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Complex Unconditional Metric Approximation Property
for Cy(T) spaces

by

DANIEL LI (Paris)

Abstract. We study the Complex Unconditional Metric Approximation Property for
translation invariant spaces C4(T) of continuous functions on the circle group. We show
that although some “tiny” ({Sidon) sets do not have this property, there are “big” sets A
for which C (T} has (C-UMAP); though these sets are such that LF (T) contains fanctions
which are not continuous, we show that there is a linear invariant lifting from these L5 (T)
spaces into the Baire class 1 functions.

Introduction. The translation invariant subspaces of continuous func-
tions on T all have the Metric Approximation Property (MAP). We study in
this paper the spaces C,(T) which satisfy a stronger approximation property,
the Complex Unconditional Metric Approximation Property (C-UMAP).

The (Real) Unconditional Approximation Property (UMAP) was intro-
duced in 1989 by P. Casazza and N. Kalton as an extreme possibility of
approximation ([3], Th. 3.5), and they showed ([3], Th. 3.8) that it actually
coincides for a separable Banach space X with the existence for every e > 0
of an unconditional expansion of the identity of X with constant 1-+¢, which
means, by a result of A. Pelczyfiski and P. Wojtaszczyk ([21], Th. 1.1) that
for every £ > 0, X may be isometrically embedded in a Banach space ¥ with
a (14-£)-FDD for which there is a projection P : ¥ — X with [|[P|| < 1+e.
Its complex version was defined and studied in ({7], §§8 and 9).

To begin with, we construct subsets A C Z for which C4(T) has
(C-UMAP). They are of two kinds: the first contain arbitrarily long arith-
metical progressions, so that they are not A(1)-sets, but their pace tends to
infinity; the second are Sidon sets, but have a pace which does not tend to
infinity.
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42A10, 42A55, 43A25.

Key words and phrases: Unconditional Metric Approximation Property, translation
invariant spaces of contimious functions, Rosenthal set, Riesz set, inear invariant lifting.
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Next, we show that the (C-UMAP) can always be achieved by convolu-
tion operators. This implies that if C4 has (C-UMAP), then so do Cu, for
all Ay C 4, as well as all the spaces L%, 1 < p < oo,

When C4 has (C-UMAP), we remark that 4 is a Rosenthal set if (and
only if) C4 contains no subspace isomorphic to cy. We show that this is not
always the case: C4 can have (C-UMAP) when 4 is a Hilbert set, and then
C 4 has subspaces isomorphic to ¢g. However, we show that A cannot contain
any IP-get, nor the sum of two infinite sets. We also show that the wniform
density of A must be less than or equal to 1/2, though it is likely that it
is null. Finally, we show that for such a set there exists a linear invariant
lifting from L5 (T) into the Baire class 1 functions.

The notation is classical. T is the quotient R/2wZ and for every n € Z
we denote by e, the character defined by en(z) = e forz € T.

We recall that a complex (separable) Banach space X has (C-UMAP) if

there is a sequence of finite rank operators R,, : X — X such that

|Rez —z|| — 0 forallz € X, sup |[Id—(1+ MR, — 1.
T— 00 I)\[=1 n—r o0

When A belongs only to R, instead of C, X is said to have (real) (UMAP).

I thank J. Chaumat, E. Fouvry, G. Godefroy, F. Lust-Piguard and G.
Pigier for instructive conversations.

I. Construction of sets A for which C4(T) has (C-UMAP). In this
section, we give some examples of subsets A C Z for which C4(T) has
(C-UMAP),

It is worth mentioning that there is no Sidon subset A C Z with constant
1 whenever card A > 3 ([2], p. 532).

LemMmA 1. For every finite subset F C N and every ¢ > 0, there are
L intervals Iy, ..., Iy, of length 1/L such that for each finite subset G C N
there is an mteger n > max F such that Jor every f € Cp(T) and every
g € Ce(T), we have

1
T7e, 0 (e + lloliea).
Proof We may and do suppose that g < 3/4.
Let mz : C(T) — C(T) be the projection which associates with f & C(T)
the trigonometric polynomial
(=2 (ke

kEFR

Note that mp(f + eng) = f for every f € Cp(T) and every g € Cg(T)
whenever nn. > max F and G C N, Since Cp (T) is finite-dimensional, there

If + enQHC(T
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exists a number ¢ > 0 such that, for every f €Cp (’JI‘) we ha.ve:

We then divide T in L intervals Iy,..., I of length 1/L < p.

SUBLEMMA. Let M = (8/s}(1 + ||wr|). Then there is an integer n >
max F such that for each h e M - Begmy and 1 <1< L, we have

11+ enhlicqry = (1~ &/2)(|[R]ecry + 1)-

Proof. Choose an (g/8)-net hi,...,hx of M - Bpymy. We have the
following:

CLAIM. iven p non-void open intervals L, ...
Ly, 1 < g < p, such that 1, y1,..

Indeed, if 1,1,...,1, are Qrindependent real numbers, we can choose
rq € (Z%Lq) NQ", 1< q<p,and then the numbers y, = r4t, are suitable.

y Ly, there emist y, €
., Up ore Q-independent.

We can then choose i, ..., y% € I such that
hr(yk)| 2 (1 - &/8)|IBellecr)

and such that the set {1} U {yk : 1 <1< L, 1<k < K} is Q-independent.
Then Kronecker’s theorem ([10}, Th. 442) enables us to find an integer n >
max F' such that, for 1 << L and 1 < k < K, we have

einy;z _ [hk(yin E
hilyt) |~ 8
Then |k hy,(yh) — hi(yh)]| < £lhu(yl)], and so
)
L+ enhallc) > |1+ ™ hi(yp)|
. I
> 1+ |helgh)] — ™Yo heyt) — [ha(uh)|]

£
> 1 et Sl 2 1+ (1= 5 Wrnle

Now, for each h € M - By (1), there is an index k such that
[he— Brlleqny < | — belleery < 2/8;

hence
11 +enhleiny 2 11+ enhilley — b~ Brlicm)
= (1—&/8)|hlleqr) +1—e/8
> (1—¢/8)%(] (llecry —€/8) +1—</8
> (1~ /8 |Alleqny + (1 — &/8)°
2 (L—e/2)(IR]eny +1)- =
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In the sequel we use the n given by the sublemma. Let f € Cp(T)
and g € Ce(T), and fix Iy € {1,...,L} such that ||f[|c(;l0) + ||gi|c(flo) =

supr<i<i{llfllecy + lgllecy)-
We have two cases.

Assume first that ||fllecr,) < (e/8)]|f + englleer)- Then we observe first
that since lg gives the maximum value, we have [|fllecr,) + lgllecn,) >
I + engllery, and so

£ 24 ¢
lgllecn,) = (1 - g) If + engllcery = "’"é"“”f + englleim;
hence
If +engllem 2 If +englleny) 2 9lley) = 1 lecn,)

&
Z llgllewny) — g”f + englleer)

||Q”c(1,n) €
= (17 e —3) sl

1 ( l9llen,)
T 1+e\|f+engliewm

£
+ g) If + englleen

”g”C(I;D) 2+4€
e ——
[ 7+ englleer 8

1 £
= 5 (1l + 515 = cntle)
> 1
“1l+e¢

Suppose now that [fllecny) 2 (/8IS + englleqry- Let mo € Iy, be such
that |f(zp)| = ||f[|c3(1,0)- For every z € I, we have

If +englicey > 1£(zo) + €™ g(a)| — | f(zo) — £(z)]

> I llect,y 9(a)

sinc

Uglley) + 1 flleen,))-

£

l_l_einm .
SHWFH ”f”c("l[‘)

flza)
2 1fllotry) It + €™ h(z)] = Z{f + engleqry,

where b= 5159 € (8/¢)(1 + ||xr|) - Begy ), since

glloo = llerglico = I(Td ~mp)(f + eng)lioo < {1+ [ar ) If + €nglloo.

The previous inequalities can be read as

1£ 4 engllon 2 [ Flocn) 1+ entlleny) = 517 + engleos
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and so the sublemma gives

1
If +engllee 2 m“fllqnn)ill + enhlle,)

= 14,1—6/8Hf|1cchu)(1 —/2)(1 + [|hllegn,))

1—¢/2
1
l1+4e¢

v

(I fllecnyy + lgllewm,))

= Tre 0B, Ul + liglleqzy)- =

THEOREM 2. There erist subsets A C Z such that A contains arbitrarily
long arithmetical progressions and such that CA(T) has (C-UMAP).

Remark. Then A is not a A(1)-set ([25], Th. 4.1), that is to say, LY is
not reflexive (by [13] and [1]; see also [22]).

In order to prove this theorem, we need the following lemrma.

LeMMA 3. For everye > 0 and every finite sel F CN, thereisan L > 1
such that for every finite set G C LN*, there is n > max F such that

] .
n 2 - oo oo
[f+englloo = H_E(Hffi + [19llec)

for every f € Cp and every g € Cg.

Proof. This follows from Lemma 1, since G C LN* implies that every
g € C(T) has period 1/L and so {{gllec = ||glle(r,) for every 1 € {1,...,L};
in particular, Lemuma 3 is obtained by considering Iy such that {|f|lec =

I Fllecaiy)-

Proof of Theorem 2. The construction of A will be done by induc-
tion. First, we apply Lemma 3 with € = g; and F' = {0}; we find a suitable
Ly > 1 and with G = {L;}, we now find anny > 1; we set Ay = {0, Ly +n1 7.

Suppose now that we have constructed a set Ay = HoU...UHz TN
where Hy = {0} and H; = n; + {L;,2L;,...,7L;}, 1 £ j < k, are disjoint
sets such that for 1 < 5 <k,

k . -1 k
@ ” g fz”m 2 (1+¢5) 1 (1 +ex) (H ;flum + ; Hfl“‘”)

where f; € Cg,, 0 <1 < k, and where £1,...,6¢ > 0 have been chosen in
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such a way that

1 ,
H(l+£g)<1+(1+ W)Sj, ISJSIC”].

i=j
We apply Lemma 3 again with € = g;4; chosen such that

k-1
1 .
(2) H(l+6z)£1+(1+ e 3) i, 1<k,

=j
and with F' = Ag; we find Lg.q and, taking
G = Giy1 = {Lit1,2Lk+1, - - -,
we obtain nig1y > max Ay. We then set
Apys = A U (npgr + Grr).
The formulas (1) and (2) show that

(k-+1)Lepi1},

1
\ilyl—Pl 1d =(1 + A)wa; |l oy, ,,) S 1+ (1 o 2,5_3)63.

Now A = | ;5 4x is a set such that C4(T) has (C-UMAP) since
S d (1 + Mwa;llceay € 1+ 225, w
Al=1
Remark. This construction, though different, follows the same idea as
H. P. Rosenthal’s {[24]). We obtain a Rosenthal set of “f1-sum” type.

THEOREM 4. For every finite set Fy C N, there is an increasing sequence
(n&)rz0 of integers such that Ca(T) has (C-UMAP) with 4 = Ugso(ne+Fo).
In particular, the pace of A does not tend to infinity.

Proof. We first remark that for every u,v € C(T), we have
sup flu + Avf|oo = sup(|u(z)| +[v(z)]).
[AJ=1 =ET
Starting from ng = 0, we apply Lemnma 1 with F = @ = F. We obtain an
integer ny > max Fy = Ny such that for f, g € Cg,(T) and || = 1, we have
_ I=Af + englloc < (L4 e)|f + €ny0lloo
Hence, on setting Ag = Fy and A; = Ap U (ng + 4p), we have
l_§1|.1p1 HId "—(1 + )\)’/TAC_ H‘C{C-’ll) g 1 Er.

Suppose now we have already constructed integers ny, ..

1<j<k,

.y N such that

Np g1 < ny,
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and £ > ... > g, > 0 such that

k
1
=J

and such that, for 1 < j < k, we have

sup M =(1+ A)7a, e,y S (L+es) . (1 +er),

where we have set A = U;-“zo(nj + Fp).
We now apply Lemma 1 with F' = A; and G = Fp, and € = ggeq > 0
chosen in such a way that ex41 < £y and such that for 1 < j < k,
€4
2k—7"

+

(1+sj+ + .. +2kjl)(1+sk+l)<1+sj+ +.. +2MI

We then find an integer ngi1 > max Ax = Ny 4+ny and L intervals I, ..., Iz
of length 1/L such that

[ (a4 ) + w]oo > sup (|lv+ vileq) + llwllem))

T 14 ey 1<igr
for w € Cay, v € Cpyz\a, and w € Cpy 11y
In particular, we have

sup HId _(1 + A)‘”.Ak ”L(C,ak_,_l) < (l + Ej) v

(1+ k1)
IAl=1

Writing now w = ey, % with u; € Cp (T), we have

Hw+vwwwm_1;%;—wmmw-+wmu4m(m

> gup sup (|[u(z) + oui{z) + v{z)|)
1+ Ekt1 z€T |o]=1

1
= e EI U+ our) + Yo
e o o)+
1 1
T 1 Epe (1—[—63')...

sup sup ||[—A{u +oui) + v
(14 ex) |g|,—_1\,\|31H ( ) =

by induction hypothesis since Fy C A;

1 sup(fu(z)] + fua(@)| + [v(2))

T 0Fe) . A+ el +enra) me

! MatZy (g
2 TH ) (1 T ern) o M T i) e (e))

1
> sup ||—Au + (v + w)]|oo;
= (L4g)... (1+ers1) mzp'lu (
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hence
sup |[Id~(1+ A)ma,lleiea,,,) S G+ o (L4 erm).
[Al=1
Setting now
A= U/lk,‘—‘ U(nk‘l‘FO)
k20 k20
we obviously have for all § > 0,
sup 1d ~(1 + Arra, leeqy < 1+ 285
|A|=1
Since lim £; = 0, the space C4(T) does have (C-UMAP). u

JM‘}OO

Remark. The proof shows that {ng}x>1 is a Sidon set with constant
1 + 2¢1. Since Fp is a finite sef, Drury’s theorem implies that the above
constructed set A is itself a Sidon set, as a finite union of Sidon sets.

IL. Properties implied by (C-UMAP) for C4(T) spaces. Most of
the properties below do not depend on the particular nature of the group
T, so we state them in the abstract setting of a compact metrizable abelian
group G.

First, we are going to see that the approximation can be achieved with
convolution operators.

LeMMA 5. If Co(G) hes (C-UMAP), there exists a sequence of finite
rank convolution operators Cyp : CA{G) — CA(G) such that

|f—Cnflloc — 0 and sup [[Id—(L+ A)Cu|| — 1.
T—+00 |>\|=l N—r0Q

Proof. Let R, : C4 — C4 be finite rank operators such that {|R, [ ~
Fllow ~ 0 for every f € C4(G) and sup)y |y ||1d —(1+A)Ry|| — L as n — oo.

Let (Kj);>1 be an approximate unit, and S) : C4 — C4 be the convolution
operator associated with K. Since R, has finite rank, by using a 2= (+2)pet
in Ry(Bc,), we can find an index I, such that

[ = S Rall <27™
The operator T, = S}, R, satisfies
IF = Taflloo € 1F = Bafllow + |1 Rnf = St Bnflloo — O
and
Hd =1+ N)Tn|i < [|1d =1+ MR + 2[\Rn — 81, Ra |l
< I =T+ M) Rp|| + 27,

80 that sup|y.q [{1d ~(14+ A)T%|| — 1 as n — co. Moreover, T,(C4) C Pa
(where Py is the set of trigonometric polynomials with spectrum in A).
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Now, set
Talf) = {[Tn(fo)]- dz.
@
Since T,(C4) is finite-dimensional and 73,(C4) C P, there is a finite col-
lection of characters A, = {y1,...,yv} such that T»(C4) C Pa,, so that
Tn(Ca) € Pa, is also finite-dimensional. Moreover, |[Tnf — fllw — O for
each f € Cy, and supy s [[Id —(14+ M) Tn|| — 1 as n — co. A direct compu-
tation gives that C,, = T, is the convolution operator associated with the
trigonometric polynomial Po =737 4 Tu(7)(7)7- =

COROLLARY 6. If C4(G) has (C-UMAP), then so does C4,(G) for every
Ao C A

‘We now give some consequences of this result.

THEOREM 7. If C4(G) has (C-UMAP), then so do all the spaces L (G),
1< p <o,

Proof. That follows from Lemma 5 and from the following observation.
Let P be a trigonometric polynomial, and C' be the associated convolution
operator. Then we have

(VgePa) llg—Pxglly £ llg—P*glloo,
and
[1d —(1 +M)Clleny < 1o~ 1+ NPl aparye = 1A =1+ A Clien
(see [11}, Th. 2). m '

Remark. By ([6], Prop. 2.4) and ([8], Th. 11.2), if L}, has (C-UMAP)
and so (UMAP), then A is a Shapiro set ([4], Def. 1.6); in particular, it is
a Riesz set ([4], Th. 1.9). Moreover, it then follows from ([7], Th. 9.2) that
the predual C/Ca of LY also has (C-UMAPY), and more precisely, there is a
sequence of finite rank operators A, : C/Ca — C/Car such that

l4np —@ll —2 0, Ve eC/Cu,

|4sf ~fl =20, VfeLh,

sup |[|[Td—(1+ MNA.|| — 1.

aup 114 040 =
Now, given an approximate unit (Ky)n>1, by ([14], Lemma 1) we have A, —
K, — 0 weakly in X(C/Car) as n — oo so that there are finite convex blocks

C,, of the Kp's such that the above three conditions are also true with Cy
instead of 4,,. That gives:
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PrOPOSITION 8. Let G be an abelian compact metrizable group and I its
countable dicrete dual group. The class G = {A C I' : L} has (C-UMAP)}
is an Fpg in P(I").

The topology on P{I") is the product topology of {0,1}¥, where P(I')
and {0,1}" are identified by the map A+ 14.

Proof Let (Kn)n>1 be a given approximate unit, and 3 the set of all
the rational finite convex blocks of the K, ’s; it is a countable set, and we

have
| ¢=1 U Gnr

n>1 ReB
where

Gnr={ACT: sup |Id—(1+A}R[ gzy) £1+1/n}.
=1

We thus obtain the proposition since this last set is closed in P(I'): if 4; — A
in P(I') as n — oo, with A; € Gn g, let P € Py; since spec(P) C A is a
finite set, there is an index j such that spec(P) C A;, and $0 sup|yj= |P
(14 NEx Pl < (1+1/n)][Pls = |

It is proved in ([6], Prop. 2.8) that if a Banach space with (UMAP)
does not contain any subspace isomorphic to ¢g, then it is isometric to a
(separable) dual Banach space; in particular, such a space has the Radon-
Nikodym Property. From the characterization of F. Lust-Piquard ([16]), we
obtain:

PrOPOSITION 9. If CA(@) has (UMAP) and conlains no subspace iso-
morphic to cp, then A 15 a Rosenthal set.

Let us recall that a Rosenthal setis a set A for which C4 = LY and that
no example is known of a non-Rosenthal set A for which C4 does not contain
any subspace isomorphic to ¢,

However, there are non-Rosenthal sets A for which C4(T) has (C-UMAP):

THEOREM 10. There are Hilbert sets A C 7Z for which C4(T) has
(C-UMAP).

Let us recall that a Hilbert set A is defined by

A= {Qn+25kpk15k:00r 1},
k=1

n>1

where (gn)n>1 and (pn)n>1 are two sequences in Z, p, # 0, and that C4(T)
has subspaces isomerphic to ¢y for any Hilbert set A ([15], Th. 2); in par-
ticular, Hilbert sets are never Rosenthal sets.

Proof of Theorem 10. It is a consequence of the following

icm
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THROREM (Y. Meyer ([19], Ch. VIIL, § 5.1, Th. IV, p. 247). Let (t)a>1
be an increasing segquence of positive numbers such that

(a.) ther > Sp =11 +...+ g,
(D) > pe (ta/tr+1)? < o0
Then the IP-set

n
Aooz{ZEktkzakzO orl, nzl}
k=1

has the following property: for every e > 0, there is an integer mp € N for
which : :

[ Pong oo < (1 + )| Plico,
where P is any trigonometric polynomial with spectrum in Ay:
Pla)= T age.ome Cimestils
Ek:[},l
and
Pm(.’IJ, TrAg-Ly e -5 Cﬂn) == Z Gley,... EH)EZTM:E(Z;"::_ )Y gy SRR
er=0,1
It is then clear that, for integers ¢z, the Hilbert set A C A, defined by

T
A= U {tzn + kat%—l tgp =0 or l}
k=1 ’

nzl
satisfies

Slég[l(mmp)(ﬂi)l + |P(z) = (14, P}z)] £ [ Pamllos < (1+8)|[ Pllco

for every m > myq, where

m n
A, = U {fzn +ZEkt2k—1 tep =0or 1};

n=1 k=1
and that means that for m > mq,

sup (14 —(1 + N, S 1+e,
A=

and so CA(T) has (C-UMAP).
Indeed, we can. first see that assumption (a) iraplies that the sets Apmi1\
A are digjoint and that we can write
[n/2]—m+1 :
Plz) = (ma, P)()+ Y THrEQu(z)
k=1 : :
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where (3 are trigonometric polynomials with spectrum in {Zf__;k Ejtg 1 :
g; =0 or 1}; therefore

Py (2, T2mg 15 B2ma2s - < T
[/2]~m+1

= (74, P)(z) + Z " I Q) (2, Lam41, Tam3s - - - T2mp2k-1)s
k=1

so, taking the supremum over Tomt2;T2m+d,-..,%2n/2)+2, and setting
Tom4l = Tam43 = ... =0, we get
[n/2)—m1t
| Pamlles 2 502 [l P)E) + Y 1Qu(a)]
k=1

> 213[!(701,“1’)(56” +|P(z) — (ra., P) ()] »

Although it is possible that CA(T) has (C-UMAP) when 4 is a Hilbert
set, we have, however,

PROPOSITION 11. If C4(T) has (UMAP), then A cannot contain eny
IP-get.

Let us recall that an IP-set is the set

n

{ZEjpj:EjZOOI 1, nzl}

j=1
of all the finite sums of a given sequence (pn)n>1 in N*.
Proof. This follows from the lemma below, by choosing k, = > i1 P2
and ln = E?:l D2j+1-

LemMma 12, If there are two sequences (ky)n>1 and (In)ns1 in Z such
that B

1Enl, linls [on =+ In o

and such that A 2 {0,kn,ln, by + 1y : n > 1}, then Co(T) cannot have
(UMAP),

Proof. Assume that C4(T) has (UMAP). From Lemma 5, there is a
sequence (A, )n>1 of trigonometric polynomials such that

VIECs [Anrf = flleo =0,
[l1d -2C4, || = 1+¢€,, where &, — 0,
Te— 00

and where C4, is the convolution operator associated with A,

We choose u(z) = ~1 and ng large enough to have || Ay, U — Ul < 1/2
and e, < 1/33.
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We also choose n large enough in order that ki, L., kn + I & spec(An,)-
Then the functions v and w defined by
v(z) = e*® and wlz)=e*T(14 gHhn)
are in C4 and satisfy v+ Ap) = 0 and w* A, == 0. We then have

s+ v+ wlloo = sup fufz) + v{z) +u(2)] < sup(ju(z) + v(z)| + |u(z)])
= sg%ﬂ — 1+ %] 4 |14 %) = 24/2,

On the other hand, since Ap, * (v +w) = 0, we have
(1d =204, )(u + v + W)l = [0+ w + [e — 2(Ang *0)][loo
2|l +w ~ ulloe — 2/t — Ang * 1] oo

> supv(e) + w(z) - ule)| ~1
z€T

= sup(|e?®n® £ e¥n®(1 £ ) L 1)) -1 = 3.
zeT
We must then have 3 < (1+ £,,)2v/2, which is not possible since £, <
1/33. m

Remark. Actually, the proof gives liminfe, > /2 — 1.
As a consequence of Lemma 12, we have:

COROLLARY 13. If A 2 Ay + As for two infinite sets Ay, Ay C N, then
Ca(T) does not have (UMAP).

Indeed, by translation, we may assume that 0 € A; and 0 € As.

Remark. Y. Meyer showed ([18], Th. 3a, p. 558) that A = {ny +n; :
kI > 1} is a A(p)-set for all p > 1if (ng)p>1 is a Hadamard sequence.
However, C4(T) does not have {(UMAP) by Corollary 13.

Moreover, S. Neuwirth pointed out to e that Lemma 12 shows that the
same holds for the Sidon set A = {0} U {2" : n € N}. Hence (UMAP) seems
to be comnected to the rapidity of the growth to infinity.

Having (C-UMAP) is a strong hypothesis on a Banach space, and we
might expoct that A has null uniform density whenever Cx(T) has
(C-UMAP). Indeed, this density is null when C4(T) has no subspace iso-
morphic to ¢p ([17], Th. 3), or merely when A contains no Hilbert subset
([15], Cor. 8). We have not heen able to solve this question, but Lemma 12
provides a partial answer,

Let us recall the definition of the uniform density of a subset A C Z:

N , card{4 Mle,a + h))
()= i [onp 5
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PROPOSITION 14. d*(A) < 1/2 as soon as CA(T) has (UMAP).

Proof. Let A be such that d*(A) > 1/2. We may suppose that 0 € A.

Then the proposition is a consequence of Lemma 12 and of the following
result of N. Hindman ([12], Th. 3.4): if d*(A) > 1/2, then for each n € N
we have d*(A N (A ~n)) > 2d*(4) — 1. We should note, however, that
the definition of d*(A) given by N. Hindman is (at least formally) slightly
different from. ours, and he assumes that A C N, but his proof works as well
in our setting.

Indeed, choosing k1 € A with &1 # 0, we have, by Hindman's result,
d*(AN{A=k1)) = @* (AN(A~|k1])) > 0, and so we can find an [y € AN(A-kq)
with [I1| 2 [k1|+1; then ky, 1, ki + 1 € A. We iterate the same process with
A, = A\ [-n, +n| instead of 4; we still have d*(A,) > 1/2 and we choose
kn € Ay and find I, € Ap, N (Ay — kr) such that |ly] 2 |kn| + 7.

Our last result is the existence of a linear invariant lifting for L.

ProroSITION 15. If CA(G)} has (UMAY), then there evizts o linear in-
variant lifting R : LY — Ba{Q), where Ba(QG) is the space of first Baire
class functions. In porticular, A has the Godefroy-Lust-Piguard’s property
(o) (see [9], Def. V.1).

Proof Let (An)n>1 be a sequence of trigonometric polynomials such
that

VfECA HAn*f"fHoon—::oO)

[1d —2C4, |l =1+¢e., where &, — 0,
n—2
and where (4 is the convolution operator associated with A,,.
For all & € C}*, the limit
— ot ok
T(P) = 'LLib_’].élgn Ca (®)
exists (see {5], proof of Th. IV.1, or from [3], Th. 3.8, we may suppose that
the series 3 (Ca,,~4,) I8 weakly unconditionally convergent). Hence, for
every i € M (the space of Radon measures on (), we have (T(®), p) =
Hmye o0 (@, C% (1)) But €% (u) = An * 4 € L' and so the above limit
depends only on &1 which is an element of L. Since every element of L
can be written in this way, we can then define for every g € LY an element
T(g) € C3* which satisfies, for every u € M,
(T(g), py = lim (g, dn e ) = Hm (A % g, ps).

In particular, we can define, for every ¢ € G,

(Rg)(z) = lim (4, g, 5,
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which defines an element of the first Baire class since A, * g is a continuous
function.

Moreover, by dominated convergence, for every ¢ € L' we have

{(Ro)(@)p(e)do = lim {(4n*g)(z)e(z) du
G e

= lim (Ap 9 $)(0) = (9% 3)(0) = (g, 0)

since g * % € Cy. Hence Ry is a representative of g.

Now, the linear form g : LF — C defined by o(g) = (Rg)(0) is of the
first Baire class in the w*-topology of LY and o(f) = f(0) for every f € Ca,
so that A has Godefroy-Lust-Piquard’s property (p). w

As a corollary of Theorem 10 and Proposition 15, we have

THEOREM 16. There is a set A T Z which has Godefroy—-Lust-Piguard’s
lifting property (o), but which is not a Rosenthal set.

This answers negatively a question of [9], where it was conjectured that
the only possibility to have property (o) was that all the elements of LY
were already continuous.

Remark. As recalled at the beginning, there is no Sidon set with con-
stant 1 in Z. However, it is not known if the (C-UMAP) can be realized
with an approximating sequence {R,)n»: such that [[Ild—(1+ M) R,| = 1.
Nevertheless, there is no increasing sequence of finite subsets F,, C Z such
that |J,sq Fn = 4 and |Id —(1 4 Mg, || =1 for all X with [A\| = 1.

Indeed, if such a sequence existed, we conld pick n; € Fy and ny ¢ £,
and then F,,, such that ny € Fyp,, and finally ng € Fy U F,,,. Then we would
have

|aien, + G2€n, + Ga€n, il
> sup ||(Id —(L + A)7wm, )(a1€n, + a2€n, + @3€n5)|ec
Al=1

= sup | — Aga1én, + a28n; + 33€n; o
|1
= 1(11' + ”a':ZEng + a'3en3“00

> lag| -+ sup [[(Id—(1 + N7, )(azen,; + a3en;)loc
|A]=1

= |ay] + sup || — Aagen, + 03€ngllec = la1] + laz[ + [asl.
[A[=1

Therefore, we would conclude that {n,n2,n3} is a Sidon set with constant
1, which is not possible.
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For the sake of completeness, we now sketch a proof of this last fact,

different from that of [2], which was given to us by G. Pisier. We may assume
that ny = 0 and write np =k, ng = [. Let 8; (f = 1,2) be the character of
T2 which associates with (z1, z2) the value %, If {0, k, 1} where a Sidon set
with constant 1, then for every a,b € C we would have |1+ aeg + bey||oo =
|1+ a8y +b62| 0o, and then also |1 +aex +bei|p = [[1+afy + b0y, for every
p € [1, 00| (see [23], or [20], Th. 1). But then, from ([26], Th. I}, (ex, e;) and
(61,62) would have the same distribution, and this is false.

Added in proof. 8. Neuwirth showed that C4(T) does not have (C-UMADP) for A =

{g® :n > 1}, and g > 2 an integer, but CA{T) does have (CUMAP) if A= {ng: k > 1}
with ngyy /n, — 0o as k — oo
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