M. Vuorinen

230

- cm
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973.
- [P1] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 99-111.
- [P2] —, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 343-354.
- [P3] —, The maximal value of the function $[0,1] \ni r \mapsto \Phi_K^2(\sqrt{r}) r$, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 49–55.
- [QVV] S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl., to appear.
- [SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 87-110.
- [S1] L.-C. Shen, On some cubic modular identities, Proc. Amer. Math. Soc. 119 (1993), 203-208.
- [S2] —, On some modular equations of degree 5, ibid. 123 (1995), 1521-1526.
- [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419.

Department of Mathematics University of Helsinki P.O. Box 4 (Yliopistonk. 5) FIN-00014 Helsinki Finland E-mail: yuorinen@csc.fi

Received March 20, 1995
Revised version September 11, 1996
(3438)

STUDIA MATHEMATICA 121 (3) (1996)

Complex Unconditional Metric Approximation Property for $\mathcal{C}_{\Lambda}(\mathbb{T})$ spaces

by

DANIEL LI (Paris)

Abstract. We study the Complex Unconditional Metric Approximation Property for translation invariant spaces $\mathcal{C}_{\Lambda}(\mathbb{T})$ of continuous functions on the circle group. We show that although some "tiny" (Sidon) sets do not have this property, there are "big" sets Λ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP); though these sets are such that $L_{\Lambda}^{\infty}(\mathbb{T})$ contains functions which are not continuous, we show that there is a linear invariant lifting from these $L_{\Lambda}^{\infty}(\mathbb{T})$ spaces into the Baire class 1 functions.

Introduction. The translation invariant subspaces of continuous functions on \mathbb{T} all have the Metric Approximation Property (MAP). We study in this paper the spaces $\mathcal{C}_A(\mathbb{T})$ which satisfy a stronger approximation property, the Complex Unconditional Metric Approximation Property (C-UMAP).

The (Real) Unconditional Approximation Property (UMAP) was introduced in 1989 by P. Casazza and N. Kalton as an extreme possibility of approximation ([3], Th. 3.5), and they showed ([3], Th. 3.8) that it actually coincides for a separable Banach space X with the existence for every $\varepsilon > 0$ of an unconditional expansion of the identity of X with constant $1+\varepsilon$, which means, by a result of A. Pełczyński and P. Wojtaszczyk ([21], Th. 1.1) that for every $\varepsilon > 0$, X may be isometrically embedded in a Banach space Y with a $(1+\varepsilon)$ -FDD for which there is a projection $P: Y \to X$ with $\|P\| \le 1+\varepsilon$. Its complex version was defined and studied in ([7], §§8 and 9).

To begin with, we construct subsets $\Lambda \subseteq \mathbb{Z}$ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has $(\mathbb{C}\text{-UMAP})$. They are of two kinds: the first contain arbitrarily long arithmetical progressions, so that they are not $\Lambda(1)$ -sets, but their pace tends to infinity; the second are Sidon sets, but have a pace which does not tend to infinity.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B20, 43A46, 41A65: Secondary 42A10, 42A55, 43A25.

Key words and phrases: Unconditional Metric Approximation Property, translation invariant spaces of continuous functions, Rosenthal set, Riesz set, linear invariant lifting.

Next, we show that the (C-UMAP) can always be achieved by convolution operators. This implies that if \mathcal{C}_{Λ} has (C-UMAP), then so do \mathcal{C}_{Λ_0} for all $\Lambda_0 \subseteq \Lambda$, as well as all the spaces L_A^p , $1 \le p < \infty$.

When \mathcal{C}_{Λ} has (C-UMAP), we remark that Λ is a Rosenthal set if (and only if) \mathcal{C}_{Λ} contains no subspace isomorphic to c_0 . We show that this is not always the case: \mathcal{C}_{Λ} can have (C-UMAP) when Λ is a Hilbert set, and then \mathcal{C}_{Λ} has subspaces isomorphic to c_0 . However, we show that Λ cannot contain any IP-set, nor the sum of two infinite sets. We also show that the uniform density of Λ must be less than or equal to 1/2, though it is likely that it is null. Finally, we show that for such a set there exists a linear invariant lifting from $L^{\infty}_{\Lambda}(\mathbb{T})$ into the Baire class 1 functions.

The notation is classical. T is the quotient $\mathbb{R}/2\pi\mathbb{Z}$ and for every $n \in \mathbb{Z}$ we denote by e_n the character defined by $e_n(x) = e^{inx}$ for $x \in \mathbb{T}$.

We recall that a complex (separable) Banach space X has (\mathbb{C} -UMAP) if there is a sequence of finite rank operators $R_n: X \to X$ such that

$$\|R_n x - x\| \xrightarrow[n \to \infty]{} 0 \text{ for all } x \in X, \quad \sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)R_n\| \xrightarrow[n \to \infty]{} 1.$$

When λ belongs only to \mathbb{R} , instead of \mathbb{C} , X is said to have (real) (UMAP).

I thank J. Chaumat, E. Fouvry, G. Godefroy, F. Lust-Piquard and G. Pisier for instructive conversations.

I. Construction of sets Λ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP). In this section, we give some examples of subsets $\Lambda \subseteq \mathbb{Z}$ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has $(\mathbb{C}\text{-UMAP}).$

It is worth mentioning that there is no Sidon subset $\Lambda \subseteq \mathbb{Z}$ with constant 1 whenever card $\Lambda > 3$ ([2], p. 532).

LEMMA 1. For every finite subset $F \subseteq \mathbb{N}$ and every $\varepsilon > 0$, there are L intervals I_1, \ldots, I_L of length 1/L such that for each finite subset $G \subset \mathbb{N}$ there is an integer $n > \max F$ such that for every $f \in \mathcal{C}_F(\mathbb{T})$ and every $g \in \mathcal{C}_G(\mathbb{T})$, we have

$$||f + e_n g||_{\mathcal{C}(\mathbb{T})} \ge \frac{1}{1+\varepsilon} \sup_{1 \le l \le L} (||f||_{\mathcal{C}(I_l)} + ||g||_{\mathcal{C}(I_l)}).$$

Proof. We may and do suppose that $\varepsilon \leq 3/4$.

Let $\pi_F: \mathcal{C}(\mathbb{T}) \to \mathcal{C}(\mathbb{T})$ be the projection which associates with $f \in \mathcal{C}(\mathbb{T})$ the trigonometric polynomial

$$\pi_F(f) = \sum_{k \in F} \widehat{f}(k) e_k.$$

Note that $\pi_F(f+e_ng)=f$ for every $f\in\mathcal{C}_F(\mathbb{T})$ and every $g\in\mathcal{C}_G(\mathbb{T})$ whenever $n > \max F$ and $G \subseteq \mathbb{N}$. Since $\mathcal{C}_F(\mathbb{T})$ is finite-dimensional, there



exists a number $\varrho > 0$ such that, for every $f \in \mathcal{C}_F(\mathbb{T})$, we have:

$$|x-y| \le \varrho \Rightarrow |f(x)-f(y)| \le \frac{\varepsilon}{8\|\pi_F\|} \|f\|_{\infty}.$$

We then divide \mathbb{T} in L intervals I_1, \ldots, I_L of length $1/L < \rho$.

SUBLEMMA. Let $M = (8/\varepsilon)(1 + ||\pi_F||)$. Then there is an integer n > 1 $\max F$ such that for each $h \in M \cdot B_{\mathcal{C}_{G}(\mathbb{T})}$ and $1 \leq l \leq L$, we have

$$||1 + e_n h||_{\mathcal{C}(I_l)} \ge (1 - \varepsilon/2)(||h||_{\mathcal{C}(I_l)} + 1).$$

Proof. Choose an $(\varepsilon/8)$ -net h_1, \ldots, h_K of $M \cdot B_{\mathcal{C}_G}(\mathbb{T})$. We have the following:

CLAIM. Given p non-void open intervals L_1, \ldots, L_p , there exist $y_q \in$ $L_q, 1 \leq q \leq p$, such that $1, y_1, \ldots, y_p$ are \mathbb{Q} -independent.

Indeed, if $1, t_1, \ldots, t_n$ are Q-independent real numbers, we can choose $r_q \in \left(\frac{1}{t_a}L_q\right) \cap \mathbb{Q}^*, \ 1 \leq q \leq p$, and then the numbers $y_q = r_q t_q$ are suitable.

We can then choose $y_1^l, \ldots, y_k^l \in I_l$ such that

$$|h_k(y_k^l)| \ge (1 - \varepsilon/8) ||h_k||_{\mathcal{C}(I_l)}$$

and such that the set $\{1\} \cup \{y_k^l : 1 \le l \le L, 1 \le k \le K\}$ is \mathbb{Q} -independent. Then Kronecker's theorem ([10], Th. 442) enables us to find an integer n > $\max F$ such that, for $1 \le l \le L$ and $1 \le k \le K$, we have

$$\left| e^{iny_k^l} - \frac{|h_k(y_k^l)|}{h_k(y_k^l)} \right| \le \frac{\varepsilon}{8}.$$

Then $|e^{iny_k^l}h_k(y_k^l)-|h_k(y_k^l)||\leq \frac{\varepsilon}{8}|h_k(y_k^l)|$, and so

$$\begin{split} \|1 + e_n h_k\|_{\mathcal{C}(I_l)} & \geq |1 + e^{iny_k^l} h_k(y_k^l)| \\ & \geq 1 + |h_k(y_k^l)| - |e^{iny_k^l} h_k(y_k^l) - |h_k(y_k^l)|| \\ & \geq 1 + |h_k(y_k^l)| - \frac{\varepsilon}{8} |h_k(y_k^l)| \geq 1 + \left(1 - \frac{\varepsilon}{8}\right)^2 \|h_k\|_{\mathcal{C}(I_l)}. \end{split}$$

Now, for each $h \in M \cdot B_{\mathcal{C}_{\mathcal{G}}(\mathbb{T})}$, there is an index k such that

$$||h-h_k||_{\mathcal{C}(I_k)} \leq ||h-h_k||_{\mathcal{C}(\mathbb{T})} \leq \varepsilon/8;$$

hence

$$||1 + e_n h||_{\mathcal{C}(I_l)} \ge ||1 + e_n h_k||_{\mathcal{C}(I_l)} - ||h - h_k||_{\mathcal{C}(I_l)}$$

$$\ge (1 - \varepsilon/8)^2 ||h_k||_{\mathcal{C}(I_l)} + 1 - \varepsilon/8$$

$$\ge (1 - \varepsilon/8)^2 (||h||_{\mathcal{C}(I_l)} - \varepsilon/8) + 1 - \varepsilon/8$$

$$\ge (1 - \varepsilon/8)^2 ||h||_{\mathcal{C}(I_l)} + (1 - \varepsilon/8)^3$$

$$\ge (1 - \varepsilon/2) (||h||_{\mathcal{C}(I_l)} + 1). \blacksquare$$

In the sequel we use the n given by the sublemma. Let $f \in \mathcal{C}_F(\mathbb{T})$ and $g \in \mathcal{C}_G(\mathbb{T})$, and fix $l_0 \in \{1, \ldots, L\}$ such that $\|f\|_{\mathcal{C}(I_{l_0})} + \|g\|_{\mathcal{C}(I_{l_0})} = \sup_{1 \le l \le L} (\|f\|_{\mathcal{C}(I_l)} + \|g\|_{\mathcal{C}(I_l)})$.

We have two cases.

Assume first that $\|f\|_{\mathcal{C}(I_{l_0})} \leq (\varepsilon/8) \|f + e_n g\|_{\mathcal{C}(\mathbb{T})}$. Then we observe first that since l_0 gives the maximum value, we have $\|f\|_{\mathcal{C}(I_{l_0})} + \|g\|_{\mathcal{C}(I_{l_0})} \geq \|f + e_n g\|_{\mathcal{C}(\mathbb{T})}$, and so

$$\|g\|_{\mathcal{C}(I_{l_0})} \geq \left(1 - \frac{\varepsilon}{8}\right) \|f + e_n g\|_{\mathcal{C}(\mathbb{T})} \geq \frac{2 + \varepsilon}{8} \|f + e_n g\|_{\mathcal{C}(\mathbb{T})};$$

hence

Suppose now that $||f||_{\mathcal{C}(I_{l_0})} \ge (\varepsilon/8)||f + e_n g||_{\mathcal{C}(\mathbb{T})}$. Let $x_0 \in I_{l_0}$ be such that $|f(x_0)| = ||f||_{\mathcal{C}(I_{l_0})}$. For every $x \in I_{l_0}$, we have

$$\begin{split} \|f + e_n g\|_{\mathcal{C}(\mathbb{T})} &\geq |f(x_0) + e^{inx} g(x)| - |f(x_0) - f(x)| \\ &\geq \|f\|_{\mathcal{C}(I_{l_0})} \left| 1 + e^{inx} \frac{g(x)}{f(x_0)} \right| - \frac{\varepsilon}{8 \|\pi_F\|} \|f\|_{\mathcal{C}(\mathbb{T})} \\ &\geq \|f\|_{\mathcal{C}(I_{l_0})} |1 + e^{inx} h(x)| - \frac{\varepsilon}{8} \|f + e_n g\|_{\mathcal{C}(\mathbb{T})}, \end{split}$$

where $h = \frac{1}{f(x_0)}g \in (8/\varepsilon)(1 + ||\pi_F||) \cdot B_{\mathcal{C}_G(\mathbb{T})}$, since

$$||g||_{\infty} = ||e_n g||_{\infty} = ||(\mathrm{Id} - \pi_F)(f + e_n g)||_{\infty} \le (1 + ||\pi_F||)||f + e_n g||_{\infty}.$$

The previous inequalities can be read as

$$||f + e_n g||_{\infty} \ge ||f||_{\mathcal{C}(I_{l_0})} ||1 + e_n h||_{\mathcal{C}(I_{l_0})} - \frac{\varepsilon}{8} ||f + e_n g||_{\infty},$$

and so the sublemma gives

$$\begin{split} \|f + e_n g\|_{\infty} &\geq \frac{1}{1 + \varepsilon/8} \|f\|_{\mathcal{C}(I_{l_0})} \|1 + e_n h\|_{\mathcal{C}(I_{l_0})} \\ &\geq \frac{1}{1 + \varepsilon/8} \|f\|_{\mathcal{C}(I_{l_0})} (1 - \varepsilon/2) (1 + \|h\|_{\mathcal{C}(I_{l_0})}) \\ &= \frac{1 - \varepsilon/2}{1 + \varepsilon/8} (\|f\|_{\mathcal{C}(I_{l_0})} + \|g\|_{\mathcal{C}(I_{l_0})}) \\ &\geq \frac{1}{1 + \varepsilon} (\|f\|_{\mathcal{C}(I_{l_0})} + \|g\|_{\mathcal{C}(I_{l_0})}) \\ &= \frac{1}{1 + \varepsilon} \sup_{1 < l < L} (\|f\|_{\mathcal{C}(I_l)} + \|g\|_{\mathcal{C}(I_l)}). \quad \blacksquare \end{split}$$

THEOREM 2. There exist subsets $\Lambda \subseteq \mathbb{Z}$ such that Λ contains arbitrarily long arithmetical progressions and such that $\mathcal{C}_{\Lambda}(\mathbb{T})$ has $(\mathbb{C}\text{-UMAP})$.

Remark. Then Λ is not a $\Lambda(1)$ -set ([25], Th. 4.1), that is to say, L_{Λ}^{1} is not reflexive (by [13] and [1]; see also [22]).

In order to prove this theorem, we need the following lemma.

LEMMA 3. For every $\varepsilon > 0$ and every finite set $F \subseteq \mathbb{N}$, there is an $L \ge 1$ such that for every finite set $G \subseteq L\mathbb{N}^*$, there is $n > \max F$ such that

$$||f + e_n g||_{\infty} \ge \frac{1}{1 + \varepsilon} (||f||_{\infty} + ||g||_{\infty})$$

for every $f \in \mathcal{C}_F$ and every $g \in \mathcal{C}_G$.

Proof. This follows from Lemma 1, since $G \subseteq L\mathbb{N}^*$ implies that every $g \in \mathcal{C}_G(\mathbb{T})$ has period 1/L and so $\|g\|_{\infty} = \|g\|_{\mathcal{C}(I_l)}$ for every $l \in \{1, \ldots, L\}$; in particular, Lemma 3 is obtained by considering l_0 such that $\|f\|_{\infty} = \|f\|_{\mathcal{C}(I_{l_0})}$.

Proof of Theorem 2. The construction of Λ will be done by induction. First, we apply Lemma 3 with $\varepsilon = \varepsilon_1$ and $F = \{0\}$; we find a suitable $L_1 \geq 1$ and with $G = \{L_1\}$, we now find an $n_1 \geq 1$; we set $\Lambda_1 = \{0, L_1 + n_1\}$.

Suppose now that we have constructed a set $\Lambda_k = H_0 \cup ... \cup H_k \subseteq \mathbb{N}$ where $H_0 = \{0\}$ and $H_j = n_j + \{L_j, 2L_j, ..., jL_j\}, 1 \leq j \leq k$, are disjoint sets such that for $1 \leq j \leq k$,

$$(1) \qquad \Big\| \sum_{l=0}^{k} f_l \Big\|_{\infty} \ge \frac{1}{(1+\varepsilon_j)\dots(1+\varepsilon_k)} \Big(\Big\| \sum_{l=0}^{j-1} f_l \Big\|_{\infty} + \sum_{l=j}^{k} \|f_l\|_{\infty} \Big)$$

where $f_l \in \mathcal{C}_{H_l}$, $0 \le l \le k$, and where $\varepsilon_1, \ldots, \varepsilon_k > 0$ have been chosen in

such a way that

$$\prod_{l=j}^{k} (1+\varepsilon_l) \le 1 + \left(1 + \ldots + \frac{1}{2^{k-j-1}}\right) \varepsilon_j, \quad 1 \le j \le k-1.$$

We apply Lemma 3 again with $\varepsilon = \varepsilon_{k+1}$ chosen such that

(2)
$$\prod_{l=j}^{k+1} (1+\varepsilon_l) \le 1 + \left(1 + \ldots + \frac{1}{2^{k-j}}\right) \varepsilon_j, \quad 1 \le j \le k,$$

and with $F = \Lambda_k$; we find L_{k+1} and, taking

$$G = G_{k+1} = \{L_{k+1}, 2L_{k+1}, \dots, (k+1)L_{k+1}\},\$$

we obtain $n_{k+1} > \max \Lambda_k$. We then set

$$\Lambda_{k+1} = \Lambda_k \cup (n_{k+1} + G_{k+1}).$$

The formulas (1) and (2) show that

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{A_j}\|_{\mathcal{L}(\mathcal{C}_{A_{k+1}})} \le 1 + \left(1 + \ldots + \frac{1}{2^{k-j}}\right)\varepsilon_j.$$

Now $\Lambda = \bigcup_{k \geq 1} \Lambda_k$ is a set such that $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP) since

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{\Lambda_j}\|_{\mathcal{L}(\mathcal{C}_{\Lambda})} \le 1 + 2\varepsilon_j. \blacksquare$$

Remark. This construction, though different, follows the same idea as H. P. Rosenthal's ([24]). We obtain a Rosenthal set of " ℓ_1 -sum" type.

THEOREM 4. For every finite set $F_0 \subseteq \mathbb{N}$, there is an increasing sequence $(n_k)_{k\geq 0}$ of integers such that $\mathcal{C}_{\Lambda}(\mathbb{T})$ has $(\mathbb{C}\text{-UMAP})$ with $\Lambda = \bigcup_{k\geq 0} (n_k + F_0)$. In particular, the pace of Λ does not tend to infinity.

Proof. We first remark that for every $u, v \in \mathcal{C}(\mathbb{T})$, we have

$$\sup_{|\lambda|=1}\|u+\lambda v\|_{\infty}=\sup_{x\in\mathbb{T}}(|u(x)|+|v(x)|).$$

Starting from $n_0 = 0$, we apply Lemma 1 with $F = G = F_0$. We obtain an integer $n_1 > \max F_0 = N_0$ such that for $f, g \in \mathcal{C}_{F_0}(\mathbb{T})$ and $|\lambda| = 1$, we have

$$||-\lambda f + e_{n_1}g||_{\infty} \le (1+\varepsilon_1)||f + e_{n_1}g||_{\infty}.$$

Hence, on setting $\Lambda_0 = F_0$ and $\Lambda_1 = \Lambda_0 \cup (n_1 + \Lambda_0)$, we have

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{\Lambda_0}\|_{\mathcal{L}(C_{\Lambda_1})} \le 1 + \varepsilon_1.$$

Suppose now we have already constructed integers n_1, \ldots, n_k such that

$$N_0 + n_{j-1} < n_j, \quad 1 \le j \le k,$$

and $\varepsilon_1 > \ldots > \varepsilon_k > 0$ such that

$$\prod_{l=j}^{k} (1+\varepsilon_l) \le 1 + \left(1 + \ldots + \frac{1}{2^{k-j-1}}\right) \varepsilon_j$$

and such that, for $1 \leq j \leq k$, we have

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{A_{j-1}}\|_{\mathcal{L}(\mathcal{C}_{A_k})} \le (1+\varepsilon_j)\dots(1+\varepsilon_k),$$

where we have set $\Lambda_k = \bigcup_{i=0}^k (n_i + F_0)$.

We now apply Lemma 1 with $F = \Lambda_k$ and $G = F_0$, and $\varepsilon = \varepsilon_{k+1} > 0$ chosen in such a way that $\varepsilon_{k+1} < \varepsilon_k$ and such that for 1 < i < k,

$$\left(1+\varepsilon_j+\frac{\varepsilon_j}{2}+\ldots+\frac{\varepsilon_j}{2^{k-j-1}}\right)(1+\varepsilon_{k+1})\leq 1+\varepsilon_j+\frac{\varepsilon_j}{2}+\ldots+\frac{\varepsilon_j}{2^{k-j-1}}+\frac{\varepsilon_j}{2^{k-j}}.$$

We then find an integer $n_{k+1} > \max \Lambda_k = N_0 + n_k$ and L intervals I_1, \ldots, I_L of length 1/L such that

$$\|(u+v)+w\|_{\infty} \geq \frac{1}{1+arepsilon_{k+1}} \sup_{1 < l < L} (\|u+v\|_{\mathcal{C}(I_{l})} + \|w\|_{\mathcal{C}(I_{l})})$$

for $u \in \mathcal{C}_{\Lambda_j}$, $v \in \mathcal{C}_{\Lambda_k \setminus \Lambda_j}$ and $w \in \mathcal{C}_{n_{k+1} + F_0}$

In particular, we have

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{\Lambda_k}\|_{\mathcal{L}(\mathcal{C}_{\Lambda_{k+1}})} \leq (1+\varepsilon_j)\dots(1+\varepsilon_{k+1}).$$

Writing now $w = e_{n_{k+1}} u_1$ with $u_1 \in \mathcal{C}_{F_0}(\mathbb{T})$, we have

hence

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{\Lambda_j}\|_{\mathcal{L}(\mathcal{C}_{\Lambda_{k+1}})} \le (1+\varepsilon_j)\dots(1+\varepsilon_{k+1}).$$

Setting now

$$\Lambda = \bigcup_{k \ge 0} \Lambda_k = \bigcup_{k \ge 0} (n_k + F_0)$$

we obviously have for all $j \geq 0$,

$$\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\pi_{\Lambda_j}\|_{\mathcal{L}(C_{\Lambda})} \le 1 + 2\varepsilon_j.$$

Since $\lim_{j\to\infty} \varepsilon_j=0$, the space $\mathcal{C}_A(\mathbb{T})$ does have (C-UMAP). lacksquare

Remark. The proof shows that $\{n_k\}_{k\geq 1}$ is a Sidon set with constant $1+2\varepsilon_1$. Since F_0 is a finite set, Drury's theorem implies that the above constructed set Λ is itself a Sidon set, as a finite union of Sidon sets.

II. Properties implied by (C-UMAP) for $\mathcal{C}_A(\mathbb{T})$ spaces. Most of the properties below do not depend on the particular nature of the group \mathbb{T} , so we state them in the abstract setting of a compact metrizable abelian group G.

First, we are going to see that the approximation can be achieved with convolution operators.

LEMMA 5. If $C_{\Lambda}(G)$ has (C-UMAP), there exists a sequence of finite rank convolution operators $C_n : C_{\Lambda}(G) \to C_{\Lambda}(G)$ such that

$$||f - C_n f||_{\infty} \xrightarrow[n \to \infty]{} 0 \quad and \quad \sup_{|\lambda|=1} ||\operatorname{Id} - (1+\lambda)C_n|| \xrightarrow[n \to \infty]{} 1.$$

Proof. Let $R_n: \mathcal{C}_{\Lambda} \to \mathcal{C}_{\Lambda}$ be finite rank operators such that $||R_n f - f||_{\infty} \to 0$ for every $f \in \mathcal{C}_{\Lambda}(G)$ and $\sup_{|\lambda|=1} ||\operatorname{Id} - (1+\lambda)R_n|| \to 1$ as $n \to \infty$.

Let $(K_l)_{l\geq 1}$ be an approximate unit, and $S_l: C_A \to C_A$ be the convolution operator associated with K_l . Since R_n has finite rank, by using a $2^{-(n+2)}$ -net in $R_n(B_{C_A})$, we can find an index l_n such that

$$||R_n - S_{l_n} R_n|| \le 2^{-n}.$$

The operator $T_n = S_{l_n} R_n$ satisfies

$$||f - T_n f||_{\infty} \le ||f - R_n f||_{\infty} + ||R_n f - S_{l_n} R_n f||_{\infty} \underset{n \to \infty}{\longrightarrow} 0$$

and

$$\|\operatorname{Id} - (1+\lambda)T_n\| \le \|\operatorname{Id} - (1+\lambda)R_n\| + 2\|R_n - S_{l_n}R_n\|$$

$$\le \|\operatorname{Id} - (1+\lambda)R_n\| + 2^{-n+1},$$

so that $\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)T_n\| \to 1$ as $n \to \infty$. Moreover, $T_n(\mathcal{C}_{\Lambda}) \subseteq \mathcal{P}_{\Lambda}$ (where \mathcal{P}_{Λ} is the set of trigonometric polynomials with spectrum in Λ).

Now, set

$$\widetilde{T}_n(f) = \int\limits_G [T_n(f_x)]_{-x} \, dx.$$

Since $T_n(\mathcal{C}_A)$ is finite-dimensional and $T_n(\mathcal{C}_A) \subseteq \mathcal{P}_A$, there is a finite collection of characters $A_n = \{\gamma_1, \dots, \gamma_N\}$ such that $T_n(\mathcal{C}_A) \subseteq \mathcal{P}_{A_n}$, so that $\widetilde{T}_n(\mathcal{C}_A) \subseteq \mathcal{P}_{A_n}$ is also finite-dimensional. Moreover, $\|\widetilde{T}_n f - f\|_{\infty} \to 0$ for each $f \in \mathcal{C}_A$, and $\sup_{|\lambda|=1} \|\operatorname{Id} - (1+\lambda)\widetilde{T}_n\| \to 1$ as $n \to \infty$. A direct computation gives that $C_n = \widetilde{T}_n$ is the convolution operator associated with the trigonometric polynomial $P_n = \sum_{\gamma \in A_n} \widehat{T}_n(\gamma)(\gamma)\gamma$.

COROLLARY 6. If $\mathcal{C}_{\Lambda}(G)$ has (C-UMAP), then so does $\mathcal{C}_{\Lambda_0}(G)$ for every $\Lambda_0 \subset \Lambda$.

We now give some consequences of this result.

THEOREM 7. If $C_{\Lambda}(G)$ has (C-UMAP), then so do all the spaces $L_{\Lambda}^{p}(G)$, $1 \leq p < \infty$.

Proof. That follows from Lemma 5 and from the following observation. Let P be a trigonometric polynomial, and C be the associated convolution operator. Then we have

$$(\forall g \in \mathcal{P}_A) \quad \|g - P * g\|_{\mathfrak{p}} \le \|g - P * g\|_{\infty},$$

and

$$\|\operatorname{Id} - (1+\lambda)C\|_{\mathcal{L}(L_A^p)} \le \|\delta_0 - (1+\lambda)P\|_{\mathcal{M}/\mathcal{M}_{A^c}} = \|\operatorname{Id} - (1+\lambda)C\|_{\mathcal{L}(\mathcal{C}_A)}$$
 (see [11], Th. 2).

Remark. By ([6], Prop. 2.4) and ([8], Th. II.2), if L^1_A has (C-UMAP) and so (UMAP), then A is a Shapiro set ([4], Def. 1.6); in particular, it is a Riesz set ([4], Th. 1.9). Moreover, it then follows from ([7], Th. 9.2) that the predual $\mathcal{C}/\mathcal{C}_{A'}$ of L^1_A also has (C-UMAP), and more precisely, there is a sequence of finite rank operators $A_n: \mathcal{C}/\mathcal{C}_{A'} \to \mathcal{C}/\mathcal{C}_{A'}$ such that

$$||A_n \varphi - \varphi|| \underset{n \to \infty}{\longrightarrow} 0, \quad \forall \varphi \in \mathcal{C}/\mathcal{C}_{A'},$$

$$||A_n^* f - f||_1 \underset{n \to \infty}{\longrightarrow} 0, \quad \forall f \in L_A^1,$$

$$\sup_{|\lambda|=1} ||\operatorname{Id} - (1+\lambda)A_n|| \underset{n \to \infty}{\longrightarrow} 1.$$

Now, given an approximate unit $(K_n)_{n\geq 1}$, by ([14], Lemma 1) we have $A_n - K_n \to 0$ weakly in $\mathcal{K}(\mathcal{C}/\mathcal{C}_{A'})$ as $n \to \infty$ so that there are finite convex blocks C_n of the K_n 's such that the above three conditions are also true with C_n instead of A_n . That gives:

Approximation Property for $C_{\Lambda}(\mathbb{T})$ spaces

Proposition 8. Let G be an abelian compact metrizable group and Γ its countable dicrete dual group. The class $\mathcal{G} = \{ \Lambda \subseteq \Gamma : L^1_{\Lambda} \text{ has } (\mathbb{C}\text{-UMAP}) \}$ is an $F_{\sigma\delta}$ in $\mathcal{P}(\Gamma)$

D. Li

The topology on $\mathcal{P}(\Gamma)$ is the product topology of $\{0,1\}^{\Gamma}$, where $\mathcal{P}(\Gamma)$ and $\{0,1\}^{\Gamma}$ are identified by the map $\Lambda \mapsto \mathbf{1}_{\Lambda}$.

Proof. Let $(K_n)_{n\geq 1}$ be a given approximate unit, and \mathcal{B} the set of all the rational finite convex blocks of the K_n 's; it is a countable set, and we have

$$\mathcal{G} = \bigcap_{n \geq 1} \bigcup_{R \in \mathcal{B}} \mathcal{G}_{n,R}$$

where

240

$$\mathcal{G}_{n,R} = \{ \Lambda \subseteq \Gamma : \sup_{|\lambda|=1} \| \operatorname{Id} - (1+\lambda)R \|_{\mathcal{L}(L_{A}^{1})} \le 1 + 1/n \}.$$

We thus obtain the proposition since this last set is closed in $\mathcal{P}(\Gamma)$: if $\Lambda_i \to \Lambda$ in $\mathcal{P}(\Gamma)$ as $n \to \infty$, with $\Lambda_j \in \mathcal{G}_{n,R}$, let $P \in \mathcal{P}_{\Lambda}$; since spec $(P) \subseteq \Lambda$ is a finite set, there is an index j such that spec $(P) \subseteq \Lambda_j$, and so $\sup_{|\lambda|=1} ||P (1+\lambda)R*P|_1 \le (1+1/n)||P||_1$.

It is proved in ([6], Prop. 2.8) that if a Banach space with (UMAP) does not contain any subspace isomorphic to c_0 , then it is isometric to a (separable) dual Banach space; in particular, such a space has the Radon-Nikodym Property. From the characterization of F. Lust-Piquard ([16]), we obtain:

PROPOSITION 9. If $\mathcal{C}_{\Lambda}(G)$ has (UMAP) and contains no subspace isomorphic to c_0 , then Λ is a Rosenthal set.

Let us recall that a Rosenthal set is a set Λ for which $\mathcal{C}_{\Lambda} = L_{\Lambda}^{\infty}$ and that no example is known of a non-Rosenthal set Λ for which \mathcal{C}_{Λ} does not contain any subspace isomorphic to c_0 .

However, there are non-Rosenthal sets Λ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP):

THEOREM 10. There are Hilbert sets $\Lambda \subseteq \mathbb{Z}$ for which $\mathcal{C}_{\Lambda}(\mathbb{T})$ has $(\mathbb{C}\text{-UMAP}).$

Let us recall that a Hilbert set Λ is defined by

$$\Lambda = \bigcup_{n\geq 1} \Big\{ q_n + \sum_{k=1}^n \varepsilon_k p_k : \varepsilon_k = 0 \text{ or } 1 \Big\},\,$$

where $(q_n)_{n\geq 1}$ and $(p_n)_{n\geq 1}$ are two sequences in \mathbb{Z} , $p_n\neq 0$, and that $\mathcal{C}_A(\mathbb{T})$ has subspaces isomorphic to c_0 for any Hilbert set Λ ([15], Th. 2); in particular, Hilbert sets are never Rosenthal sets.

Proof of Theorem 10. It is a consequence of the following

THEOREM (Y. Meyer ([19], Ch. VIII, § 5.1, Th. IV, p. 247). Let $(t_k)_{k\geq 1}$ be an increasing sequence of positive numbers such that

- (a) $t_{k+1} > s_k = t_1 + \ldots + t_k$,
- (b) $\sum_{k=1}^{\infty} (t_k/t_{k+1})^2 < \infty$.

Then the IP-set

$$\Lambda_{\infty} = \left\{ \sum_{k=1}^{n} \varepsilon_{k} t_{k} : \varepsilon_{k} = 0 \text{ or } 1, \ n \ge 1 \right\}$$

has the following property: for every $\varepsilon > 0$, there is an integer $m_0 \in \mathbb{N}$ for which

$$||P_{m_0}||_{\infty} \leq (1+\varepsilon)||P||_{\infty}$$

where P is any trigonometric polynomial with spectrum in Λ_{∞} :

$$P(x) = \sum_{\varepsilon_1 = 0, 1} a_{(\varepsilon_1, \dots, \varepsilon_n)} e^{2\pi i (\sum_{k=1}^n \varepsilon_k t_k) x}$$

and

$$P_m(x, x_{m+1}, \dots, x_n) = \sum_{\varepsilon_k = 0, 1} a_{(\varepsilon_1, \dots, \varepsilon_n)} e^{2\pi i [(\sum_{k=1}^m \varepsilon_k t_k) x + \sum_{k=m+1}^n \varepsilon_k x_k]}.$$

It is then clear that, for integers t_k , the Hilbert set $\Lambda \subseteq \Lambda_{\infty}$ defined by

$$\Lambda = \bigcup_{n>1} \left\{ t_{2n} + \sum_{k=1}^{n} \varepsilon_k t_{2k-1} : \varepsilon_k = 0 \text{ or } 1 \right\}$$

satisfies

$$\sup_{x\in\mathbb{T}}[|(\pi_{\Lambda_m}P)(x)|+|P(x)-(\pi_{\Lambda_m}P)(x)|]\leq \|P_{2m}\|_\infty\leq (1+\varepsilon)\|P\|_\infty$$

for every $m \geq m_0$, where

$$\Lambda_m = \bigcup_{n=1}^m \left\{ t_{2n} + \sum_{k=1}^n \varepsilon_k t_{2k-1} : \varepsilon_k = 0 \text{ or } 1 \right\};$$

and that means that for $m \geq m_0$,

$$\sup_{|\lambda|=1} \| \operatorname{Id} - (1+\lambda)\pi_{\Lambda_m} \| \le 1 + \varepsilon,$$

and so $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP).

Indeed, we can first see that assumption (a) implies that the sets Λ_{m+1} Λ_m are disjoint and that we can write

$$P(x) = (\pi_{\Lambda_m} P)(x) + \sum_{k=1}^{\lfloor n/2\rfloor - m + 1} e^{2\pi i t_{2m+2k} x} Q_k(x)$$

where Q_k are trigonometric polynomials with spectrum in $\{\sum_{j=1}^{m+k} \varepsilon_j t_{2j-1} : \varepsilon_j = 0 \text{ or } 1\}$; therefore

$$\begin{split} &P_{2m}(x,x_{2m+1},x_{2m+2},\ldots,x_n)\\ &=(\pi_{\Lambda_m}P)(x)+\sum_{k=1}^{[n/2]-m+1}e^{2\pi ix_{2m+2k}}Q_k(x,x_{2m+1},x_{2m+3},\ldots,x_{2m+2k-1}), \end{split}$$

so, taking the supremum over $x_{2m+2}, x_{2m+4}, \ldots, x_{2[n/2]+2}$, and setting $x_{2m+1} = x_{2m+3} = \ldots = x$, we get

$$||P_{2m}||_{\infty} \ge \sup_{x \in \mathbb{T}} \left[|(\pi_{\Lambda_m} P)(x)| + \sum_{k=1}^{[n/2]-m+1} |Q_k(x)| \right]$$

$$\ge \sup_{x \in \mathbb{T}} [|(\pi_{\Lambda_m} P)(x)| + |P(x) - (\pi_{\Lambda_m} P)(x)|]. \blacksquare$$

Although it is possible that $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP) when Λ is a Hilbert set, we have, however,

Proposition 11. If $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (UMAP), then Λ cannot contain any IP-set.

Let us recall that an IP-set is the set

$$\left\{\sum_{j=1}^{n} \varepsilon_{j} p_{j} : \varepsilon_{j} = 0 \text{ or } 1, \ n \geq 1\right\}$$

of all the finite sums of a given sequence $(p_n)_{n\geq 1}$ in \mathbb{N}^* .

Proof. This follows from the lemma below, by choosing $k_n = \sum_{j=1}^n p_{2j}$ and $l_n = \sum_{j=1}^n p_{2j+1}$.

LEMMA 12. If there are two sequences $(k_n)_{n\geq 1}$ and $(l_n)_{n\geq 1}$ in $\mathbb Z$ such that

$$|k_n|, |l_n|, |k_n + l_n| \underset{n \to \infty}{\longrightarrow} \infty$$

and such that $\Lambda \supseteq \{0, k_n, l_n, k_n + l_n : n \ge 1\}$, then $\mathcal{C}_{\Lambda}(\mathbb{T})$ cannot have (UMAP).

Proof. Assume that $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (UMAP). From Lemma 5, there is a sequence $(A_n)_{n\geq 1}$ of trigonometric polynomials such that

$$\forall f \in \mathcal{C}_A \quad \|A_n * f - f\|_{\infty} \underset{n \to \infty}{\longrightarrow} 0,$$
$$\|\operatorname{Id} -2C_{A_n}\| = 1 + \varepsilon_n, \quad \text{where} \quad \varepsilon_n \underset{n \to \infty}{\longrightarrow} 0,$$

and where C_{A_n} is the convolution operator associated with A_n .

We choose $u(x) \equiv -1$ and n_0 large enough to have $||A_{n_0} * u - u||_{\infty} \le 1/2$ and $\varepsilon_{n_0} < 1/33$.

We also choose n large enough in order that $k_n, l_n, k_n + l_n \notin \operatorname{spec}(A_{n_0})$. Then the functions v and w defined by

$$v(x) = e^{ik_nx}$$
 and $w(x) = e^{il_nx}(1 + e^{ik_nx})$

are in \mathcal{C}_A and satisfy $v*A_{n_0}=0$ and $w*A_{n_0}=0$. We then have

$$\begin{aligned} \|u+v+w\|_{\infty} &= \sup_{x \in \mathbb{T}} |u(x)+v(x)+w(x)| \le \sup_{x \in \mathbb{T}} (|u(x)+v(x)|+|w(x)|) \\ &= \sup_{x \in \mathbb{T}} (|-1+e^{ik_nx}|+|1+e^{ik_nx}|) = 2\sqrt{2}. \end{aligned}$$

On the other hand, since $A_{n_0} * (v + w) = 0$, we have

$$\begin{split} \|(\operatorname{Id} - 2C_{A_{n_0}})(u + v + w)\|_{\infty} &= \|v + w + [u - 2(A_{n_0} * u)]\|_{\infty} \\ &\geq \|v + w - u\|_{\infty} - 2\|u - A_{n_0} * u\|_{\infty} \\ &\geq \sup_{x \in \mathbb{T}} |v(x) + w(x) - u(x)| - 1 \\ &= \sup_{x \in \mathbb{T}} (|e^{ik_n x} + e^{il_n x}(1 + e^{ik_n x}) + 1|) - 1 = 3. \end{split}$$

We must then have $3 \le (1 + \varepsilon_{n_0}) 2\sqrt{2}$, which is not possible since $\varepsilon_{n_0} < 1/33$.

Remark. Actually, the proof gives $\liminf \varepsilon_n \geq \sqrt{2} - 1$.

As a consequence of Lemma 12, we have:

COROLLARY 13. If $\Lambda \supseteq \Lambda_1 + \Lambda_2$ for two infinite sets $\Lambda_1, \Lambda_2 \subseteq \mathbb{N}$, then $\mathcal{C}_{\Lambda}(\mathbb{T})$ does not have (UMAP).

Indeed, by translation, we may assume that $0 \in \Lambda_1$ and $0 \in \Lambda_2$.

Remark. Y. Meyer showed ([18], Th. 3a, p. 558) that $\Lambda = \{n_k + n_l : k, l \geq 1\}$ is a $\Lambda(p)$ -set for all $p \geq 1$ if $(n_k)_{k \geq 1}$ is a Hadamard sequence. However, $\mathcal{C}_{\Lambda}(\mathbb{T})$ does not have (UMAP) by Corollary 13.

Moreover, S. Neuwirth pointed out to me that Lemma 12 shows that the same holds for the Sidon set $\Lambda = \{0\} \cup \{2^n : n \in \mathbb{N}\}$. Hence (UMAP) seems to be connected to the rapidity of the growth to infinity.

Having (C-UMAP) is a strong hypothesis on a Banach space, and we might expect that Λ has null uniform density whenever $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (C-UMAP). Indeed, this density is null when $\mathcal{C}_{\Lambda}(\mathbb{T})$ has no subspace isomorphic to c_0 ([17], Th. 3), or merely when Λ contains no Hilbert subset ([15], Cor. 8). We have not been able to solve this question, but Lemma 12 provides a partial answer.

Let us recall the definition of the uniform density of a subset $\Lambda \subseteq \mathbb{Z}$:

$$d^*(\Lambda) = \lim_{h \to \infty} \left[\sup_{a \in \mathbb{Z}} \frac{\operatorname{card}(\Lambda \cap]a, a+h])}{h} \right].$$

244

PROPOSITION 14. $d^*(\Lambda) \leq 1/2$ as soon as $\mathcal{C}_{\Lambda}(\mathbb{T})$ has (UMAP).

Proof. Let Λ be such that $d^*(\Lambda) > 1/2$. We may suppose that $0 \in \Lambda$.

Then the proposition is a consequence of Lemma 12 and of the following result of N. Hindman ([12], Th. 3.4): if $d^*(\Lambda) > 1/2$, then for each $n \in \mathbb{N}$ we have $d^*(\Lambda \cap (\Lambda - n)) \geq 2d^*(\Lambda) - 1$. We should note, however, that the definition of $d^*(\Lambda)$ given by N. Hindman is (at least formally) slightly different from ours, and he assumes that $\Lambda \subseteq \mathbb{N}$, but his proof works as well in our setting.

Indeed, choosing $k_1 \in \Lambda$ with $k_1 \neq 0$, we have, by Hindman's result, $d^*(\Lambda \cap (\Lambda - k_1)) = d^*(\Lambda \cap (\Lambda - |k_1|)) > 0$, and so we can find an $l_1 \in \Lambda \cap (\Lambda - k_1)$ with $|l_1| \geq |k_1| + 1$; then $k_1, l_1, k_1 + l_1 \in \Lambda$. We iterate the same process with $\Lambda_n = \Lambda \setminus [-n, +n]$ instead of Λ ; we still have $d^*(\Lambda_n) > 1/2$ and we choose $k_n \in \Lambda_n$ and find $l_n \in \Lambda_n \cap (\Lambda_n - k_n)$ such that $|l_n| \geq |k_n| + n$.

Our last result is the existence of a linear invariant lifting for L_{Λ}^{∞} .

PROPOSITION 15. If $C_{\Lambda}(G)$ has (UMAP), then there exists a linear invariant lifting $\mathcal{R}: L_{\Lambda}^{\infty} \to \mathrm{Ba}(G)$, where $\mathrm{Ba}(G)$ is the space of first Baire class functions. In particular, Λ has the Godefroy-Lust-Piquard's property (ϱ) (see [9], Def. V.1).

Proof. Let $(A_n)_{n\geq 1}$ be a sequence of trigonometric polynomials such that

$$\forall f \in \mathcal{C}_A \quad \|A_n * f - f\|_{\infty} \underset{n \to \infty}{\longrightarrow} 0,$$
$$\|\operatorname{Id} -2C_{A_n}\| = 1 + \varepsilon_n, \quad \text{where} \quad \varepsilon_n \underset{n \to \infty}{\longrightarrow} 0,$$

and where C_{A_n} is the convolution operator associated with A_n

For all $\Phi \in \mathcal{C}_{\Lambda}^{**}$, the limit

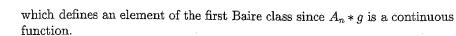
$$T(\Phi) = w^* - \lim_{n \to \infty} C_{A_n}^{**}(\Phi)$$

exists (see [5], proof of Th. IV.1, or from [3], Th. 3.8, we may suppose that the series $\sum (C_{A_{n+1}-A_n})$ is weakly unconditionally convergent). Hence, for every $\mu \in \mathcal{M}$ (the space of Radon measures on G), we have $\langle T(\Phi), \mu \rangle = \lim_{n\to\infty} \langle \Phi, C_{A_n}^*(\mu) \rangle$. But $C_{A_n}^*(\mu) = \check{A}_n * \mu \in L^1$ and so the above limit depends only on $\Phi_{|L^1}$ which is an element of L_{Λ}^{∞} . Since every element of L_{Λ}^{∞} can be written in this way, we can then define for every $g \in L_{\Lambda}^{\infty}$ an element $\widetilde{T}(g) \in \mathcal{C}_{\Lambda}^{**}$ which satisfies, for every $\mu \in \mathcal{M}$,

$$\langle \widetilde{T}(g), \mu \rangle = \lim_{n \to \infty} \langle g, \check{A}_n * \mu \rangle = \lim_{n \to \infty} \langle A_n * g, \mu \rangle.$$

In particular, we can define, for every $x \in G$,

$$(\mathcal{R}g)(x) = \lim_{n \to \infty} \langle A_n * g, \delta_x \rangle,$$



Moreover, by dominated convergence, for every $\varphi \in L^1$ we have

$$\int_{G} (\mathcal{R}g)(x)\varphi(x) dx = \lim_{n \to \infty} \int_{G} (A_n * g)(x)\varphi(x) dx$$

$$= \lim_{n \to \infty} (A_n * g * \check{\varphi})(0) = (g * \check{\varphi})(0) = \langle g, \varphi \rangle$$

since $g * \check{\varphi} \in \mathcal{C}_A$. Hence $\mathcal{R}g$ is a representative of g.

Now, the linear form $\varrho: L^{\infty}_{\Lambda} \to \mathbb{C}$ defined by $\varrho(g) = (\mathcal{R}g)(0)$ is of the first Baire class in the w^* -topology of L^{∞}_{Λ} and $\varrho(f) = f(0)$ for every $f \in \mathcal{C}_{\Lambda}$, so that Λ has Godefroy-Lust-Piquard's property (ϱ) .

As a corollary of Theorem 10 and Proposition 15, we have

THEOREM 16. There is a set $\Lambda \subseteq \mathbb{Z}$ which has Godefroy-Lust-Piquard's lifting property (ϱ) , but which is not a Rosenthal set.

This answers negatively a question of [9], where it was conjectured that the only possibility to have property (ϱ) was that all the elements of L_A^{∞} were already continuous.

Remark. As recalled at the beginning, there is no Sidon set with constant 1 in \mathbb{Z} . However, it is not known if the (\mathbb{C} -UMAP) can be realized with an approximating sequence $(R_n)_{n\geq 1}$ such that $\|\operatorname{Id} - (1+\lambda)R_n\| = 1$. Nevertheless, there is no increasing sequence of finite subsets $F_n \subseteq \mathbb{Z}$ such that $\bigcup_{n\geq 1} F_n = \Lambda$ and $\|\operatorname{Id} - (1+\lambda)\pi_{F_n}\| = 1$ for all λ with $|\lambda| = 1$.

Indeed, if such a sequence existed, we could pick $n_1 \in F_1$ and $n_2 \notin F_1$, and then F_{n_2} such that $n_2 \in F_{n_2}$, and finally $n_3 \notin F_1 \cup F_{n_2}$. Then we would have

$$\begin{split} \|a_{1}e_{n_{1}} + a_{2}e_{n_{2}} + a_{3}e_{n_{3}}\|_{\infty} \\ & \geq \sup_{|\lambda|=1} \|(\operatorname{Id} - (1+\lambda)\pi_{F_{1}})(a_{1}e_{n_{1}} + a_{2}e_{n_{2}} + a_{3}e_{n_{3}})\|_{\infty} \\ & = \sup_{|\lambda|=1} \| -\lambda a_{1}e_{n_{1}} + a_{2}e_{n_{2}} + a_{3}e_{n_{3}}\|_{\infty} \\ & = |a_{1}| + \|a_{2}e_{n_{2}} + a_{3}e_{n_{3}}\|_{\infty} \\ & \geq |a_{1}| + \sup_{|\lambda|=1} \|(\operatorname{Id} - (1+\lambda)\pi_{F_{n_{2}}})(a_{2}e_{n_{2}} + a_{3}e_{n_{3}})\|_{\infty} \\ & = |a_{1}| + \sup_{|\lambda|=1} \| -\lambda a_{2}e_{n_{2}} + a_{3}e_{n_{3}}\|_{\infty} = |a_{1}| + |a_{2}| + |a_{3}|. \end{split}$$

Therefore, we would conclude that $\{n_1, n_2, n_3\}$ is a Sidon set with constant 1, which is not possible.

For the sake of completeness, we now sketch a proof of this last fact, different from that of [2], which was given to us by G. Pisier. We may assume that $n_1=0$ and write $n_2=k$, $n_3=l$. Let θ_j (j=1,2) be the character of \mathbb{T}^2 which associates with (x_1,x_2) the value e^{ix_j} . If $\{0,k,l\}$ where a Sidon set with constant 1, then for every $a,b\in\mathbb{C}$ we would have $\|1+ae_k+be_l\|_{\infty}=\|1+a\theta_1+b\theta_2\|_{\infty}$, and then also $\|1+ae_k+be_l\|_p=\|1+a\theta_1+b\theta_2\|_p$ for every $p\in[1,\infty[$ (see [23], or [20], Th. 1). But then, from ([26], Th. I), (e_k,e_l) and (θ_1,θ_2) would have the same distribution, and this is false.

Added in proof. S. Neuwirth showed that $\mathcal{C}_{\Lambda}(\mathbb{T})$ does not have (C-UMAP) for $\Lambda = \{q^n : n \geq 1\}$, and $q \geq 2$ an integer, but $\mathcal{C}_{\Lambda}(\mathbb{T})$ does have (C-UMAP) if $\Lambda = \{n_k : k \geq 1\}$ with $n_{k+1}/n_k \to \infty$ as $k \to \infty$.

References

- G. F. Bachelis and S. E. Ebenstein, On A(p) sets, Pacific J. Math. 54 (1974), 35-38.
- [2] D. L. Cartwright, R. B. Howlett and J. R. McMullen, Extreme values for the Sidon constant, Proc. Amer. Math. Soc. 81 (1981), 531-537.
- [3] P. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds)., London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63.
- [4] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331.
- [5] G. Godefroy and N. J. Kalton, Commuting approximation properties, preprint.
- [6] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L¹ which embed into ℓ₁,
 J. Reine Angew. Math. 471 (1996), 43-75.
- [7] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
- [8] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263.
- [9] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60/61 (1990), 443-456.
- [10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960.
- [11] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111.
- [12] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157.
- [13] M. I. Kadec and A. Peiczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_p, Studia Math. 21 (1962), 161-176.
- [14] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- [15] D. Li, On Hilbert sets and C_Λ(G)-spaces with no subspace isomorphic to c₀, Colloq. Math. 63 (1995), 67-77.
- [16] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835.

- [17] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans $L^{\infty}(\Gamma)$, Studia Math. 69 (1981), 191-225.
- [18] Y. Meyer, Endomorphismes des idéaux fermés de L¹(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 499-580.
- [19] —, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972.
- [20] A. Pełczyński, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531.
- [21] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108.
- [22] G. Pisier, Bases, suites lacunaires dans les espaces L^p d'après Kadec et Pelczyński, Sém. Maurey-Schwartz, exposé 18, Ecole Polytechnique, Paris, 1973.
- [23] —, Les inégalités de Khintchine-Kahane d'après C. Borell, Sém. Géométrie des Espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Paris.
- [24] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490.
- [25] W. Rudin, Trigonometric series with gaps, ibid. 9 (1960), 203-227.
- [26] —, L^p-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.

Analyse Harmonique Université Paris-Sud Mathématiques Bâtiment 425 91405 Orsay, France Equipe d'Analyse Université Paris VI 4 Place Jussieu 75252 Paris Cedex 05, France E-mail: daniel.li@math.u-psud.fr

Received September 14, 1995 Revised version August 1, 1996 (3528)