carlier papers). Also we
point out five open problems.

The algorithm A is defined as follows. There is an unknown function
f: X -+ C, whore X is an abstract set, and there is a given function
B X2 s C with (s, z) = 1 for all z € X. We assume that A had already
produced an approximation f, : X — C of f and that it receives a point
(tn, (@), Then A forms a new approximation

(A1} Jaar (@) = Falz) + an (T, n),
where ay i such that fui1(@a) = f(#n), in other words
(‘AQ) G, == f(wn) — fn (wn)u

i.¢., an is the error committed by A ot time n. (In the a,lgori_thm and in the
Theorem below we may replace everywhere C by R.) Thus given any fo and
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106 1. Mycielski and S. Swierczkowski
a sequence (g, f(z0)), (21, f(21)),... the algorithm A creates a sequence
fla f21 s

We agsume without loss of generality that fo = 0 {otherwise we replace
£ by f - fo). Hence

fulz) = Z azh(x, z;).
i<n
We will prove that if & satisfies a certain condition to be stated in a
while, there exists a Hilbert space H of functions ¢ : X — C such that 4
yields interesting results for f € H.
The required condition on A is that there exists an a € X such that
h{a,y) #0 for all y € X, and the function

k(y,a
® ay) = MDD gy,
_ h(e,y)
where h is the complex conjugate of s, be positive definite in the sense that
for every finite set Xy C X and any g : Xp — C we have

() > g(@)aw)k(z,y) = 0.

) @ yEXp

This condition may be hard to check directly, but it is eguivalent to the
existence of a Hilbert space Hj of functions ¢ : X — C such that %k is a
reproducing kernel for Hy, i.e., by, € Hy and

{ps ky) = o(y)

for all ¢ € Hy and all y € X, where ky(z) = k(z,y). We define H to be Hj,.
For a proof of this equivalence (and a construction of Hy) see, e.g.,
5. Saitoh [10], Chapter 2, (see also [11]). We are able to check (p) for various
functions h by producing explicitly Hy. Several examples will be given below.
Vice versa, given a reproducing kernel %, and the corresponding Hilbert
space Hy normalized such that ||k,| = 1, we can define

{by: k) _ K(z,y)

h = = .

) S N TN E

Then h{z,z) = 1 and the formula (k) is true. Let us add that & (= Hy) ig

the closed linear span of the set {k, : y € X'}. We shall prove that H is also

the closed linear span of the set {hy : y € X}, where hy(z) = h(z,y). The

construction of H in [10] also shows that if ¢, — ¢ in H, then ¢, (z) — p(z)

for all x € X. However, the converse of this implication is not true in general

and this leads us to some unsolved problems which will be stated below.
Our results will show that under various natural assumptions about

X, fih, and zg,21,... the algorithm A yields fn — [ uniformly, in par-

ticular @, — 0 and in some cases 5 ja;|? < 0. A few concrete examples are
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the following. (Their derivations from the Theorem stated at the end of this
section are given in Section 2.)

ExAMPLE (A). Let X be the open interval (0, 1) and
Z

§ for z <y,
Mo y)= 1-¢ for = >
1—y =¥

If f is absolutely continuous and limgyy f(z) = limgyg f(z) = 0, then A
yields

wm)_fn(m)!S{w(l_w)(slf’|2*2%§)}L/z_

i<n
Notice that this immediately implies that if g, z1,... are such that

()~ fule) 2
PATRES Sl i A g

)

where 6 is a positive constant, and {|f'|? < oo, then f, — f uniformly.
(For related facts see (3], §2 and §6.) :

UNsoLVED PrROBLEMS. 1. Let {|f'|* < 0o and zo, 1, . .. be everywhere
dense in (0,1). Must f, — f uniformly?

2. Let {|f/|2 < co and let each element of the set {zo,%1,...} appear
infinitely many times in the sequence xg, 21, ... Must f — f uniformly on
the set {zg,Z1,...f7

3. Suppose that f, — f uniformly where f, are given by A. Must

oo 2 1
Z \a"i{ e S l f:\z 2
=0 :I:.;(I — (Ei) 0 |
(We know only that, if {|#' — f,* — 0, then the above equality holds.)
4. Suppose that for every e > 0 there exist %o,...,Yn—1 a0d bp, ..., bp—1
such that

< E

HOEDWATEND
i<n
for all & € (0,1). Does the algorithm A imply that limp 0o an = 07 (By
the assertion of (A) the answer is yes if § |f/[* < c0.) A related problem was
formulated in [6], §5.2.
Similar problems are also open for the examples (B), (C}, (D) and (E)
which follow. -
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EXAMPLE (B). Let X be the open ray (0, 00) and

x
- forz <y,
h(w,y)={y
1 forz>uy.

If f is absolutely continuous and lim, o f(z) = 0, then A yields

() - falz)] < {m@f’ﬁ ~ ; ,%;5)}1/2.

And hence, if zq, %1,. .. are such that

“%'2 > 6 ff(m)—fn(m)lz’

sup
Z; zE(0,00) z

where 6 is a positive constant, and {|f')* < oo, then 2|f(z) ~ fm(z)]? —
uniformly in (0, co).

(For related examples see [3].)

ExaMmPLE (C). Let X be a locally compact abelian group, and let ™ de-
note the inverse Fourier transform which maps the appropriate space A(X)

of continuous functions on X onto the space Ll()? ), where X is the group
of characters of X. Let hy : X — C, hy € A(X), be such that

hi(0)=1 and hy > 0.
Then, if f € A(X) and k(z,y) = hy(z — y), the algorithm A yields

F2 172
£(2) - fula@)] < ( i % By |ai|2) _

» i<n
And if &g, 21, ... are such that there exists a § > 0 such that
|an| = 6 sup [f(2) = fulz)]

and {{| f{z/hl) < 00, then fn — f uniformly in X. (In the above formulas
| f(s)[2 /hl(s) is interpreted as 0 whenever f (s) = 0, even in the case when
hj_(S) = (. )

If X is the circle group R/Z, then a natural choice of hy is the function

ha(z) = 3 Bl 3 i a
kEZ kEZ

where ¢ > 0 is some_ constant. Notice that, as ¢ — 0, the space of functions
f for which 3, . |F(k)2/Ba(k) < oo becomes larger.

PROBLEM 5. Extend the above result to the case of some classical non-
- abelian groups, e.g., the group 50 (n,R).

Approgimation with reproducing kernels 100

Remark 1. The above example (C) is related to Wiener's Tauberian
Theorem which can be stated as follows. If by € LYX) and the Fourier

transform by has no zeros in X, then the set of linear combinations

Za,-hl E—.’L’i) (az'EC, xiEX)

i<n

is dense in L'(X) (see [9 or 12]). Por hy € A(X), our assurption sy > 0
is stronger, but it yields the above quantitative estimate of the uniform
approximation.

ExAMPLE (D). Let X = {z € C: |z| < 1} and H be the Hilbert space of
holomorphic functions ¢ : X — C for which the norm

ol = (1§t + i) du i)

A
is finite, where A = {{u,v) € R? 1 w? +0? < 1}. Let

A
hz,y) = ( mp—g I
Then, for f ¢ H, A vields
flz) — folz £—~—-—-———-—-———— fliZ —= ai|“(1 — |z;1%)
1) = Fal@i S Sz ey (11 2 le i)
And, if zg, 21, . .. are such that

(1= |onl*)lan] 2 & sup (1~ {21) f(2) = ful2)],
zEX

where § is a positive constanst, then
(1- "L'|2)\f(m) ~ fn(z)| =+ 0 uniformly in X.

Remark 2. Here h was obtained from Bergman’s reproducing kernel
1
k(z,y) = W
for the unit disk (see [10]) by the formula (h). As we shall see in the main
theorem this generalizes to all reproducing kernels, and beyond.

ExampLe (B). Let H be the linear space of entire functions ¢ : C — C
such that |l¢| < oo, where’

- 1/2
HMmOW@+M%@wmw),
R2
where p is a continuous function with p(z,y) > 0 for all (z,y) € R%. Tt is
easy to check that H with this norm is a Hilbert space (see [1], or the proof
of Proposition 3 in Chapter I, §9 of [13]). Of course p must converge to 0 fast
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enough as 22 4y — oo, if H is to contain more than the function 0. Now,
it is easy to check that for every z € C the evaluation functional ¢ — »(z)
is bounded. Hence H has a reproducmg kernel.

For example, if p(z,y) = e“"*‘z‘y then H is the space of entire functions
called the Fock space (see [4]), with an orthonormal basis

z)=2"/Volr  (n= 0,1,.”)'.

Hence, in this case the reproducing kernel is

N
k(z,w) E wn(z = —e™¥,
T

k(zﬂ 'LU) = plz—uw)@
Fe(w, w)
And the algorithin A yields representations of entire functions f € H in the

form
fo) =3 ez,

2, —|w;|®
w3 e = | £
For other examples of reproducing kernels see [10] and references therein.

Now we will state our general theorem which yields the above examples.

(It improves Theorem 1 of §1 of [3].) We have two ways (a) and (b) of
introducing the underlying concepts.

and
h(z,w) =

where

{a) H is complex (or real) Hilbert space, X an abstract set, and a function
k: X — H\{0} is given. We define

{k(y), k(z))
® N Oy e
Hence h(z,2) = 1 as required in the algorithm 4. [In this case k is not a
function of two variables. However, we can define k(y)(z) = k(z,y) by the
formoula (k) (at the beginning of this paper), and we can check that this
function turns out to be positive definite, i.e., (p) is satisfied.]

(b) A : X% =+ C is given and h(z,2) = 1 for all z € X. We define
k:X? — C by the formula (k) and assume that h is such that k is positive
definite, i.e., (p) holds. Then we form the space H = Hj with its inner
product described in [10] and normalized such that ||k, = 1. [In this case
it is easy to check that the formula (h) follows from the formula (k).]

Given f: X~ Cor R) and 2; € X (1=0,1,...) we define
[Flen = ggg{\\wil ey B(mi)) = f(z:) for + < n and {p, k(z)) = f(z)}

with the understanding that inf § = oo.
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We assume as above that the sequence ag, a1, . .. is defined by the algo-
rithm A,

THEOREM. Under the assumptions fo = 0, (A1), (42) end (a) or (b),
Jor all functions f: X — C we have

1£(z) — fale)| < (e (172~ 3 s PGz %)
i<
The proof will be given in Section 4.
This theorem implies immediately the following corollary.

COROLLARY. If 2y, 21,... are such that
%z~ P k)| 7H () — fal2)l,
where § is a positive constant, and if the set {{flen 12 € X, n=1,2,...} is
bounded, then ||k(z)||"|f{z) — fa(z)] — O uniformly on X.

Remark 3. Every function k : X — H can be interpreted as a repro-
ducing kernel for the orthogonal complement Hj- of the space
Hy={veH: {pk(z)y=0foralzeX}.

(Hj is a closed linear subspace of H, hence Hy is well defined.) Namely for
all ¢ € H and « € X we define ¢(z) by the formula

ez} = (. k(z)).
Thus k is a reproducing kernel by definition, and it is clear that if f € Hi,
then | flan < | fIl

2. Derivation of (A), (B), (C}, (D) and (E) from the Theorem

Proof of (A). Let H be the Hilbert space of absolutely continucus
functions ¢ : (0,1) — C satisfying the conditions limg11 (z) = limz|p @{(z)

== () and )
72
el = (Jie?) " <o
0

(To check that H is a Hilbert space it suffices to observe that the map

W (St/)(t) dt)
0
is an isomorphism of the Hilbert space {¥ € L*(0,1) S =0} onto H.)
Then let (h(y))(z) = h(z,y) where h(z,y) is deﬁned as in (A). We put
k() = y(1—y)h(y). Then an easy calculation shows that & is a reproducing

kernel, i.e., for all ¢ € H, {ip,k(y)) = ¢(y). And of course iflen < IIFI
hence all assertlons of (A) follcmv from the Theorem and the Corollary.

xe(0,1)
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c)oProof of (B). The argument is similar to the above. (Here |¢| =
(5 l#'?)/* and k(y) = yh(y).)

Proof of (C). Again the argument is similar. (Here

lel = ({31272,

X

and (k(y))(of) = (h(y))(z) = k1 (z — y). Hence (h{y))"(s) = b (s)s(y) for all
y € X, s € X. And an easy calculation shows that k is a reproducing kernel
and {|k{y)|| = 1 for all y.)

Proof of (D) and (E). Examples (D) and (E) are obvious special-
izations of the Theorem and Corollary. (Compare Remark 3.)

3. The algorithm of Kaczmarz. Let H be a Hilbert space and b; € H,
fori=0,1,... Consider the infinite system of linear equations

1) (x,by) =c¢ (i=0,1,...)

where ¢; € € and ¢; = 0 whenever b; = 0. The algorithm of Kaczmarz
[5] seeks an approximate solution of (1) by vectors x,, which are defined as
follows.

xp =0,
Xp+1 = (the orthogonal projection of x,
into the hyperplane {x € H : {x,b,)} =c,})
=Xp + (Cn (xm )) nﬂb H_2

(<)

where by ||b, || =2 is interpreted as 0 if b, = 0. (This algorithm has many
applications, see the survey [2].)

We need the following lemmas about the recursion (K).

LeMMA 1. If (x*,b;) = ¢; fori < n, then

(@ [ =g s = %] = Ix* =il fori=0,...,n
L .
(8) ]2 = [e* ~ e[ = Y fcies — %2
=0
= Z|C% (i, b} | by 2.
i=0

Proof. (@) is the Pythagorean theorem in H and (3) follows from (c). m
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LEmMMA 2. If (x*,b;) = ¢; for ¢ <n, then

les — (3, b )|<||bﬁﬂ(|]x*]|2 Z|az {xi,b i>|2ilbili“2)1/2-

Proof By omitting in Lemma 1(6) the term —{x* — x,41/|? and rear-
ranging the other terms.

Remark. In the above lemmas, the term |c;  (x;, b |[*|/bs]| 72 is in-
terpreted as 0 whenever b; = 0.

4. Proof of the Theorem. We substitute in Lemma. 2:

(1) f(a;) for ¢; for ¢ < n and f(x) for cn.

(2) f; for x; for i < n.

(3) k(z;) for b; for i < n and k(z) for b,.

(4) Any ¢ € H such that {yp, k(z;)) = f(z;) for i < n, and {p, h{z)) =
f{z), for x*. (If no such ¢ exists, then the Theorem is trivially true.)

Then, by the assumptions (A;) and (A) of the Theorem, the assumption
(K) of Lemma 2 is true. By (Az), ¢;—{(xy, b;) = ;. And, since ¢ was arbitrary
such that (4) holds, Lemma 2 yields the Theorem.

5. Acknowledgements. We are indebted to L. Baggett and G. B. Fol-
land for instruction which led to improvements of this paper.
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Trace and determinant in Banach algebras
by

BERNARD AUPETIT (Québec)
and H. du T. MOUTON (Stellenbosch)

Abstract. We show that the trace and the determinant on a semisimple Banach
algebra can be defined in a purely spectral and analytic way and then we obtaln many
consequences from these new definitions.

1. Introduction. Determinants of infinite matrices were for the first
time investigated by the astronomer G. W. Hill in his studies on lunar the-
ory and his ideas were put into a rigorous form by H. Poincaré in 1886. Ten
years later H. von Koch refined and generalized Poincaré’s results. In 1803,
I. Fredholm developed a detérminant theory for integral operators. Unlike
von Koch, I. Fredholm studied eigenvalues and looked at the analyticity of
det(T+)\M). Fredholm’s determinant theory is certainly one of the first mile-
stones in the history of functional analysis. In the early fifties A. F. Ruston,
T. Lesanski and A. Grothendieck almost simultanecusly defined determi-
nants for nuclear or integral operators on a Banach space. In the seventies,
A. Pictsch developed an axiomatic approach to the determinant of elements
of certain operator ideals. Tn 1978, J. Puhl [16] studied the trace on the so-
cle and nuclear elements of a semisimple Banach algebra, basing his difficult
arguments on the standard trace defined for finite-rank linear operators.
For more historical information and references on this matter look at [11],
Chapters 4 and 5, and {15], 7.5 and 7.6.

The aim of this paper is to show that the trace and determinant on the
socle of a Banach algebra can be developed in a purely spectral and analytic
way, that is to say internally, without using operators on the algebra. Then
we use the analytic properties of the spectrum to prove that! the trace and
determinant are entire functions and to deduce the basic properties of the
trace and determinant in a purely analytic way. The essential ingredient in all
these arguments is the fact that the spectrum is an analytic multifunction.
So this point of view gives us the possibility of extending almost all the
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