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Generalized limits and a mean ergodic theorem
by

YUAN-CHUAN LI and SEN-YEN SHAW {ChungLi)

Absiract. For a given linear operator L on £%° with ||L|l = 1 and L{1) = 1, a notion
of limit, called the I-limit, is defined for bounded sequences in a normed linear space X.
In the case where I is the left shift operator on £°° and X = £°°, the definition of L-limit
reduces to Lorentz’s definition of o-limit, which is described by means of Banach limits
on £°°. We discuss some properties of [-limits, characterize reflexive spaces in terms of
existence of L-limits of bounded sequences, and formulate a version of the abstract mean
ergodic theorem in terms of I-limits, A theorem of Sinclair on. the form of linear functionals
on a unital normed algebra in terms of states is also generalized.

1. Imtroduction. In [7] Lorentz defined the so-called o-limits for
bounded sequences in £°, the Banach algebra of all bounded sequences
in C, with the supremum porm || - Jle. It has been studied by many au-
thors (see [1], [7]-[11]). This notion of limit can be generalized to bounded
sequences in a general normed linear space in the following way.

Let A be a complex normed algebra with unit element 1. The state space
of A is the set

D(1)=D(1,A):={p € A" : |l¢]| = ¢(1) = 1}.
For a bounded linear operator U on A with U1 = 1 and [[/]| = 1, we denote
by ny the set {¢ € D(1): U*¢ = ¢}.

DEFINITION. Let I be a linear operator on £ (in notation, L € B(£))
such that L1 = 1L and || L] = 1. A bounded sequence {z,} in a normed linear
space X is said to have an L-limit « (x € X), written as L-limz, = g, if

F{{f,en)} = (f,z) forall fe X" and F €.

Let 1 be a map from Np to Ny, where Ny is the set Qf all nonnegative
integers, and let % € B(£%°) be the operator defined as (yz)(n) = z((n)),
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208 Y.-C. Li and 8.-Y. Shaw

n=0,1,... (2 € £°). Then #1 = 1 and ||¢|| = 1. In particular, if o is
the map n — n+ 1(n € Ny), then & is the left shift operator defined by
(7z)(n) = z{n+1) for n € Ny (z € £7°), and 75 is the set of all Banach limits
on £%°. Thus, when X = £ and L = 7, the above definition of L-limit re-
duces to Lorentz’s definition of ¢-litnit for bounded sequences in £°° (see [7]).

The main purpose of this paper is to present some results concerning
L-limits. Section 2 has independent interest. Theorem 2.1 generalizes a the-
orem of Sinclair [13], which shows that the states of a Banach algebra span
the dual space. A corollary (Corollary 2.3} is used in Section 3, which is
concerned with basic properties of L-limits. Theorem 3.4 characterizes re-
flexive spaces as those with the property that every bounded sequence has an
L-limit for sorne L € B(£°°) satisfying L(1) = 1, ||L|| = 1, and L™{a,} — 0
for all {a,} € cp. And, in Proposition 3.5 we use L-limits to characterize
closed operators and bounded operators.

In Theorern 3.2, it is shown in particular that

c-limz, = & w;nlEnm m ];):ck.M = z uniformly in n.
Therefore we have "
. . 1
(1.1} o-lime, =y = w;lhn;lg p—— gazk =y

In general, the converse of the above implication does not hold. For instance,
consider the sequence {z,} in R which is defined as , = 0 when 327, k <
n < Eiff 1k for some integer m > 1, and %, = 1 otherwise. It is easy
to see that for any fixed m > 1, limn oo 737 3 f—g Thtm = 1/2. But for
any positive integer n the set {@m,@m+1,.-.,8men} 8 equal to {0} for
infinitely many . Hence the last convergence is not uniform in m, and
so ¢-limx, = 1/2 is not true.

A natural question to ask is: when is the converse to (1.1) true? By
the mean ergodic theorem, if z,, = 7" with T' a power bounded operator
on a Banach space X and z € X, then the existence of a weak cluster
point z of the sequence {35 Yo7 @x } implies s-limp.eo 2 = 2. Docs this
remain true if one replaces the strong limit by the weaker notion of o-limit?
This leads us to consider in Section 4 mean ergodic theorems for L-lim.
Theorem 4.1 is an. L-limit analogue of the abstract mean ergodic theorem
of [12]. Corollary 4.3 is an equivalent version of the classical Cesaro mean
ergodic thecrem. In particular, we have the equivalences:

o-UImT"z = y & y is a weak cluster point of {Thz:n=0,1,.. 3

& slim Tz =y < o-limTha =y,
-+ 0O

where T, i= 33 D00 T™.
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2. A generalized Sinclair theorem. Let A he a complex normed
algebra with unit element 1. The numerical radius of an element ¢ € A is
v{a) = sup{|é(a)] : ¢ € D(1)}. v(-) is a norm on A satisfying lall/e <
v{a) < |lafi (a € A) (see [2, Theorem 5.1)). Tt ‘was proved by Sinclair (see [3,
§31] or [13]) that the dual space A* of A is the linear span of D(1). More
precisely, for each ¢ € A* there exist oy > 0 and ¢ € D{1), k = 1,2,3, 4,
such that

(2.1) on+og+ag+oy < V20(¢) and ¢ = a1 ¢y ~ oady +icags —augha),

where v(¢) := sup{|¢(a)| : a € A, v(n) < 1}. This is the special case U = I
of the following generalization.

THEOREM 2.1. Let A be o complex unital normed olgebra and U € B(A)
with Ul =1 and \U|| = 1. If ¢ is a fized point of U*, then there exist ay > 0
and ¢ € Ty, k=1,2,3,4, such that (2.1) holds.

'To prove Theorem 2.1 we need the following lemma.

LEMMA 2.2. Let U be as in Theorem 2.1. If {$,} is a sequence in D(1),
then Ty contains all w*-cluster points of {Ur ¢y}, where U, = ml_miw Sheg UE.

Proof. Let 1 be an arbitrary w*-cluster point of {U ¢y }. Since [|U|| < 1,
we have [[Un || < 1, [9]| < 1, and Un (U~ 1) = 25 (U™ —1) - 0asn — oo
in uniform operator norm. Fix any z € A. Then there is a subsequence

{U%, #n, } s0 that limy oo U én,(Uz — z) = (U — 7). Hence
(U = 2)] = lim 07,60, (U5 ~ ) = im g, 0, (U - )

lim, [{Un, (Uz — )| = 0.

j—eo

A

Therefore U*y = 1. Since U ¢(1) = 1 for all ¢ € D(1) and n > 1, we must
have (1) = 1, so that v € D(1). Hence ¥ € #ys.

Proof of Theorem 2.1. Let ¢ € N(U*1). It follows from Sinclair’s
theorem that there exist ax > 0 and vy € D(1) (k=1,2,3,4) such that

ok ag+ag V2u(8), 9= ot — aaths - i(asds — tathy).
Since U™ ¢ = ¢, we have
(2.2) ¢ = o Unthy — aaUpnrba + i(aalUnths — aulneha),
and, since, for k = 1,2,3,4,{Ux} is a sequence in the w*-compact set
D(1), there is a subnet {Uy;} of {Uy,} such that {Up, 5} converges weakly*
for k = 1,2,3,4. Let ¢y 1= w*-lim; Uy, ¢y for k = 1,2,3,4. It follows from
Lemima 2.2 that ¢y, € wp for £ =1,2,3,4. From this and (2.2) we obtain

$ = cudy — apda + i(cads — aada).

This completes the proof.
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COROLLARY 2.3. Let A be a complex normed algebre and U € B(A)

with Ul =1 and |U|| = 1. Then R(U — I) = \ygr,, ker ¢.
Proof Let M :=) peny Ker g, It follows from the definition of 77, that

pe NU*—-I") = R(U—I)'L for all ¢ € my. Hence R(U — 1) C M. Let
¢ € N(U* — I'*). From Theorem 2.1 we have

¢ = a1y — czdy -+ {azds — cydy)

for some oy, > 0 and ¢ € 7y (b = 1,2,3,4). Hence M C ﬂim ker ¢p C
ker ¢. Since ¢ € N(U™* — I*) is arbitrary, we must have

Mc(\ker¢:de NU*~I"} =+N({U* - I")=R{U-1D).
The result follows.

3. Some properties of L-limits. We consider the following condition:

(%) lim L™{a,}=0 forall {an} € ¢,

T—r 00

where ¢g is the space of all null sequences. If | L|| = 1, it is clear that the
condition («) is equivalent to

lim L™ep =0 in£* forall k &€ Ng.

m—0Q
Clearly, condition (%) is satisfied if ¢g C ker L. But, in general, an operator
L which satisfies condition (*) need not have the property ¢p C ker L. For

instance, (I + &) and & satisfy (%) but their kernels do not contain cp. A
consequence of condition (x) is that

Flan} = (I')"F{ay} = FL™an} = lm FL™{a,}
= F lim L™{a,} =0

T3 03
for all F € wr, and {a,} € ¢.

Let K := {L € B{{®): L1 = 1, ||L]| = 1, and L satisfies (*)}. Some
useful basic properties of the L-limit are as follows.

ProroSITION 3.1. Let L € K and let {z,} be a bounded sequence in
normed linear space X. Then

(a) If zp, - © weakly, then LJimz, = 2.

(b) If {mn} has an L-limit, then it is unique.

(¢) f f e X* and Llimz, = z, then L-lim f(z,) = f(z).

(d) If L-limz,, = =, then ||z|| < limsup ||z

(e) If {yn} is a bounded sequence in X, and L-limy, =y and L-lim z, =
x for some y € X, then
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ag + by = L-lim(az, -+ by,).

(f) If L-limz, = ¢ and Llimy, =y, then Llim(z,,,u,) = (2, ), where
both (Zn, ¥n) and (z,y) are in X § X.

(g) If L-imz, =z and T € B(X), then LYim Tz, = Tz.

Proof (a) If f € X* and w-limp— o0 T = z, then lim,_, oo {f, Tn — 2) =
0. Therefore we have for 7 € my,

F{{f,an)} = F{{f,zn — 2)} + F{{f,x)} = 0+ (F, 2).
This proves L-lim z, = 2. (b)-(e) follow from the definition of L-limit and

(f) follows from (X @ X)* = X* ¢ X* If L-limz, = z and T € B(X}, then
for I' € wy, and f € X* we have

F{{f, Tza)} = F{{T"f,20)} = (T f, ) = {f, Tz).
Therefore L-lim Txy, = Tx. This proves (g).

Using Corollary 2.3 we now prove the following theorem.

THEOREM 3.2. Let L € B(£%) with L1 =1 and ||Lj| = 1. Let {z.} be a
bounded sequence in a normed linear space X. Then

(a) L-lima,, = z if and only if {{f,&n ~z)} € R(L ~I) for all f € X*.
(b} If L-tim z,, = z, then z € To{zx : k > 0},
{¢) If, in addition, L satisfies the condition (x), i.e. L € K, then
L-lim z, = o implies 2 € T0{zx 1 k > n} for alln > 0.
(d) If L = ¥ for some mapping v : No — Ny then ¢-lim @, = z if and
only if
we
w;&i_r)nm P 2 Byk(ny = uniformly in n.
In particular, if I = &, where o{n) = n+ 1 for n = 0,1,2,..., then
oim oy, = o if and only if
hiz]
ane 1§ —— = 3 ly n n.
ww%ljnw e kgomﬂ_n z  uniformly in

Proof. We show (a). Since L*(1) = 1 and [|L¥]| = 1, L* can be rep-

resented as an infinite matrix (bg-“)) such that 3 37, bg“) =1 for all 4. Let
oo

{wn} = (05){wn} for kb € No. Then yin = 335%, b € So{a b 2 0,
k € Ny. We have
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L-limz, =z
< F{{fizp-z)}=0forall fe X* and F € =,
& {(fizn —2)} € R{L 1) for all f € X* (by Corollary 2. 3)

1 Ic oo *
@&@MWZL (fyzn —2)} = 0in £ for all f € X

@W}Enm{<f,m+129kn>} (f,z) in £ for all fe X

This means z = WLy, 00 m Zk:o Yre uniformly in n and hence ¢ &
to{zy : k£ > 0}. When L = 1:5 for some mapping 9 : Ny — Ny we have
Ymn = Tym(n). This proves (a), (b), and {d).

We show (c). Let m be any positive integer. We define

_Jzm—a, fn<m,
“= 1o iz m+l
Since {yn} is a null sequence, we must have L-lim yn = 0. It follows from
Proposition 3.1{e) that L-lim(z, + y,) = z. It follows from part (b) that
T €T0{Tn + Yn i 0 > 0} =To{z, : 2 > m},

This proves (c) and completes the proof.

COROLLARY 3.3. Let {®,} be o bounded sequence in a normed linear
space X. If y = o-lima,, then y = gdim -ﬁ-}ﬁ P T

Proof Let y, = n+1 Zk q %k It follows from Theorem 3. 2{d) that
Yn —y weakly as n — co. Hence o-limy, = y by Proposition 3.1(a).

An infinite matrix R = (a;;) is said to be an R-matriz (ses 5, p. 222])
if it satisfies the following conditions:

(i) 3720 asj converges for all § = 0, 17 -.-and 3770 a4 0 a5 § — oo
(ii) @5 —~0as i — oo for j =0,1,.

THEOREM 3.4. Let X be a Banach space. Then the following statements
are equsvalent:
(a) X is reflexive.

(b} For every bounded sequence {zn} in X there is an L € K such that
L-lim z,, exists.

(c) For every bounded sequence {x,.} in X there is an R-matriz R = (rij)
such that {30220 rijz;} converges weakly as i — oo.

Proof The equivalence of (a) and (c) is known (see [4], [5, Proposi-
tion 19.6]).
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(a)=-(b). Let {z,} be a bounded sequence in X. Since X is reflexive,
any closed ball of X is weakly compact. Hence it follows from the Eberlein—
Shmul’yan theorem that {z,} has a weakly convergent subsequence {@n, },
say x = w-limy_, o &y, . We may assume that ng > kforallk=0,1,... Let
(k) = ny for k € Ng. Then /1 = 1, ||| = 1, and ¢ satisfies the condition
(*). Since '4,’()\ = (ax,;) with agj = byy,;, we have for f € X*,

BHitzt = ({53 bymss )} = (s}

=0
Since w-lmy_ oo Ty(r) = w-liMp o0 Tn, = £, by Proposition 3.1(a) we have
for f € X* and F €Ty,

F{(f, mn)} = F{${<f:$n>}} = F{(f: m'l,b(n.))} = (f': 93)

Therefore L-limz, = z. )
(b)=(c). Let L € K. Wiite L* = (b)) for k = 0,1,... Then L*1 = 1

and ||L*|| = 1 for all k > 0. From this fact, it is clear that bj; () > 0 for all

4,5,k =0,1,..., and 3 7 _UbEJ" = 1forall i,k =0,1,. Smce L satisfies
the condition (x}, we have for every fixed j =0,1,.

1 ™ * .
- A — L —0 £ a8 m — 0.
(1.4) Mt . bm m+1 Z e; in

Let rmy = m—]—lEm bk) for m,j =0,1,..., and let R = (ry,;). Then R is

an R-matrix. Indeed, since ¥ 5o pany U“) =1, we have for m =0,1,...,

S L s - T
1 "
m-{—lz_:

and, by (1.4),

0<rmj_.” ZLk

Now suppose {z,} is a bounded sequence in X such that z = L-limx,
exists. We show the weak convergence of the sequence {3777 7njz;}. It

follows from Theorern 3.2(a) that {{f, zn — )} € R(L — I} for all f € X*,
which is equivalent to :

lim —1—ZL’“{ f,zn—:c)} 0 n £ for all f ¢ X*.
m—eo 140

as m — oo for all j.
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Since
kg ~ by
m+1ZL ey ={ (1 Dy Lo 2) - (f9) .
we see that

wn}}}}lwz — + T Z b(k)mj =z uniformly in n.

In particular, for n =1 we have

o
z=w km Z m+ 1 Z by e = wlim g; T

This proves (c) and completes the proof.

Remark. It follows from Theorems 3.2 and 3.4 that if {2,,} is a bounded
sequence in a reflexive Banach space, then

{(feate |JREI-TJeC1)
LeK
for all f € X*. In particular, by setting X = C we obtain
2= JREL~DaC-1)
LeK

ProroOSITION 3.5, Let L € K and let X and Y be two normed linear
spaces.

(i) A linear operator A: X D D(A) — Y is closed if and only if the graph
G(A) of A is closed with respect to L-limit, i.e. whenever {z,} C D{A4) and
L-lim(zy, Az,) = (z,y) for some z € X, y €Y, one has ¢ € D{A) and
y = Az.

(ii) For a linear operator A : X — Y, the following statements are
equivalent:

(a) A is bounded.

(b) L-lim Az, = 0 whenever {z,} is o sequence in X such thot
L-lim x,, = 0.

Moreover, when X is complete, we also have the next equivelent condition:

(¢) L-lim Az, = 0 whenever {z,} is a sequence in X such that
Llimz, =0 and such that {Az,} is bounded.

Proof. (i) To show the sufficiency, let {(zn,Az,)} be a sequence in
G(A) such that

s-nli_rbxgo(mn,Amn} = (z,y) for some z,y € X.
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Then, by Proposition 3.1(a}, we have L-lim(z,,, Az, ) = (z,y), which implies
that (z,y) € G(A) and Az = y. Therefore G(A) is closed.
For the converse, let {(z,, Az,)} be a sequence in G(A4) such that

L-Yim (z,, Az,) = (z,y) for some z,y € X.
T— 00
It follows from Theorem 3.2(b) and the closedness of 4 that
(z,y) € W{(zn, Azn) 1 n > 0} C G(4) = G(A).

Therefore we have z € D(A) and Az =y.

(11} (a)=(b) follows from Proposition 3.1(g). To show (b)=-(a), we sup-
pose that A is unbounded. Then there is a sequence {u,} in X such that
llunll = 1 for all m == 0,1,... and lim, .o [[Aun| = co. We may assume
Auy, 0 for all n. Let z, = |Aun|~Y?u, for n = 0,1,... Then ||z,| — 0
and ||Az,|| — co. But, by Proposition 3.1(a), we have L-lim y,, = 0, and 50 it
follows from the assumption that {Az,} is bounded. This is a contradiction.

(b)=>(c) is obvious. To show (c)=>(a)} for the case where X is complete, it
suffices to show that A is closed. For this we use {i}. Let {z.} be a sequence
in X such that L-limp, 0 {%n, Az,) = (2,y) for some z € X and y € Y.
Then L-lim{z, — z, A(z, — z)) = (0,y — Az). By (c), we have y — Ax = 0.
Hence A is cloged.

4. An abstract ergodic theorem for L-limit. Let T be a power
bounded linear operator on a Banach space and let Tj, = 37 3 n o 7%
The well-known Cesaro ergodic theorem (see e.g. [6], [12], [14]) states that
g-lim T,z = y if and only if y is the weak cluster point of {T,x}, and that the
map P : x — lim T,z defines a linear projection with range R{P) = N(T—I)
and null space N(P) = R(T — I}. This is a specialization of the abstract
mean ergodic theorem established in [12, Theorem 1.1]. In this section we
prove the following version of that theorem for the L-limit.

THROREM 4.1. Let {A,} be a sequnce of bounded operators on a normed
linear space X and let A be o closed operator on X. Assume that L € B(£%°)
satisfies L1 =1, |[L]| = 1, and the following conditions:

(L1 ||Anll € M for all n > 0 and some constant M > 0;

(L2) Ifz e N(A) then Llim Apz = z;

(L3) R(A,-I)C R(A R(AY for all n;

(L4)  R(A,) c D(A), Llim AAnz =0 for allz € X, and L-lim A, Az =0
for all z € D(A4).

Let Q be the operator defined by Qx := L-lim A,z for those z for which the
limit exists. Then Q is a bounded, closed linear projection with ||Q]| <M,
R(Q) = N(A), N(Q) = R(4), and D(Q) = N(A) & R(4).
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Proofl. |Q|| < M follows from (L1} and Proposition 3.1(d). Next, we
show that Q is closed. Let {x} be a sequence in D(Q) such that

s;n]im (Zm, @zm) = (z,y) Tor some z,y € X.
Then for F € w7, and f € X™ we have

|F{{f, Ane)} = (£;0) = [F{{f, An(z — 2 ) } + F{{f, Anzm)} ~ {f, )]
SIEW- 7] - sup lAn] - llz = zmli + [(f, Q@m — )]

S MIFI - Nz =~ @all + 1F] - Q2m — v

-0 asm — oo.

Therefore we have © € D(Q) and y = Q.

That N(A) C R(Q) and Q|na) = I|nia) follows from (L2). R(Q) C
N(A) follows from the first part of (L4), Proposition 3.5(i), and the as-
sumption that A4 is closed. Hence Q* = Q and R(Q) = N ( ). The sec-
ond part of (L4) and the closedness of @ imply that R(A) C N(@). Let
z € N(Q). It follows from (L3) that L-lim(A, — I)z = -z € R{A4). This
proves N (@) = R(A). The proof is complete.

ProrosITION 4.2. Let {A,} be a sequence of operators on a normed
linear space X and let A be a closed opemtor on X. Suppose {A,} and A
sa,t'r.sf'y the conditions (L1)—(14) for L = . Let T, = e 1 Yot Aks 1 =
0,1,... Then for given z,y € X the following statements are equivalent:

(2) olimA,z=y.

(b) clmTyz =y.

(c) There is a subsequence {Ty,} of {10} such that w-lim T, z = v,

(¢') There is a subsequence {Ty,,} of {T} such thot o-lim T, @ = v.

(d) There is a subsequence {Tn,} of {T,} such that

w-lim IZTn7$_J

m—oe 1 -

(d') There is a subsequence {T},,} of {T} such that

_1i -
“mﬂ;mHZme y.

Proof. (a)=+(b) follows from Corollary 3.3, (a)=(c) and (b)=(d) follow
from Theorem 3.2(c). (b)=>(c’), (c)=>(c'), and (d)=>(d’) are obvious. So, it
remains to show (c’)=>(a} and (d')=>(a).
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{(¢"y=>(a). Suppose {T},, } is a subsequence of {T},} such that o-lim Ty, =
= y. Since
1 & s
Tn, — - _
(T =Dz =~y ?:;(AJ Nz € R(A),
it follows from Theorem 3.2(a) that ¥ — z € R(A). Since o-lim Ad,z = 0,
it follows from Theorem 3.2(c) that w-lim AT,z = 0. Hence we must have
w-im AT, ¢ = 0 and hence o-lim AT,z = 0 by Proposition 3.1(a). It
follows from the closedness of A that y € N(A). Therefore we have z =
(z—y)+yeR(A)® N(A) = D(Q) and

o-limApx = Qz = Qy =y.

Here () is the operator as defined in Theorem 4.1. This proves (a).
Finally, we show that (d')=-(a). Since o-limAA,z = 0, we have
w-lim AT, & = 0. Hence w-limp—,oq AT}, % =0 and

, 1 <

So o-lim wdes Y4t AT @ = 0 by Proposition 3.1(a). It follows from the
closedness of A that y € N(A). Since 727 271 Tn,z ~x € R(A), we must
have y—x € R(A) (by Theorem 3.2(a)). Therefore we have z = (2 —y)+y €
R(A) @ N(A) = D(Q) and

o-lim A,z = Qx = Qy =1y.

This proves (a) and completes the proof.

If T is a power bounded operator, it is clear that (L1)—(13) hoid for
A=T-Iand Ay, =T". I{ F & m, then F is a Banach limit on £*° so that

F{{f, Adna)} = F{(},(T"" — T™)z)}
= F{{f,T"" 0)} = F{{f,T"2)} =0
for » € X and f € X*. Therefore (L4) also holds. Hence from Theorem 4.1

and Proposition 4.2 we can deduce the following mean ergodic theorem for
o-limit.

COROLLARY 4.3. Let T be o power bounded operator on & normed linear
space X and let Q be the linear operator defined by Qz = o-imT"z for
those = for which the o-limit exists. Then Q 15 o bounded, closed linear
projection with |Q| < limsup |[T™||, R(Q) = N(T —1I), N(Q} = R(T - 1),
and D(Q) = N(T'—~ I) & R(T — I). Moreover, the following statements are
equivalent:

(a}) o-lim Tz = y.
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(b) o-lim 35 3% TVo =y.
(c) There is a subsequence {ng} of {n} such that

| R
i Tig=y.

(¢') There is a subsequence {ny} of {n} such that

RS
-1 o ws yy.
T e

=0
(d) There is a subsequence {ng} of {n} such that

1 & 1 &
-li iy
v Tl i e
k=0 j=0
(d') There is a subsequence {ny} of {n} such that

IR <
-1i TV =q.
Umﬁnooerlk_onkJrljZ:% =y

Remark. It follows from Corollary 4.3 and the classical Cesaro ergodic
theorem that the two projections P and @ coincide, and so we have the
equivalence relations:

o-lm Ty =y

. ‘ 1
<y is a weak cluster point of{n—HgoTJm:n=0,1,...}

T
Selim —— Y TV =
=0
1 n
@ olim —— % g =y,
n—oo 1L+ 1 ar
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