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Sums of idempotents and a lemma of N. J. Kalton
by

GRAHAM R. ALLAN (Cambridge)

Abstract. A lemma of Gelfand-Hille type is proved. It is used to give an improved
version of a result of Kalton on sums of idempotents.

1. Introduction. In an elegant short paper [9], Kalton gave the following
condition for the sum of two idempotent elements of a Banach algebra to
be idempotent.

THEOREM 1 {Kalton). Let p, ¢ be idempoients in a complez Banach
algebra A. Then the sum p + q is idempotent if (and only if) the sequence
(e + )" Dnz1 is bounded.

Proof. See [9]. (Of course, the “only if” is trivial.)

In this note we shall give a refinement of Kalton’s method which will,
in particular, show that the boundedness condition in Theorem 1 may be
replaced by an o{n}-condition.

The first step is exactly as in [9]. Suppose that p, ¢ are idempotents in a
complex Banach algebra A, which we may suppose to be unital. Let B be the
closed unital subalgebra of A generated by pg, so that B is a commutative
Banach algebra. We then form a Banach algebra By, by adjoining to B
an element £ that satisfies £2 = pg. (The algebra By is normed by setting
|6+ c£|| = |||l + @i, for all b, ¢ € B, where 0 is a constant, 8 > +/||pql|.)
Then we have the following algebraic identity.

LEMMA 1 (Kalton). With the above notation,
plp+ )" = 5L+ O™ - (1-™),
for allm > 0.

Proof. See [9], page 449.
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2. A lemma of Gelfand—Hille type. Throughout this section, 4 is a
complex unital Banach algebra. We shall prove a result (Lemma 3) which
is related to a classical result of Gelfand and Hille, and also extends part
of Kalton’s proof of Theorem 1. 1t may be useful to place the new result in
context by briefly outlining the development of results of this kind.

In [7] (1941}, Gelfand proved the following result:

THEOREM (Gelfand). Let z € A with Spz = {0} and suppose that
[l+2)* <K (nel),
for some constant K. Then = 0.

Remark. The result of Gelfand is usually stated in the equivalent form
that, if the element u € A has Spu = {1} and if {|Ju"|| : n € Z} is bounded,
then 4 = 1. (Just take z = u — 1 and apply the theorem as stated.)

In [8] (1944), the result was improved by Hille:
THEOREM (Gelfand-Hille). Let z € A with Spz = {0} and suppose that
[0+2)"| < KA +[nl)" (neB),

for some constant K and non-negative integer r. Then ™% = 0.

Moreover, if r > 1 and if ||(1 + 2}™]| = o(|n|") (as n — =+Loo), then
zm =0.

In [12] (1950}, Shilov showed that, in the Gelfand theorem, it is not
sufficient to assume the boundedness condition merely for n € Z¥. (See
also [1], §5, Example 1. Also, a very simple example is given in [13], page
370: I+ T = (I+ V)™, where V is the Volterra integration operator on
L*[0,1); this has ||(I + T)"| = 1 (n € ZT).) Five years later, in [4] (1955),
Bohnenblust and Karlin conjectured thast, if z % 0 but Spz = {0}, then
the ray By = {1+ a2z : @ > 0} can not be tangent, at 1, to the unit
sphere S of A. Their definition of tangency need not concern us, since they
showed ([4], page 219) that R, is tangent to S at 1 if and only if  is
dissipative, Le. if and only if |¢**| < 1 for all t € R*. The conjecture of
Bohnenblust and Karlin was thus equivalent to the statement that every
guasi-nilpotent dissipative element of a Banach algebra must be zero. In
this form, a counter-example to the conjecture was provided (in 1961) by
Lumer and Phillips [11], Theorem 2.2.

However, it should be noted that the earlier example of Shilov, mentioned
above, was already a counter-example to the Bohnenblust-Karlin conjecture,
since it is elementary (see e.g. Lemma 2 below) that if {||{(1+2)"|| : n € Z+}
is bounded, then z is dissipative-equivalent, ie. |[e®| < K (¢ > 0), for
some constant K (which is equivalent to the element z being dissipative
for some equivalent norm on A4). There is also a formulation in terms of
numerical range (see [5], §3, Definition 5 and Theorem 6); but we shall not
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make explicit use of numerical-range ideas in this paper, preferring to make
direct use of elementary complex analysis. It is then a simple remark that =
being dissipative-equivalent is equivalent to ¢ having bounded non-negative
powers. Hence, if y = ¢® — 1, then z is dissipative-equivalent if and only if
the sequence (||(1+4)™|)n>1 is bounded. If Sp z = {0} then Spy = {0} and,
conversely, if Spy == {0} then it is possible to choose z € A with Spz = {0}
such that e® = 1 + .

As just mentioned, there is also a slightly less obvious connection between
the two viewpoints. The simple proof introduces a method that will appear
in a somewhat more elaborate form in the proof of Lemma 3 below.

LEmMMA 2. If |(1 4+ z)*] < K for all n € ZF, then || < K for all
teRt.

Proof. Let 0 < s < 1, then for every n > 1,

mn
(L+sz)"=[(1—s)+s(1+2)" = Z (Z) (1—s)" % (1 + )k
]
So[(l+sz)*|<Kforaln>landall0<s< 1.
If now ¢t € RY, then for any integer n > ¢, we may take s = ¢/n, and
deduce that [(1 + tz/n)*|! < K for all sufficiently large n. Then, letting
n —+ 0o (with ¢ fixed, but arbitrary) we have ||e®®|| < K for all £ € R*.

As a corollary, we give what is, in effect, a proof of the result of Bohnen-
blust and Karlin [4] that the identity element is a vertex of the closed unit
ball.

COROLLARY 1. Let 7 € A with both ||(1+z)"|| < K and [|[(1—2)"| < K
for all n € Z7 ond some constant K. Then z = 0.

Proof. First, Spz = {0}: for it A € Spz, then (1+ A)™ € Sp(L+ %)™, so
that |1+ A" < K (n € Z*) and therefore |14 A| < 1. Similarly, |1 — )| < 1,
and o A == 0. Thus Spz = {0}.

By Lemma, 2, applied to each of z and —z, we deduce that ||e**|| < K for
all t € R. We may now apply the above theorem. of Gelfand to the element
u = ¢¥, which satisfies Spu = {1}, to deduce that e = 1. Since Spz = {0},
it then follows that © = 0.

In view of its application later in this paper, it will be useful to give
an alternative to the use of Gelfand’s theorem in the last proof. (In effect,
we ghall just be giving one of the proofs of the Gelfand result.) We define
F(XA) = ¢*® for A € C. Then, since Spz = {0}, it is elementary that F is
an entire A-valued function of minimal exponential type. But F is bounded
on R and so, by a well-known result (e.g. [3], (6.2.13)), it follows that F'
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is constant. In particular, F(1) = F(0), ie. ¢ = 1 and, as before, the
quasinilpotence of = then implies that z = 0.

In 1981, Esterle proved ([6], Theorem 9.1):

TuroREM (Esterle). Let z € A with Spz = {0} and suppose that
I(t+2)"| <K (neZ),
for some constant K. Then 2{14+2)" — 0 as n — oc.

In [10] {1986), Katznelson and Tzafriri strengthened this last result by
weakening the condition on the spectrum to Sp(1+2)NT C {1}, where T is
the unit circle. (Note that the condition that |[(1+2)"|] < K for all n € Z*
already implies that Sp(1 + x) is a subset of the closed unit disc.)

In [2] (1989), it was shown that this result of Katznelson and Tzafriri
could be deduced rather simply from the 1941 result of Gelfand above. 1t
was thus natural, in view of Hille’s improvement of the Gelfand result, to
ask whether the result of Bsterle, or even that of Katznelson and Trzafriri,
might still hold assuming only that |(1+ )" = o(n) as n — oo (of course,
in addition to the appropriate spectral condition). In fact it was shown in
2], Theorem 4.2, that at least the result of Katznelson and Tzafriri could
not be generalized in this way. An example of Atzmon (unpublished) shows
that not even the result of Esterle may be so extended.

We now give the main result of this note. It will be seen that it resembles
the Gelfand-Hille result above; it also refines part of Kalton’s proof in [9].

LemMa 3. Let x € A and suppese that, for integers k> 0, r 2 0,
(1 +2)" — (1 -2)")| <O (n€ZY)

for some constant C. Then 2*Y™2 = 0 if r is odd, while ¥ =0 if r is
even.
Moreover, if r is odd and if |z®{(1+z)" — (1—z)")|

=o(n") as n — x,
then 2% = 0.

Remark. If r is even, then an o{n")-condition gives no more informa-
tion than the O(n")-condition.

Proof of Lemma 3. We first show that Spxz = {0}. Analogously
to the proof of Corollary 1, if A € Spz then A*((L + XA)™ — (1 -~ A)™) €
Splz*((1 +z)" — (1 — z)™)], so that

A+ - (L~ XM <Cn” (n2z1).

But it is an elementary exercise to see that, if A % 0, then [M((1 + A\)™ ~

(1—=2)™)| (or at least a subsequence of it) grows exponentially as a function
of n, as n — oo. Hence A = 0, i.e. Spz = {0}.
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We now consider again the growth condition
lz*((1+2)* ~ (1 —a))| SCn”  (neZ*).
Again as in the proof of Lemma 1, we have, foralln € Zt and all 0 < s < 1,
|2* (1 + s2)" — (1 — s2)™)
z® Z (g) (1 - 8" PsP({L+2z)F — (1~ z)F)

=0

<CZ( )(1—3“ PsPp” = CS(n, s),

p=0

say, where C is independent of n and s. If » = 0, then of course S{n,s) = 1.
Otherwise, to estimate S(n, 5), we split the sum into two parts. Let n > 2r;
then, say

r—1

s =3 (1) a-srrs <0

p=0
where " is independent of n and s, and

Sa(n, 5) = i (’;) (1 sy Pty

p=r

-1 (n-r 1) n—r I
ZP(_’D-I (p—r+1) (p—a")(lﬁs) Psfp
< O”(ns)’“g (z ~ :) (1—8)""PsP™" = O (ns)".

So, with some D independent of n and s, we have
(2*((1 + 82)" ~ (1~ sz)™)|| < D(L+ ns)",

for all n > 2r and all 0 < s < 1 (and this holds for every + = 0).

Then, for any given t € R, we take s = t/n for n > max{t,2r}, and
deduce that

¥ (L -+ /)™ — (1 —tz/n)™)|| < D(L+2)".

Then lot n — oo and we have ||2*(e!® — e™*®)|| < D(1+ )" for all t > 0.

Ina n;mnlar way to the alterpative proof of Lemma 1 given above, set
F(X\) = g*(e? —e™) for A € C. As before, since Spz = {0}, F is an entire
A-valued function of minimal exponential type, It has just been shown that,
on the real axis, it satisfies |F (¢}l < D(1 4 )" (¢ = 0). But since F is an
odd function, also ||F(#)|| < D(1+ [t|)" for all ¢ € R. By a further part of
the classical theorem on entire functions used before (e.g. (3], (6.2.13)), it
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follows that F' is a polynomial in A with degree deg F' < r. But F(})} =
23 oaa 7 TR(A™ /nl), so that "% = 0 for all odd n > r. Hence, if = is odd,
then z¥+7+2 = 0, while, if r is even, then z¢+7+1 = 0.

Finally, suppose that [[z*((1+z)" — (1 — z)")|| = o(n"), where r is odd.
Then certainly z*+712 = 0. But then, for n > 2r,

n
(L4 2)* - (1 —2)") = 22" Z ( )$p:
podd P
1<pgr
and the o(n")-condition implies that z**" = 0.
We may now deduce a strengthening of Kalton’s result.

THEOREM 2. Let p, ¢ be idempotents in A and suppose that {[(p+ ¢)"| =
o(n) asn — co. Then p+ ¢ is idempotent.

Proof By Lemma 1, in the Banach algebra By we have

p(p+q)tg = 6L+ - (1- ™),
where £2 = pg.
Thus, [[£((1+ &)™ — (1 - £ = o(n) as n — oco. By Lemma 3, with
kE=1,r =1, we have £2 = 0, i.e. pg = 0. An exactly symmetrical argument
gives gp = 0, and so (p+ q)? = p +g. The proof is complete.

Remark. In this last result, the o(n)-condition may not be weakened
to an O(n)-condition. This may be seen by considering the 2 x 2 matrices
2=1(g3), a= (3 1) Then p, q are idempotent and (p+¢q)" = (1 1), so that
i

(p + ¢)"|| = O{n), but p + g is not idempotent.

However, following a suggestion of Zemanek, there is a different kind of
improvement, in terms of arithmetic means.
For any element 2 of 4, let

1
Mn(m)zm(l—l—m+.‘.+m“).

We remark that there is a discussion of the Gelfand-Hille theorems in con-
nection with growth conditions on arithmetic means in [13]. It is clear that
if, say, [lz"[| = O(n") then also | M, (z){| = O(n"). In the reverse direction,
noting that ™ = (n+ 1) M, — nM,_ there is at least the simple remark
that if || Ma(2z)| = O(n") (or o(n")), then ||z"]| = O(n"t1) (respectively
o{n™t1)).

To see that, in general, we may have ||M,(z)| growing more slowly
than ||z"]|, consider the example of the Banach algebra A = C*[0, 1], with
the norm [[fl] = |flloc + [f'llo {(f € A). Let a(t) = —£ (0 < ¢ < 1).
Then [la®(| = 1 + n, but an elementary calculation shows that the sequence
| M ()] is bounded. '
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However, for a sum of idempotents we have the following result.

THEOREM 3. Let p, g be idempotents in A and let |M,{p + q)|| = o(n)
as n— 00. Then p+ g is idempotent.

Proof. By the above comments, we have at least ||(p + ¢)%| = o(n?).
Then by Lemma 3 (case k =1, r = 2) and Lemma 1, it follows that £* = 0,
i.e. (pg)* = 0, and, similarly, (gp)? = 0. Thus, for n > 3,

(p+a)" = (p+q)+ (n—1){pg+qp) + 3 (n — 1)(n — 2)(pgp + qpq).

But ||(p + ¢)"|| = o(n?), so that pgp + gpg = 0.
Then (p+ ¢)" = (p + q) + (n — 1}{(pg + gp), which holds even for n > 1,
so that

(n+1)Mu(p+q) =1+n{p+q) + 3(n — L)n(pg + ap).

But it is assumed that || M,(p + ¢}|| = o(n), so that pg+qgp =0 and p+ ¢
is idempotent.
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Some classical function systems in separable Orlicz spaces
by

C. FINET (Mons) and G. B, TKEBUCHAVA (Thbilisi)

Abstract. The boundedness of (sub)sequences of partial Fourier and Fourier—Walsh
sums in subspaces of separable Orlicz spaces iz studied. The boundedness of the shift
operator and Paley function with respect to the Haar system is also investigated. These
results are applied to get the anmalogues of ihe classical theorems on basicness of the
trigonometric and Walsh systems in nonreflexive separable Orlicz spaces.

0. Introduction. A fundamental result in the study of orthonormal
systems is: the trigonometric and Walsh systems are bases in L? for 1 <
p < oo [14], [15]. Moreover, a necessary and sufficient condition for the
trigonometric (and for the Walsh) system to be a basis in a separable Orlicz
space is the reflexivity of the space [6], [16]. In this paper we are concerned
with any separable Orlicz space. Let us denote by Ly such a space. Of course
when Ly is nonreflexive neither system is a basis in the whole space Ly, but
what is happening if we restrict ourselves to an Orlicz subspace Lg of Ly?
We prove (Theorem 1.1) that these systems are both simultaneously bases
(or not bases) of Lg (in the norm of Ly ; see Definition 1.2). We also get a
necessary and sufficient condition on the subspace Lg for both systems to
be bases of Lg (in the norm of Ly) and we describe the “maximal” subspace
with that property: it is the Orlicz space Ly, (see Definition 1.1). To prove
these results we study the boundedness of the sequences of partial Fourier
and Fourier-Walsh sums. We also investigate subsequences of these sumis to
get more precise results.

The second part of this article is devoted to the shift operator 7', the
Paley function P with respect to the Haar system and the majorant S* of
Fourier-Haar partial sums. These operators are bounded in L? for 1 < p < oo.
It is well known that the norms of P and §* are equivalent [3], [4]. A
necessary and sufficient condition for T' to be bounded in an Orlicz space is
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