Contents of Volume 121, Number 3

YC. Li and SY. Shaw, Generalized limits and a mean ergodic theorem	207 - 219
M. Vuorinen, Singular values, Ramanujan modular equations, and Landen	
transformations	
D. Li, Complex Unconditional Metric Approximation Property for $\mathcal{C}_{\Lambda}(\mathbb{T})$ spaces	231-247
H. GEVORGIAN, H. HAKOPIAN and A. SAHAKIAN, Numerical curves and their	
applications to algebraic curves	249-275
G. R. Allan, Stable inverse-limit sequences, with application to Fréchet algebras	277-308

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

Subscription information (1996): Vols. 117(2, 3)-121 (14 issues); \$30 per issue.

Correspondence concerning subscription, exchange and back numbers should be addressed to

Institute of Mathematics, Polish Academy of Sciences
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1996

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Incomments & Incomments

Part Trans

Part

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 121 (3) (1996)

Generalized limits and a mean ergodic theorem

by

YUAN-CHUAN LI and SEN-YEN SHAW (Chung-Li)

Abstract. For a given linear operator L on ℓ^∞ with $\|L\|=1$ and L(1)=1, a notion of limit, called the L-limit, is defined for bounded sequences in a normed linear space X. In the case where L is the left shift operator on ℓ^∞ and $X=\ell^\infty$, the definition of L-limit reduces to Lorentz's definition of σ -limit, which is described by means of Banach limits on ℓ^∞ . We discuss some properties of L-limits, characterize reflexive spaces in terms of existence of L-limits of bounded sequences, and formulate a version of the abstract mean ergodic theorem in terms of L-limits. A theorem of Sinclair on the form of linear functionals on a unital normed algebra in terms of states is also generalized.

1. Introduction. In [7] Lorentz defined the so-called σ -limits for bounded sequences in ℓ^{∞} , the Banach algebra of all bounded sequences in \mathbb{C} , with the supremum norm $\|\cdot\|_{\infty}$. It has been studied by many authors (see [1], [7]–[11]). This notion of limit can be generalized to bounded sequences in a general normed linear space in the following way.

Let A be a complex normed algebra with unit element 1. The *state space* of A is the set

$$D(1) \equiv D(1, \mathbf{A}) := \{ \phi \in \mathbf{A}^* : ||\phi|| = \phi(1) = 1 \}.$$

For a bounded linear operator U on A with U1 = 1 and ||U|| = 1, we denote by π_U the set $\{\phi \in D(1) : U^*\phi = \phi\}$.

DEFINITION. Let L be a linear operator on ℓ^{∞} (in notation, $L \in B(\ell^{\infty})$) such that L1 = 1 and ||L|| = 1. A bounded sequence $\{x_n\}$ in a normed linear space X is said to have an L-limit x ($x \in X$), written as L-lim $x_n = x$, if

$$F\{\langle f, x_n \rangle\} = \langle f, x \rangle$$
 for all $f \in X^*$ and $F \in \pi_L$.

Let ψ be a map from \mathbb{N}_0 to \mathbb{N}_0 , where \mathbb{N}_0 is the set of all nonnegative integers, and let $\widehat{\psi} \in B(\ell^{\infty})$ be the operator defined as $(\widehat{\psi}x)(n) = x(\psi(n))$,

Research supported in part by the National Science Council of the R.O.C.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A35, 47A12.

Key words and phrases: Banach limits, L-limits, states, numerical radius, reflexive space, mean ergodic theorem.

 $n=0,1,\ldots (x\in\ell^\infty)$. Then $\widehat{\psi}1=1$ and $\|\widehat{\psi}\|=1$. In particular, if σ is the map $n\to n+1$ $(n\in\mathbb{N}_0)$, then $\widehat{\sigma}$ is the left shift operator defined by $(\widehat{\sigma}x)(n)=x(n+1)$ for $n\in\mathbb{N}_0$ $(x\in\ell^\infty)$, and $\pi_{\widehat{\sigma}}$ is the set of all Banach limits on ℓ^∞ . Thus, when $X=\ell^\infty$ and $L=\widehat{\sigma}$, the above definition of L-limit reduces to Lorentz's definition of σ -limit for bounded sequences in ℓ^∞ (see [7]).

The main purpose of this paper is to present some results concerning L-limits. Section 2 has independent interest. Theorem 2.1 generalizes a theorem of Sinclair [13], which shows that the states of a Banach algebra span the dual space. A corollary (Corollary 2.3) is used in Section 3, which is concerned with basic properties of L-limits. Theorem 3.4 characterizes reflexive spaces as those with the property that every bounded sequence has an L-limit for some $L \in B(\ell^{\infty})$ satisfying L(1) = 1, ||L|| = 1, and $L^m\{a_n\} \to 0$ for all $\{a_n\} \in c_0$. And, in Proposition 3.5 we use L-limits to characterize closed operators and bounded operators.

In Theorem 3.2, it is shown in particular that

$$\sigma\text{-}\lim x_n = x \Leftrightarrow w\text{-}\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^m x_{k+n} = x \text{ uniformly in } n.$$

Therefore we have

(1.1)
$$\sigma\text{-}\lim x_n = y \Rightarrow w\text{-}\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^n x_k = y.$$

In general, the converse of the above implication does not hold. For instance, consider the sequence $\{x_n\}$ in $\mathbb R$ which is defined as $x_n=0$ when $\sum_{k=1}^{2m} k \le n < \sum_{k=1}^{2m+1} k$ for some integer $m \ge 1$, and $x_n=1$ otherwise. It is easy to see that for any fixed m>1, $\lim_{n\to\infty}\frac{1}{n+1}\sum_{k=0}^n x_{k+m}=1/2$. But for any positive integer n the set $\{a_m,a_{m+1},\ldots,a_{m+n}\}$ is equal to $\{0\}$ for infinitely many m. Hence the last convergence is not uniform in m, and so σ - $\lim x_n=1/2$ is not true.

A natural question to ask is: when is the converse to (1.1) true? By the mean ergodic theorem, if $x_n = T^n x$ with T a power bounded operator on a Banach space X and $x \in X$, then the existence of a weak cluster point x of the sequence $\left\{\frac{1}{n+1}\sum_{k=0}^n x_k\right\}$ implies $s\text{-}\lim_{n\to\infty} x_n = x$. Does this remain true if one replaces the strong limit by the weaker notion of σ -limit? This leads us to consider in Section 4 mean ergodic theorems for L-lim. Theorem 4.1 is an L-limit analogue of the abstract mean ergodic theorem of [12]. Corollary 4.3 is an equivalent version of the classical Cesàro mean ergodic theorem. In particular, we have the equivalences:

$$\sigma\text{-}\lim T^n x = y \Leftrightarrow y \text{ is a weak cluster point of } \{T_n x : n = 0, 1, \ldots\}$$

$$\Leftrightarrow s\text{-}\lim_{n \to \infty} T_n x = y \Leftrightarrow \sigma\text{-}\lim T_n x = y,$$

where $T_n := \frac{1}{n+1} \sum_{k=0}^n T^k$.

2. A generalized Sinclair theorem. Let **A** be a complex normed algebra with unit element 1. The numerical radius of an element $a \in \mathbf{A}$ is $v(a) := \sup\{|\phi(a)| : \phi \in D(1)\}$. $v(\cdot)$ is a norm on **A** satisfying $||a||/e \le v(a) \le ||a||$ ($a \in \mathbf{A}$) (see [2, Theorem 5.1]). It was proved by Sinclair (see [3, §31] or [13]) that the dual space \mathbf{A}^* of **A** is the linear span of D(1). More precisely, for each $\phi \in \mathbf{A}^*$ there exist $\alpha_k \ge 0$ and $\phi_k \in D(1)$, k = 1, 2, 3, 4, such that

(2.1) $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \leq \sqrt{2} v(\phi)$ and $\phi = \alpha_1 \phi_1 - \alpha_2 \phi_2 + i(\alpha_3 \phi_3 - \alpha_4 \phi_4)$, where $v(\phi) := \sup\{|\phi(a)| : a \in \mathbf{A}, v(a) \leq 1\}$. This is the special case U = I of the following generalization.

THEOREM 2.1. Let **A** be a complex unital normed algebra and $U \in B(\mathbf{A})$ with U1 = 1 and ||U|| = 1. If ϕ is a fixed point of U^* , then there exist $\alpha_k \geq 0$ and $\phi_k \in \pi_U$, k = 1, 2, 3, 4, such that (2.1) holds.

To prove Theorem 2.1 we need the following lemma.

LEMMA 2.2. Let U be as in Theorem 2.1. If $\{\phi_n\}$ is a sequence in D(1), then π_U contains all w^* -cluster points of $\{U_n^*\phi_n\}$, where $U_n = \frac{1}{n+1} \sum_{k=0}^n U^k$.

Proof. Let ψ be an arbitrary w^* -cluster point of $\{U_n^*\phi_n\}$. Since $\|U\| \leq 1$, we have $\|U_n\| \leq 1$, $\|\psi\| \leq 1$, and $U_n(U-I) = \frac{1}{n+1}(U^{n+1}-I) \to 0$ as $n \to \infty$ in uniform operator norm. Fix any $x \in \mathbf{A}$. Then there is a subsequence $\{U_{n_j}^*\phi_{n_j}\}$ so that $\lim_{j\to\infty} U_{n_j}^*\phi_{n_j}(Ux-x) = \psi(Ux-x)$. Hence

$$|\psi(Ux - x)| = \lim_{j \to \infty} |U_{n_j}^* \phi_{n_j}(Ux - x)| = \lim_{j \to \infty} |\phi_{n_j}[U_{n_j}(Ux - x)]|$$

$$\leq \lim_{j \to \infty} ||U_{n_j}(Ux - x)|| = 0.$$

Therefore $U^*\psi = \psi$. Since $U_n^*\phi(1) = 1$ for all $\phi \in D(1)$ and $n \ge 1$, we must have $\psi(1) = 1$, so that $\psi \in D(1)$. Hence $\psi \in \pi_U$.

Proof of Theorem 2.1. Let $\phi \in N(U^*-I)$. It follows from Sinclair's theorem that there exist $\alpha_k \geq 0$ and $\psi_k \in D(1)$ (k = 1, 2, 3, 4) such that

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \le \sqrt{2}v(\phi), \quad \phi = \alpha_1\psi_1 - \alpha_2\psi_2 + i(\alpha_3\psi_3 - \alpha_4\psi_4).$$
 Since $U^*\phi = \phi$, we have

(2.2)
$$\phi = \alpha_1 U_n^* \psi_1 - \alpha_2 U_n^* \psi_2 + i(\alpha_3 U_n^* \psi_3 - \alpha_4 U_n^* \psi_4),$$

and, since, for $k=1,2,3,4,\{U_n^*\psi_k\}$ is a sequence in the w^* -compact set D(1), there is a subnet $\{U_{n_j}\}$ of $\{U_n\}$ such that $\{U_{n_j}\psi_k\}$ converges weakly* for k=1,2,3,4. Let $\phi_k:=w^*$ -lim_j $U_{n_j}\psi_k$ for k=1,2,3,4. It follows from Lemma 2.2 that $\phi_k\in\pi_U$ for k=1,2,3,4. From this and (2.2) we obtain

$$\phi = \alpha_1 \phi_1 - \alpha_2 \phi_2 + i(\alpha_3 \phi_3 - \alpha_4 \phi_4).$$

This completes the proof.

COROLLARY 2.3. Let **A** be a complex normed algebra and $U \in B(\mathbf{A})$ with U1 = 1 and ||U|| = 1. Then $\overline{R(U-I)} = \bigcap_{\phi \in \pi_U} \ker \phi$.

Proof. Let $M:=\bigcap_{\phi\in\pi_U}\ker\phi$. It follows from the definition of π_U that $\phi\in N(U^*-I^*)=\overline{R(U-I)}^\perp$ for all $\phi\in\pi_U$. Hence $\overline{R(U-I)}\subset M$. Let $\phi\in N(U^*-I^*)$. From Theorem 2.1 we have

$$\phi = \alpha_1 \phi_1 - \alpha_2 \phi_2 + i(\alpha_3 \phi_3 - \alpha_4 \phi_4)$$

for some $\alpha_k \geq 0$ and $\phi_k \in \pi_U$ (k = 1, 2, 3, 4). Hence $M \subset \bigcap_{k=1}^4 \ker \phi_k \subset \ker \phi$. Since $\phi \in N(U^* - I^*)$ is arbitrary, we must have

$$M \subset \bigcap \{\ker \phi : \phi \in N(U^* - I^*)\} = {}^\perp N(U^* - I^*) = \overline{R(U - I)}.$$

The result follows.

3. Some properties of L-limits. We consider the following condition:

(*)
$$\lim_{m \to \infty} L^m\{a_n\} = 0 \quad \text{ for all } \{a_n\} \in c_0,$$

where c_0 is the space of all null sequences. If ||L|| = 1, it is clear that the condition (*) is equivalent to

$$\lim_{m\to\infty}L^me_k=0\quad\text{ in }\ell^\infty\text{ for all }k\in\mathbb{N}_0.$$

Clearly, condition (*) is satisfied if $c_0 \subset \ker L$. But, in general, an operator L which satisfies condition (*) need not have the property $c_0 \subset \ker L$. For instance, $\frac{1}{2}(I+\widehat{\sigma})$ and $\widehat{\sigma}$ satisfy (*) but their kernels do not contain c_0 . A consequence of condition (*) is that

$$F\{a_n\} = (L^*)^m F\{a_n\} = FL^m \{a_n\} = \lim_{m \to \infty} FL^m \{a_n\}$$
$$= F \lim_{m \to \infty} L^m \{a_n\} = 0$$

for all $F \in \pi_L$ and $\{a_n\} \in c_0$.

Let $\mathbf{K} := \{L \in B(\ell^{\infty}) : L1 = 1, ||L|| = 1, \text{ and } L \text{ satisfies (*)} \}$. Some useful basic properties of the L-limit are as follows.

PROPOSITION 3.1. Let $L \in \mathbf{K}$ and let $\{x_n\}$ be a bounded sequence in a normed linear space X. Then

- (a) If $x_n \to x$ weakly, then L- $\lim x_n = x$.
- (b) If $\{x_n\}$ has an L-limit, then it is unique.
- (c) If $f \in X^*$ and L-lim $x_n = x$, then L-lim $f(x_n) = f(x)$.
- (d) If L-lim $x_n = x$, then $||x|| \le \limsup ||x_n||$
- (e) If $\{y_n\}$ is a bounded sequence in X, and L- $\lim y_n = y$ and L- $\lim x_n = x$ for some $y \in X$, then

 $ax + by = L - \lim(ax_n + by_n).$

(f) If L-lim $x_n = x$ and L-lim $y_n = y$, then L-lim $(x_n, y_n) = (x, y)$, where both (x_n, y_n) and (x, y) are in $X \oplus X$.

(g) If L- $\lim x_n = x$ and $T \in B(X)$, then L- $\lim Tx_n = Tx$.

Proof. (a) If $f \in X^*$ and $w-\lim_{n\to\infty} x_n = x$, then $\lim_{n\to\infty} \langle f, x_n - x \rangle = 0$. Therefore we have for $F \in \pi_L$,

$$F\{\langle f, x_n \rangle\} = F\{\langle f, x_n - x \rangle\} + F\{\langle f, x \rangle\} = 0 + \langle f, x \rangle.$$

This proves L-lim $x_n = x$. (b)-(e) follow from the definition of L-limit and (f) follows from $(X \oplus X)^* = X^* \oplus X^*$. If L-lim $x_n = x$ and $T \in B(X)$, then for $F \in \pi_L$ and $f \in X^*$ we have

$$F\{\langle f, Tx_n \rangle\} = F\{\langle T^*f, x_n \rangle\} = \langle T^*f, x \rangle = \langle f, Tx \rangle.$$

Therefore L-lim $Tx_n = Tx$. This proves (g).

Using Corollary 2.3 we now prove the following theorem.

THEOREM 3.2. Let $L \in B(\ell^{\infty})$ with L1 = 1 and ||L|| = 1. Let $\{x_n\}$ be a bounded sequence in a normed linear space X. Then

- (a) L- $\lim x_n = x$ if and only if $\{\langle f, x_n x \rangle\} \in \overline{R(L-I)}$ for all $f \in X^*$.
- (b) If L-lim $x_n = x$, then $x \in \overline{co}\{x_k : k \ge 0\}$.
- (c) If, in addition, L satisfies the condition (*), i.e. $L \in \mathbf{K}$, then $L-\lim x_n = x$ implies $x \in \overline{\operatorname{co}}\{x_k : k \geq n\}$ for all $n \geq 0$.
- (d) If $L = \widehat{\psi}$ for some mapping $\psi : \mathbb{N}_0 \to \mathbb{N}_0$ then ψ -lim $x_n = x$ if and only if

$$w-\lim_{m\to\infty}\frac{1}{m+1}\sum_{k=0}^m x_{\psi^k(n)}=x \quad uniformly \ in \ n.$$

In particular, if $L = \widehat{\sigma}$, where $\sigma(n) = n + 1$ for n = 0, 1, 2, ..., then σ -lim $x_n = x$ if and only if

$$w$$
- $\lim_{m\to\infty} \frac{1}{m+1} \sum_{k=0}^m x_{k+n} = x$ uniformly in n .

Proof. We show (a). Since $L^k(1) = 1$ and $||L^k|| = 1$, L^k can be represented as an infinite matrix $(b_{ij}^{(k)})$ such that $\sum_{j=1}^{\infty} b_{ij}^{(k)} = 1$ for all i. Let $\{y_{kn}\} := (b_{ij}^{(k)})\{x_n\}$ for $k \in \mathbb{N}_0$. Then $y_{kn} = \sum_{j=1}^{\infty} b_{nj}^{(k)} x_j \in \overline{\operatorname{co}}\{x_k : k \geq 0\}$, $k \in \mathbb{N}_0$. We have

L- $\lim x_n = x$

$$\Leftrightarrow F\{\langle f, x_n - x \rangle\} = 0 \text{ for all } f \in X^* \text{ and } F \in \pi_L$$

$$\Leftrightarrow \{\langle f, x_n - x \rangle\} \in \overline{R(L - I)} \text{ for all } f \in X^* \text{ (by Corollary 2.3)}$$

$$\Leftrightarrow \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} L^{k} \{ \langle f, x_{n} - x \rangle \} = 0 \text{ in } \ell^{\infty} \text{ for all } f \in X^{*}$$

$$\Leftrightarrow \lim_{m \to \infty} \left\{ \left\langle f, \frac{1}{m+1} \sum_{k=0}^{m} y_{kn} \right\rangle \right\} = \left\langle f, x \right\rangle \text{ in } \ell^{\infty} \text{ for all } f \in X^*.$$

This means x = w- $\lim_{m\to\infty} \frac{1}{m+1} \sum_{k=0}^m y_{kn}$ uniformly in n and hence $x \in$ $\overline{\operatorname{co}}\{x_k:k\geq 0\}$. When $L=\widehat{\psi}$ for some mapping $\psi:\mathbb{N}_0\to\mathbb{N}_0$ we have $y_{mn} = x_{\psi^m(n)}$. This proves (a), (b), and (d).

We show (c). Let m be any positive integer. We define

$$y_n = \begin{cases} x_m - x_n & \text{if } n \le m, \\ 0 & \text{if } n \ge m + 1. \end{cases}$$

Since $\{y_n\}$ is a null sequence, we must have L-lim $y_n = 0$. It follows from Proposition 3.1(e) that L-lim $(x_n + y_n) = x$. It follows from part (b) that

$$x \in \overline{\operatorname{co}}\{x_n + y_n : n \ge 0\} = \overline{\operatorname{co}}\{x_n : n \ge m\}.$$

This proves (c) and completes the proof.

COROLLARY 3.3. Let $\{x_n\}$ be a bounded sequence in a normed linear space X. If $y = \sigma - \lim x_n$, then $y = \sigma - \lim \frac{1}{n+1} \sum_{k=0}^n x_k$.

Proof. Let $y_n = \frac{1}{n+1} \sum_{k=0}^n x_k$. It follows from Theorem 3.2(d) that $y_n \to y$ weakly as $n \to \infty$. Hence σ -lim $y_n = y$ by Proposition 3.1(a).

An infinite matrix $R = (a_{ij})$ is said to be an R-matrix (see [5, p. 222]) if it satisfies the following conditions:

- (i) $\sum_{j=0}^{\infty} a_{ij}$ converges for all $i=0,1,\ldots$ and $\sum_{j=0}^{\infty} a_{ij} \not\to 0$ as $i\to\infty$; (ii) $a_{ij}\to 0$ as $i\to\infty$ for $j=0,1,\ldots$

THEOREM 3.4. Let X be a Banach space. Then the following statements are equivalent:

- (a) X is reflexive.
- (b) For every bounded sequence $\{x_n\}$ in X there is an $L \in \mathbf{K}$ such that L-lim x_n exists.
- (c) For every bounded sequence $\{x_n\}$ in X there is an R-matrix $R = (r_{ij})$ such that $\{\sum_{i=0}^{\infty} r_{ij}x_j\}$ converges weakly as $i \to \infty$.

Proof. The equivalence of (a) and (c) is known (see [4], [5, Proposition 19.6]).

(a) \Rightarrow (b). Let $\{x_n\}$ be a bounded sequence in X. Since X is reflexive, any closed ball of X is weakly compact. Hence it follows from the Eberlein-Shmul'yan theorem that $\{x_n\}$ has a weakly convergent subsequence $\{x_{n_k}\}$, say x = w- $\lim_{k \to \infty} x_{n_k}$. We may assume that $n_k > k$ for all $k = 0, 1, \ldots$ Let $\psi(k) = n_k$ for $k \in \mathbb{N}_0$. Then $\widehat{\psi}1 = 1$, $\|\widehat{\psi}\| = 1$, and $\widehat{\psi}$ satisfies the condition (*). Since $\widehat{\psi} = (a_{k,j})$ with $a_{k,j} = \delta_{\psi(k),j}$, we have for $f \in X^*$,

$$\widehat{\psi}\{\langle f, x_n \rangle\} = \left\{ \left\langle f, \sum_{i=0}^{\infty} \delta_{\psi(n), j} x_j \right\rangle \right\} = \left\{ \left\langle f, x_{\psi(n)} \right\rangle \right\}.$$

Since $w-\lim_{k\to\infty} x_{\psi(k)} = w-\lim_{k\to\infty} x_{n_k} = x$, by Proposition 3.1(a) we have for $f \in X^*$ and $F \in \pi_{\hat{h}}$,

$$F\{\langle f, x_n \rangle\} = F\{\widehat{\psi}\{\langle f, x_n \rangle\}\} = F\{\langle f, x_{\psi(n)} \rangle\} = \langle f, x \rangle$$

Therefore L- $\lim x_n = x$.

(b) \Rightarrow (c). Let $L \in K$. Write $L^k = (b_{ij}^{(k)})$ for $k = 0, 1, \ldots$ Then $L^k 1 = 1$ and $||L^k|| = 1$ for all $k \geq 0$. From this fact, it is clear that $b_{ij}^{(k)} \geq 0$ for all $i, j, k = 0, 1, \ldots$, and $\sum_{j=0}^{\infty} b_{ij}^{(k)} = 1$ for all $i, k = 0, 1, \ldots$ Since L satisfies the condition (*), we have for every fixed $j = 0, 1, \ldots$,

(1.4)
$$\frac{1}{m+1} \sum_{k=0}^{m} b_{nj}^{(k)} = \frac{1}{m+1} \sum_{k=0}^{m} L^k e_j \to 0 \quad \text{in } \ell^{\infty} \text{ as } m \to \infty.$$

Let $r_{mj} = \frac{1}{m+1} \sum_{k=0}^{m} b_{1j}^{(k)}$ for m, j = 0, 1, ..., and let $R = (r_{mj})$. Then R is an R-matrix. Indeed, since $\sum_{i=0}^{\infty} b_{1i}^{(k)} = 1$, we have for $m = 0, 1, \ldots$,

$$\sum_{j=0}^{\infty} r_{mj} = \sum_{j=0}^{\infty} \frac{1}{m+1} \sum_{k=0}^{m} b_{1j}^{(k)} = \sum_{k=0}^{m} \frac{1}{m+1} \sum_{j=0}^{\infty} b_{1j}^{(k)}$$
$$= \frac{1}{m+1} \sum_{k=0}^{m} 1 = 1,$$

and, by (1.4),

$$0 \le r_{mj} \le \left\| \frac{1}{m+1} \sum_{k=0}^{m} L^k e_j \right\| \to 0 \quad \text{as } m \to \infty \text{ for all } j.$$

Now suppose $\{x_n\}$ is a bounded sequence in X such that $x = L - \lim x_n$ exists. We show the weak convergence of the sequence $\{\sum_{j=0}^{\infty} r_{nj}x_j\}$. It follows from Theorem 3.2(a) that $\{\langle f, x_n - x \rangle\} \in \overline{R(L-I)}$ for all $f \in X^*$, which is equivalent to

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} L^{k} \{ \langle f, x_n - x \rangle \} = 0 \quad \text{in } \ell^{\infty} \text{ for all } f \in X^*.$$

215

Since

$$\frac{1}{m+1}\sum_{k=0}^{m}L^{k}\{\langle f,x_{n}-x\rangle\}=\left\{\left\langle f,\sum_{j=0}^{\infty}\frac{1}{m+1}\sum_{k=0}^{m}b_{nj}^{(k)}x_{j}\right\rangle -\left\langle f,x\right\rangle\right\},$$

we see that

$$w\text{-}\lim_{m\to\infty}\sum_{j=0}^{\infty}\frac{1}{m+1}\sum_{k=0}^{m}b_{nj}^{(k)}x_{j}=x\quad\text{ uniformly in }n.$$

In particular, for n = 1 we have

$$x = w_{m \to \infty} \sum_{j=0}^{\infty} \frac{1}{m+1} \sum_{k=0}^{m} b_{1j}^{(k)} x_{j} = w_{m \to \infty} \sum_{j=0}^{\infty} r_{mj} x_{j}.$$

This proves (c) and completes the proof.

Remark. It follows from Theorems 3.2 and 3.4 that if $\{x_n\}$ is a bounded sequence in a reflexive Banach space, then

$$\{\langle f, x_n \rangle\} \in \bigcup_{L \in \mathbf{K}} (\overline{R(L-I)} \oplus \mathbb{C} \cdot 1)$$

for all $f \in X^*$. In particular, by setting $X = \mathbb{C}$ we obtain

$$\ell^{\infty} = \bigcup_{L \in \mathbb{K}} (\overline{R(L-I)} \oplus \mathbb{C} \cdot 1).$$

PROPOSITION 3.5. Let $L \in \mathbf{K}$ and let X and Y be two normed linear spaces.

- (i) A linear operator $A: X \supset D(A) \to Y$ is closed if and only if the graph G(A) of A is closed with respect to L-limit, i.e. whenever $\{x_n\} \subset D(A)$ and L-lim $(x_n, Ax_n) = (x, y)$ for some $x \in X$, $y \in Y$, one has $x \in D(A)$ and y = Ax.
- (ii) For a linear operator $A:X\to Y,$ the following statements are equivalent:
 - (a) A is bounded.
- (b) L- $\lim Ax_n = 0$ whenever $\{x_n\}$ is a sequence in X such that L- $\lim x_n = 0$.

Moreover, when X is complete, we also have the next equivalent condition:

(c) L- $\lim Ax_n = 0$ whenever $\{x_n\}$ is a sequence in X such that L- $\lim x_n = 0$ and such that $\{Ax_n\}$ is bounded.

Proof. (i) To show the sufficiency, let $\{(x_n, Ax_n)\}$ be a sequence in G(A) such that

$$s$$
- $\lim_{n\to\infty} (x_n, Ax_n) = (x, y)$ for some $x, y \in X$.

Then, by Proposition 3.1(a), we have L- $\lim(x_n, Ax_n) = (x, y)$, which implies that $(x, y) \in G(A)$ and Ax = y. Therefore G(A) is closed.

For the converse, let $\{(x_n, Ax_n)\}$ be a sequence in G(A) such that

$$L$$
- $\lim_{n\to\infty} (x_n, Ax_n) = (x, y)$ for some $x, y \in X$.

It follows from Theorem 3.2(b) and the closedness of A that

$$(x,y) \in \overline{\operatorname{co}}\{(x_n,Ax_n) : n \ge 0\} \subset \overline{G(A)} = G(A).$$

Therefore we have $x \in D(A)$ and Ax = y.

- (ii) (a) \Rightarrow (b) follows from Proposition 3.1(g). To show (b) \Rightarrow (a), we suppose that A is unbounded. Then there is a sequence $\{u_n\}$ in X such that $||u_n|| = 1$ for all $n = 0, 1, \ldots$ and $\lim_{n \to \infty} ||Au_n|| = \infty$. We may assume $Au_n \neq 0$ for all n. Let $x_n = ||Au_n||^{-1/2}u_n$ for $n = 0, 1, \ldots$ Then $||x_n|| \to 0$ and $||Ax_n|| \to \infty$. But, by Proposition 3.1(a), we have L- $\lim y_n = 0$, and so it follows from the assumption that $\{Ax_n\}$ is bounded. This is a contradiction.
- (b) \Rightarrow (c) is obvious. To show (c) \Rightarrow (a) for the case where X is complete, it suffices to show that A is closed. For this we use (i). Let $\{x_n\}$ be a sequence in X such that L- $\lim_{n\to\infty}(x_n,Ax_n)=(x,y)$ for some $x\in X$ and $y\in Y$. Then L- $\lim(x_n-x,A(x_n-x))=(0,y-Ax)$. By (c), we have y-Ax=0. Hence A is closed.
- 4. An abstract ergodic theorem for L-limit. Let T be a power bounded linear operator on a Banach space and let $T_n := \frac{1}{n+1} \sum_{k=0}^n T^k$. The well-known Cesàro ergodic theorem (see e.g. [6], [12], [14]) states that s-lim $T_n x = y$ if and only if y is the weak cluster point of $\{T_n x\}$, and that the map $P: x \to \lim T_n x$ defines a linear projection with range R(P) = N(T-I) and null space $N(P) = \overline{R(T-I)}$. This is a specialization of the abstract mean ergodic theorem established in [12, Theorem 1.1]. In this section we prove the following version of that theorem for the L-limit.

THEOREM 4.1. Let $\{A_n\}$ be a sequence of bounded operators on a normed linear space X and let A be a closed operator on X. Assume that $L \in B(\ell^{\infty})$ satisfies L1 = 1, ||L|| = 1, and the following conditions:

- (L1) $||A_n|| \le M$ for all $n \ge 0$ and some constant M > 0;
- (L2) If $x \in N(A)$ then L-lim $A_n x = x$;
- (L3) $R(A_n I) \subset \overline{R(A)}$ for all n;
- (L4) $R(A_n) \subset D(A)$, L-lim $AA_nx = 0$ for all $x \in X$, and L-lim $A_nAx = 0$ for all $x \in D(A)$.

Let Q be the operator defined by $Qx := L - \lim A_n x$ for those x for which the limit exists. Then Q is a bounded, closed linear projection with $||Q|| \leq M$, R(Q) = N(A), $N(Q) = \overline{R(A)}$, and $D(Q) = N(A) \oplus \overline{R(A)}$.

Proof. $||Q|| \leq M$ follows from (L1) and Proposition 3.1(d). Next, we show that Q is closed. Let $\{x_m\}$ be a sequence in D(Q) such that

$$s$$
- $\lim_{m\to\infty} (x_m, Qx_m) = (x, y)$ for some $x, y \in X$.

Then for $F \in \pi_L$ and $f \in X^*$ we have

$$\begin{aligned} |F\{\langle f, A_n x \rangle\} - \langle f, y \rangle| &= |F\{\langle f, A_n (x - x_m) \rangle\} + F\{\langle f, A_n x_m \rangle\} - \langle f, y \rangle| \\ &\leq ||F|| \cdot ||f|| \cdot \sup_n ||A_n|| \cdot ||x - x_m|| + |\langle f, Qx_m - y \rangle| \\ &\leq M||f|| \cdot ||x - x_m|| + ||f|| \cdot ||Qx_m - y|| \\ &\to 0 \quad \text{as } m \to \infty. \end{aligned}$$

Therefore we have $x \in D(Q)$ and y = Qx.

That $N(A) \subset R(Q)$ and $Q|_{N(A)} = I|_{N(A)}$ follows from (L2). $R(Q) \subset N(A)$ follows from the first part of (L4), Proposition 3.5(i), and the assumption that A is closed. Hence $Q^2 = Q$ and R(Q) = N(A). The second part of (L4) and the closedness of Q imply that $\overline{R(A)} \subset N(Q)$. Let $x \in N(Q)$. It follows from (L3) that L-lim $(A_n - I)x = -x \in \overline{R(A)}$. This proves $N(Q) = \overline{R(A)}$. The proof is complete.

PROPOSITION 4.2. Let $\{A_n\}$ be a sequence of operators on a normed linear space X and let A be a closed operator on X. Suppose $\{A_n\}$ and A satisfy the conditions (L1)-(L4) for $L=\widehat{\sigma}$. Let $T_n=\frac{1}{n+1}\sum_{k=0}^n A_k, n=0,1,\ldots$ Then for given $x,y\in X$ the following statements are equivalent:

- (a) σ - $\lim A_n x = y$.
- (b) σ - $\lim T_n x = y$.
- (c) There is a subsequence $\{T_{n_k}\}$ of $\{T_n\}$ such that w- $\lim T_{n_k}x = y$.
- (c') There is a subsequence $\{T_{n_k}\}$ of $\{T_n\}$ such that σ - $\lim T_{n_k} x = y$.
- (d) There is a subsequence $\{T_{n_k}\}$ of $\{T_n\}$ such that

$$w-\lim_{m\to\infty}\frac{1}{m+1}\sum_{j=0}^m T_{n_j}x=y.$$

(d') There is a subsequence $\{T_{n_k}\}$ of $\{T_n\}$ such that

$$\sigma\text{-}\lim_{m\to\infty}\frac{1}{m+1}\sum_{j=0}^m T_{n_j}x=y.$$

Proof. (a) \Rightarrow (b) follows from Corollary 3.3, (a) \Rightarrow (c) and (b) \Rightarrow (d) follow from Theorem 3.2(c). (b) \Rightarrow (c'), (c) \Rightarrow (c'), and (d) \Rightarrow (d') are obvious. So, it remains to show (c') \Rightarrow (a) and (d') \Rightarrow (a).

 $(c')\Rightarrow$ (a). Suppose $\{T_{n_k}\}$ is a subsequence of $\{T_n\}$ such that σ - $\lim T_{n_k}x=y$. Since

$$(T_{n_k} - I)x = \frac{1}{n_k + 1} \sum_{j=0}^{n_k} (A_j - I)x \in \overline{R(A)},$$

it follows from Theorem 3.2(a) that $y-x\in \overline{R(A)}$. Since σ -lim $AA_nx=0$, it follows from Theorem 3.2(c) that w-lim $AT_nx=0$. Hence we must have w-lim $AT_{n_k}x=0$ and hence σ -lim $AT_{n_k}x=0$ by Proposition 3.1(a). It follows from the closedness of A that $y\in N(A)$. Therefore we have $x=(x-y)+y\in \overline{R(A)}\oplus N(A)\equiv D(Q)$ and

$$\sigma$$
-lim $A_n x = Qx = Qy = y$.

Here Q is the operator as defined in Theorem 4.1. This proves (a).

Finally, we show that $(d')\Rightarrow(a)$. Since σ - $\lim AA_nx=0$, we have w- $\lim AT_nx=0$. Hence w- $\lim_{k\to\infty}AT_{n_k}x=0$ and

$$w-\lim_{m\to\infty} \frac{1}{m+1} \sum_{k=0}^{m} AT_{n_k} x = 0.$$

So σ - $\lim \frac{1}{m+1} \sum_{k=0}^{m} AT_{n_k} x = 0$ by Proposition 3.1(a). It follows from the closedness of A that $y \in N(A)$. Since $\frac{1}{m+1} \sum_{j=0}^{m} T_{n_j} x - x \in \overline{R(A)}$, we must have $y - x \in \overline{R(A)}$ (by Theorem 3.2(a)). Therefore we have $x = (x - y) + y \in \overline{R(A)} \oplus N(A) \equiv D(Q)$ and

$$\sigma\text{-}\lim A_n x = Qx = Qy = y.$$

This proves (a) and completes the proof.

If T is a power bounded operator, it is clear that (L1)-(L3) hold for A = T - I and $A_n = T^n$. If $F \in \pi_{\widehat{A}}$, then F is a Banach limit on ℓ^{∞} so that

$$F\{\langle f, AA_n x \rangle\} = F\{\langle f, (T^{n+1} - T^n)x \rangle\}$$
$$= F\{\langle f, T^{n+1}x \rangle\} - F\{\langle f, T^n x \rangle\} = 0$$

for $x \in X$ and $f \in X^*$. Therefore (L4) also holds. Hence from Theorem 4.1 and Proposition 4.2 we can deduce the following mean ergodic theorem for σ -limit.

COROLLARY 4.3. Let T be a power bounded operator on a normed linear space X and let Q be the linear operator defined by $Qx = \sigma - \lim T^n x$ for those x for which the σ -limit exists. Then Q is a bounded, closed linear projection with $\|Q\| \leq \limsup \|T^n\|$, R(Q) = N(T-I), N(Q) = R(T-I), and $D(Q) = N(T-I) \oplus R(T-I)$. Moreover, the following statements are equivalent:

(a)
$$\sigma$$
- $\lim T^n x = y$.

- (b) σ - $\lim \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x = y$. (c) There is a subsequence $\{n_{k}\}$ of $\{n\}$ such that

$$w-\lim_{k\to\infty}\frac{1}{n_k+1}\sum_{j=0}^{n_k}T^jx=y.$$

(c') There is a subsequence $\{n_k\}$ of $\{n\}$ such that

$$\sigma \lim_{k \to \infty} \frac{1}{n_k + 1} \sum_{j=0}^{n_k} T^j x = y.$$

(d) There is a subsequence $\{n_k\}$ of $\{n\}$ such that

$$w-\lim_{m\to\infty} \frac{1}{m+1} \sum_{k=0}^{m} \frac{1}{n_k+1} \sum_{j=0}^{n_k} T^j x = y.$$

(d') There is a subsequence $\{n_k\}$ of $\{n\}$ such that

$$\sigma_{-\lim_{m\to\infty}} \frac{1}{m+1} \sum_{k=0}^{m} \frac{1}{n_k + 1} \sum_{i=0}^{n_k} T^i x = y.$$

Remark. It follows from Corollary 4.3 and the classical Cesàro ergodic theorem that the two projections P and Q coincide, and so we have the equivalence relations:

$$\sigma\text{-}\lim T^n x = y$$

$$\Leftrightarrow y \text{ is a weak cluster point of } \left\{ \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x : n = 0, 1, \dots \right\}$$

$$\Leftrightarrow s\text{-}\lim_{n\to\infty}\frac{1}{n+1}\sum_{j=0}^n T^jx=y$$

$$\Leftrightarrow \sigma\text{-}\!\lim_{n\to\infty}\frac{1}{n+1}\sum_{j=0}^nT^jx=y.$$

References

- Z. U. Ahmad and Mursaleen, An application of Banach limits, Proc. Amer. Math. Soc. (1) 103 (1988), 244-246.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.
- -, -, Numerical Ranges II, London Math. Soc. Lecture Ser. 10, Cambridge Univ. Press, 1973.

- [4] A. Brunel, H. Fong, and L. Sucheston, An ergodic superproperty of Banach spaces defined by a class of matrices, Proc. Amer. Math. Soc. 49 (1975), 373-378.
- D. van Dulst, Reflexive and Superreflexive Banach Spaces, MCT, 1982.
- U. Krengel, Ergodic Theorems, de Gruyter, 1985.
- G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190,
- Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford (2) 34 (1983), 77-86.
- R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94.
- [10] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110.
- [11] —, Mappings of positive integers and subspaces of m, Portugal. Math. 38 (1979),
- [12] S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal. 87 (1989), 428-441.
- [13] A. M. Sinclair, The states of a Banach algebra generate the dual, Proc. Edinburgh Math. Soc. (2) 17 (1971), 193-200.
- [14] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. of Math. 42 (1941), 188-228.

Yuan-Chuan Li Department of Mathematics Chung Yuan University Chung-Li, Taiwan

Sen-Yen Shaw Department of Mathematics National Central University Chung-Li, Taiwan E-mail: shaw@math.ncu.edu.tw

Received February 2, 1995 Revised version July 15, 1996 (3417)