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Stable inverse-limit sequences,
with application to Fréchet algebras

by

GRAHAM R. ALLAN (Cambridge)

Abgtract. The notion of a stable inverse-limit sequence is introduced. It provides a
sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of
exactness by the inverse-limit functor. Examples of stable sequences are provided through
the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet alge-
bras.

1. Introduction. In a recent paper [2], a lemma was proved (Lemma 7)
which may be interpreted as asserting the preservation of exactness in a
certain inverse-limit process (which there arose in the study of Fréchet al-
gebras). There is, in fact, a simple algebraic principle involved, which we
isolate in the present paper by defining sfability, for an inverse-limit se-
quence of groups; this property is discussed in §2. In §3, we give a number
of applications, mostly in the theory of Fréchet algebras.

For inverse-limit sequences of abelian groups, stability of a sequence G
is equivalent to the vanishing of a group H(G) that appears in a simple
cobomaology theory of the inverse-limit functor. In terms of the “first derived
functor of the inverse-limdt functor”, this idea has been around since about
1960 (see roferences in [16]); there is a convenient account in an appendix
to [14]. (There is also a modern account of the derived-functor approach in
§3.2 of [9], with reference back to [18].) However, since the present paper
is primarily addrossed to analysts, we have, in §4, given a brief account of
this cobomology theory in the language of sheaves, The main features of the
prosent paper are: (i) the use of the abstract Mittag-Leffler theorem as the
primary sowrce of examples of stable inverse-limit sequences, (ii) the fact
that the results on stability do not require the groups to be abelian, and
(iii) the applications in §3, which form the real motivation for the theory
of §2. (We should remark that the account in §3.2 of [9] also makes use of .
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the abstract Mittag-Leffler theorem; but the property that we have called
stability is not made explicit and the types of application are quite different.)
The cohomology theory of §4 is not used in the main discussion of the
examples—though it occasionally yields a slightly more detailed comment.

We briefly recall basic ideas about inverse limits. Let (X,)n>1 be a se-
quence of sets and, for each n > 1, let fn : Xpy1 — X be a mapping; we
call X = (Xp; fn)n>1an inverse-limit sequence (abbreviated to JL-sequence)
of sets and mappings. The inverse limit of the sequence, E;r_l(Xn; Fa) {or,
more briefly, L{X)), is the subset of [],,», Xn consisting of all elements z =
(€n)n>1 such that z, = fr{znr1) for all n > 1. We write 7, : [[ X — X
for the mth coordinate projection {and shall use the same symbol for the
restriction of this mapping to L(X)). We may sometimes write A’ in a more
extended form:

xoxd X X —

In most of the examples of IL-sequences to be considered, the sets (X,)
have some additional topological or algebraic structure (or both). If each X,
is a Hausdorff topological space and if each mapping fr. is continuous, then
L(X) is a closed subspace of [] X,, (in its product topology); L(A') is then
given the subspace topology. In this connection it is useful to observe that
the collection of sets {7;1(U,) N L{X) : n > 1, U, an open subset of X,}
forms a base (i.e. not merely a sub-base) for the topology of L(X'). From
this remark there is the following simple lemma, much used in the sequel.

Levma 1. Let X = (Xp; fa) be on IL-sequence of Hausdorff tepolog-
ical spaces and continuous maps. For any subset E of L(X), let B, =
Tu(E) (closure in X,). Then E = L(X) N (Vo 7y (Er), s0 that E =
Hm(By; fn | Bnt1). Moreover, fo(Bni1) = By for each n.

Proof. Evidently, E C L(X)N, 5, 7 L (Ev). Let z € L(X)\ E; by the
remark in the last paragraph, there is some n > 1 and an open neighbour-
hood U, of m,{z) in X, such that 77} (U,)NE = B, so also U, N7, (E) = §.
Thus ma(z) & mn(E) = En. Hence z & [\,5 7, (En). It follows that

Hm(Bp; fr | Bnga) = LX) N sy 7n  (Bn) = B,
Also, for each n, fn(Epy1) = By, since mp(z) = fpmae(z) for all 2 €
L(x).
'We recall the Mittag-Leffler theorem on inverse limits.

THEOREM 1 (Mittag-Lefller theorem). Let X = (Xy; fn) be an IL-se-
quence of complete metrizable topological spaces and continuous mappings.
Suppose that, for each n, fo(X,11) s dense in X,. Then, for each m,
Tm(L(X)) s dense in X,,. In particular, if each X, # 0, then also
L{x)y#0.
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Proof. See e.g. [4], Theorem 2.4, or [10], Theorem 2.14.

Remark. This theorem includes (by giving each X,, the discrete topol-
ogy) the cssentially trivial set-theoretic condition for the non-emptiness of
L(X), Le, that & is an IL-sequence of non-empty sets and surjective map-
pings. Even this case fails to generalize to IL-systems on an index set without
a countable cofinal subset (e.g. [5], Chap. IIL, §7, Ex. 4).

One other standard condition for the non-emptiness of an inverse limit
may be mentioned (unlike Theorem 1, this result does extend to more general
index sets).

TueoreM 2 (Compactness criterion). Let X = (X,; fn) be an IL-se-
quence of non-empty Hausdorff topological spaces and continuous mappings
and suppose that, for each n, fo(Xnt1) 8 o compact subset of X,. Then
L{X) is a non-emply compact Hausdorff space.

Remark. This follows easily from, e.g., [8], (3.2.13). Theorem 2 also
includes a trivial set-theoretic result: the case in which each f, has finite
range—in particular, when each fn(Xn.1) is a singleton; this case will oc-
casionally be used.

There are a few remarks about subsequences. Let X = (X,; fn) be an
IL-sequence (of sets and mappings) and let n(1) < n(2) < ... be astrictly in-
creasing sequence of positive integers; for each k > 1, define f} : Xppq1) —
Xy by Sl = Fag)Fage)et - Fagery—1. Then X' = (Xop; fr) will be
called a subsequence of X. It is trivial that any element y = (yx) € L(X")
may be uniquely extended to an element of X', ie. to an element z such
that @,k = yx (k 2 1). This process clearly effects a natural bijection be-
tween L{A) and L{X’). Tt will be useful to record a simple consequence as
a lemima:

LevMa 2. If X is an IL-sequence, then the following are equivalent:

(i) LX) # 0;
(i) LX) # 0 for every subsequence X' of X,
(iil) LX) # B for some subsequence X' of X.

In case the sels (X,) of an IL-sequence A are, for example, groups (or
complex algehras) and the mappings (f.) are homomorphisins, then it is
simple to see that L(X) inherits the same type of algebraic structure, being
evidently & subgroup (respectively, subalgebra) of the direct product I X-.
In fact, taking, for cxample, groups, there is a category, which we shall write
as ILG, of IL-sequences of groups and homomorphisms. If G, H belong to,
ILG, then a morphism o : § — M i a sequence (@n)n>1, where each
O+ Gy = H, is a group homomorphism, such that the following diagram
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is commutative:

Gl (_:9_1__ Gg *g"?;-* .. B Gn ‘—gﬂ Gn.[_]_ — ...
oy j, ay .L an, l LT | l
ky ha oy
Hl — Hz — ., n — n+1 —_ ...

The morphism @ induces a group homomorphism L(a) : L{G) — L(H),
by setting L{c)((Zn)n>1) = (@n(Zn))n>1. The correspondence § — L(G),
a — L{a) 18 a covariant functor from ILG to the category of groups and
homomorphisms. Evidently, the collection of IL-sequences of abelion groups
forms a full subcategory {which we denote by ILGA) of ILG. The restriction
of the functor L to ILGA is a covariant functor to the category of abelian
groups. There is an extensive discussion of these categories (for systems over
more general index sets; also of direct-limit systems) in Chapter 8 of [7]. In
all the applications that we consider, the objects in the IL-sequences will be
al least groups, usually with some extra algebraic or topological structure,
The mappings in the sequences will usually then be homomorphisms also
with respect to the additional structure; but a notion such as, for example,
an exact sequence will be the one appropriate to the underlying groups.
For that reason we shall discuss the general theory purely in the language of
sequences of groups. Remark that if X is in ILG (or ILGA)), then soc is every
subsequence X" of X; the bijection L(X) & L(X"') (just before Lemma 2) is
then a group isomorphism.

Let0 = § — H L.k -0bea short exact sequence in ILG. That
is to say (and this may be taken as a definition), we have the following
commutative diagram of groups and homomorphisms:

0 0 0 0

i ! ! 1

Gt & G B — G G — ..
ar d ezl an i ans1 |

Hl <—hi Hg & Ce. Hn *En— n+1 -,
£ l Fg -l- Bn .I. Bl .f,

K K & K, B g e

! | 1 |

0 0 0 0

Each row is an IL-sequence of groups, and each column is a short exact
sequence. If we apply the inverse-limit functor L, then it is easy to see

that the sequence 0 — L(G) - =% e — L(H) Ny L(K) is exact at L{G)
and L(H), i.e. L is a left-ezact functor. However, it is not always true that
imL(#) = L(K)} (e.g. [7], Chapter 8, Example 5 5). Followmg Theorem 3,
we give an example in the context of Fréchet algebras.
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The basic theory of Fréchet algebras (and of more general locally m-
convex algebras) was introduced in [3] and [15]. A Fréchet algebra A is
a complete metrizable topological algebra whose topology may be defined
by a sequence (Pn)nz1 of sub-multiplicative seminorms. Without loss of
generality we take the sequence (pr,) to be increasing. The principal tool in
the study of [réchet algebras is the representation of such an algebra as the
inverse limit of a sequence of Banach algebras. We briefly describe this, in
order to establish notation that will be standard throughout the paper.

Thus, let A be a Fréchet algebra, with its topology defined by the in-
creasing sequence (Pn)ns1 of sub-multiplicative seminorms. For each n let
T ¢ A = A/kerp, be the quotient map; then A/kerp, is naturally a
normed algebra, normed by setting ||, (z)), = pu(z) (x € A). We let
(An; ] - ||n) be its completion, so that A, is a Banach aigebra; henceforth
we considler m, 88 a mapping from A into A,. (It is important to note that
7n(A) is a dense subalgebra of A, but that, in general, 7,(4) # A,.) Since
Dn < Pa-l, there I8 a, naturally induced, norm-decreasing homomorphism
dp i App1 — Ay such that d, 0 mp41 = m,, for all n. Since im d, 2 im=,, it
follows that dp(As,41) Is dense in A, for each n. For an element 2 € A, we
may write u, = 7, (#); it is then evident that, for each 2 € A, the sequence
(Zn)npa is an element of Hm(An; dy).

The elementary, but fundamental, structure theorem for Fréchet algebras
18:

THEOREM 3 (Arens-Michael isomorphism). Let A be @ Fréchet algebra
with o defining sequence of seminorms (pn). Then, with the above notation,
the mapping x + (Tn)n>1 18 a topological-algebra isomorphism of A with
QI__H(AN; (ln)

Proof. See [15], Theorem 5.1 {proved for more general locally multi-
plicatively convex algebras).

The main point of Theorem 3 should be emphasized: given elernents
2y & Ay such that @, = dy{#,41) for all n > 1, there is a unique x € A
such that m, () = @, for all n. (It should be noted that what we write as
Ay appears ag A, i {15].) The inverse-limit representation of A given by
Theorern 3 will e called an Arens -Michael representation of A.

For an initial range of examples of (non-Banach) Fréchet algebras, we re-
fer to the disenssion of the examples C[[X]], O, CU), LL (R},
LYRT;w), 0% (RT) in [2] (following Theorem 3). There are other examples
in [3] and [15].

We shall conclude this section with a simple example in which exactness
is not preserved by the inverse-limit functor.
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ExXAMPLE. Let A be the Fréchet algebra O(C) of all entire functions
in cne variable. The standard topology on A (that of local uniform con-
vergence) may be described by the seminorms (pp)n»>1, Where pu(f) =
sup{|f(z)] : z € A}, with A, = {z € € : |2| £ n}. Then we have the
corresponding Arens—Michael representatlon A = Lim(A(A,);dn), where
A(A,) is the “disc algebra on Ap” (ie. A(4,) = {f € C{A,) : flint A, is
holomorphic}) and dy, : A(Apt1) — A(A;) is restriction.

For n > 1, let I, = z"A(A,) = {f € A(A,) : fB(0) = 0 (k =
0,...,m~1)}, which is a closed ideal of the Banach algebra A(4,). Evidently,
dn(In+1) Q In Write En = dnlIn+1 and dn : A(An.|..1)/1n+1 — A(An)/In
for the induced homomorphism between the quotient algebras Then there
are short exact seguences of complex algebras 0 — I, I A4, 2
A(4A,)/ 1, — 0 (n > 1), where jn, ¢, are respectively canonical inclusions
and quotient maps. Then writing Z, A, A/Z respectively for the IL-sequences
(I;8n), (A(AL):dn), (A(An)/fn;&un), we evidently have the short exact
sequence

0T s A% AJT — 0,

of IL-sequences of commutative Banach algebras and continuous homomor-
phisms.

But Z(Z) = {f e A: f&(0) =0 (k > 0)} =0 and L(A) = 4 =

(). So L gives the sequence 0 — 0 5/ N CIN L{A/T) — 0. But
A(AL) /T, 2 Clz}/(2™) and L(A/T) = C][z]], the algebra of all formal power
series in z. In terms of this isomorphism, the mapping L(g) : O(C) — C[[z]]
assigns to each entire function its Taylor series about the origin, so it is
certainly not surjective. (See Example 1 following Theorem 16 in §4 for the
determination of H'(T).)

2. Stable inverse-limit sequences. Let &, H be groups and f: G —
H be a homomorphisin. For any 1 € H then, in multiplicative notation, let
n.f : G — H be the mapping defined by (n.f)(v) = nf(y) forall vy € G. If
G = (Gpign)n>1 is a sequence in ILG then, for any v = (vn) € I],51 Gns
we define .G to be the IL-sequence (Gpn;n.gn); we call v.G a perturbed
sequence of G. (Of course, the mappings in the perturbed sequence are not
generally homomorphisms.}

We shall say that a sequence § in ILG is stable if and only if every
perturbed sequence of G has a non-empty inverse limit. Thus, the sequence

2 g
G1& Gy & G Gy — ...

in ILG is stable if and only if, for every choice of v, € G, (n > 1), we may
simultaneously solve the equations z, = Y gn(zpne1) for x, € G, (n = 1).
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Remark. In the definition of stability there is an asymmetry, in that
we have considered only multiplication on the left. FEvidently, thexe is a cor-
responding “right stability” (considering “right perturbations” g,.y,) and
even two-sided stability {(with “double perturbations” of the form v,,.gn-75)-
In fact, in all the classes of stable sequences that we consider, the stronger
property of “double stability” holds. However, all the applications in the
paper require only the weaker condition that we have called “stability”. Of
course, for sequences of abelian groups the notions are, anyway, the same.

Trivial examples of stable sequences are provided by two opposite ex-
treme cages. Let G = (G,; gn) be a sequence in ILG. Then:

(1) If go{Gn+1) = Gy for each n, then also (Yn.gn)(Gnt1) = Gn, for
every choice of 7, € G,. Hence (see the Remark following Theorem 1),
L{7.G) # @ for every perturbed sequence, i.e. G is stable.

(i1) If each g, is the trivial homomorphism g, (z) = 1o (& € Gry1) then,
for every choice of ,, € G,,, we solve Ty, = Yn.g9n(Trr1) (7 2 1) by putting
T = vy for all n; 50 again G is stable.

In fact, these trivial examples are also included as special cases of the
following result, which is the main source of exarmples of stable sequences.

THEOREM 4. Let G = (Gn;gn) be a sequence in ILG. Then G is stable
provided it satisfies either of the following conditions:

(i) each G, is a complete metrizable topological group and each homo-
morphism gn 18 continuous with g,{(Gpy1) dense in Gy;

(ii) each Gy is a Hausdorff topological group and each homomorphism
g, 5 continuous with g, (Gny1) compact.

Proof. (i) Evidently, in any perturbed sequence .G of G, each mapping
Yn-gn i8 continuous with range a dense subset of Gy,. It follows from the
Mittag-Leffler theorem, Theorem 1, that L(-v.G) # (). Thus G is stable.

(i) The proof is similar to (1), but using Theorem 2 instead of the Mittag-
Leffler theorem.

By a Mittag-Leffler sequence we shall mean an IL-sequence (Gn;gn)
where each G, is a complete metrizable topological group, and, for each
n > 1, gn 15 a continuous homomorphism with g, (Gry1) = G- Thus, part
(i) of Theorem 4 states that every Mittag-LefHler sequence is stable. [Note
that in {14], Definition A.16, the term “Mittag-Leffler condition” is used in
a purely algebraic sense, which is basically an amalgam of cur two trivial
cases (preceding Theorem 4), combined in a way analogous to Corollary 1
below.]

It is, in fact, sufficient that the conditions for stability should be verified
on some subsequence. We shall need the following lemma.
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LeMMa 3. Let G be o sequence in ILG . Then the following are equivalent:

(i} G is stable;
(ii) every subsequence of G is stable;
(iii) some subsequence of G is stable.

Proof. (i)=(ii). Let G' = (Gn(x); g;,) be a subsequence of G = (G Gn)-
Let v.G' = (Gumy; vi-g1,) be & perturbed sequence of G'. We then define
bary = W (k > 1), 64 = 1n, (the identity of Gn) for n & {n(k) : k = 1}.
Then ~.§' is a subsequence of §.G, so that L(v.G") # 0, by Lemma 2 and
the stability of G. Hence G’ is stable.

(i) = (iif). Trivial.

{iit)=(1). Let G’ = (Gn(r): o) be a subsequence of G = (Gy; gn), Where
G’ is stable; let .G be a perturbed sequence of G, ¥ = (¥ )n>1. For each
k > 1, define

81 = Yu) Inie) Tn(m)+1) - - - Gnlie) - - - Gnlhr1)—2) Yn(ha1)-1)-

Then 8.G' is a subsequence of .G, so that, by Lemma 2 and the stability of
¢', L(v.G) # . Hence § is stable.

The point of the idea of stability lies in the following theorem.
THEOREM 5. Let 0 = G -+ H £, K =0 be a short esact sequence in

ILG. If G 1s stable, then the sequence

0 — L(G) 22 £y 220 1) — 0

s also eroct.

Remark. Later (Theorem 16) it will be shown that for sequences of
abelian groups, the stability of G is also a necessary condition for exactness
always to be preserved.

Proof of Theorem 5. We write the given short exact sequence in
extended form:

0 0 0 0

il 4 ! l

G & G & — G, & Grnp1  — ...
@y, i ag i’ on L Apti l

H & o7 2 B, M HL
By l ol bn | Anga l

K &- Ky <k—2 — K, &n ntl —

1 ! ! !

0 0 0 0
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‘We know that the sequence 0 — L(G) e, L(H) L5) L{K) — 0 is exact
at L(G) and L(H), without any special conditions. We have to show that,
with the assumption that G is stable, im L(8) = L(K).

Thus, let { = (2p)n»1 € L(K); Le. 2, € K, and 2z, = kp(zney) for
all n. Each mapping 53, is surjective, so we may pick, say, yn € H, with
Bn(yn) == 2n, for all n, Then

ﬁn(yglhn(ymrl)} = Zv:l(knﬁn+1)(yn+l) = Zrtlkn(zrwl) = 1a,
ie. y;lhn(ynﬂ} € ker 8, = Imay,, for all n. Thus, for each n, there is a
unique tn € Gp such that an(t,) = y7 hn(ynr1).
Since G is assumed stable, the perturbed sequence {Gp;tn.gn) has a
non-empty inverse limit; i.e. there is some v, € G, (n = 1) such that
Up == Ungn (V1) for all n. But then

hn(yn+1aft+1(vn+l)) = hn(@'n-{—l)(“n.‘}n)(“'n-}-l)
= hn (yn+1)an ('U-«,:l'v'n) == 'ynan(vn)-
Thus the sequence, say, % = (yntn(vy)) € L(H) and

L{(B)Y(n) = (Bn(yn)(Bnom)(vn)) = (Br(yn)) = {2n) = ¢
Hence L(8) maps L(H) onto L(K}, and the proof is complete.

We have the following result on the preservation of stability. In the case
of sequences of abelian groups, it could also be deduced as an immediate
consequence of Theorem 15 in §4. However, since the result is also true in
the non-abelian case, we give the simple direct proof.

PROPOSITION 1. Let 0 — § —%+ H 25 IC — 0 be a short ezact sequence
in ILG. Then:

(1) if H is stable, then K is stable;
(ii) if G and K are stable, then H is stable.

Proof. (i) With an obvious notation, let v, € K (n > 1). For each n
choose !, € Hy, such that 8,(7;,) = ¥». By the assumed stability of H, there
are clements ¥, € H, such that yn = Y,hn(Yn+1) (n > 1). Then, setting
2y = Bn(yn) (n = 1), we easily deduce that 2, = Ynkn(2ni1) for all n. Thus
K is stable. '

(ii) We now suppose that § and K are stable. Let v, € Hy, (> 1) and
consider the sequence (Bn(7n)) € [1nn1 Kn-

Since K is stable, there are 8, € K, (n > 1) with &, = Bn(Yn)kn(fns1)
for all n. For each n, let y, € H, be such that 3,(yn) = 6,. Then

Bnlyn) = ﬁn("fn)(knﬁn+1)(’yn+l) = ﬁn(’)’nhn(yn+1))a
s0 that ;7 v hn(Ynt1) € ker By = im oty For each n, let u, € Gn be such
that 17 Vb (Unt1) = @n(Un)y 6. Ynhn(Pnt1) = Ynoim(tn).
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But G is stable, so there are z, € G, with 2, = ungn(zn1) (n = 1).
Hence o, (€n) = 0n (tin ) (Anns1 ) {(Znr1)- Set wy, = ypan(xy) for all n. Then

Wp = ynan(un)(angn)(mn+1) = qnhn(yn+1)(hnan+1)(m’n+l) = ")’nhn(wn+1)s
Thus (w,) € L(v. "), and so H is stable.

CoROLLARY 1. Let G = (Grn;gn) be a sequence in ILG. Suppose that
each Gy, has e normal subgroup H,, such that:

() gn(Gru1) C Hy {n>1);
(ii) the sequence H = (Hn;7,) is stable (G, = gnlHota : Hupr — Hy)-

Then G is stable.

Proof For each n, the induced mapping n : Gnt1/Hne1 — Gn/Hy
is the trivial homomorphism, so that G/H = (G /Hn;Gn) is stable (see the
second trivial example before Theorem 4). But H is given to be stable, so
the stability of G follows from Proposition 1(ii) applied to the canonical
short exact sequence 0 = H — G — G/H — 0.

3. Examples and applications

3.1. The Mittag-Leffler and Weierstrass theorems of classical complez
analysis.

3.1.1. The Mittag-Leffler theorem. The abstract Mittag-Leffler theorem,
Theorem 1, takes its name from the classical Mittag-Leffler theorem on
meromorphic functions. In fact, the viewpoint of the present paper may also
be used to rearrange the proof in a way that seers illuminating.

Let I be an open subset of the complex plane and let Z be a discrete
subset of U; thus Z is a countable subset of U that has no cluster point
in U, say 7 = {a, : n=1,2,...}, where, despite the notation, the finite
case Is not excluded. For each k, let gi be a given element of O(U\ {ar}) (a
“principal part at az”). Then the classical Mittag-Leffler theorem asserts the
existence of some f € O(U\ Z) such that, for each k, f — gz has a removable
singularity at oy (i.e. f has the prescribed principal part at each a;}. We
will explain how to reformulate this statement so that it will appear as an
immediate consequence of the ideas of the last section. (We would emphasize
that the proof we give is simply a rearrangement of the classical proofs.)

With U/ and Z as abaove, the restriction mapping O(U) — QU \ Z)
is injective; it is convenient to regard O(U) as a subgroup (additive) of
O(U\ Z). We then define M(U; Z) = O(U\ Z)/OU) (it might be called the
Mitteg-Leffler group of the pair (U, Z)). We regard an element of M{U; Z)
as a “principal part on Z7, since the set of functions in (U \ Z), having
prescribed principal parts at the points of Z, is precisely a coset of O(U) in
o(U\ 2).
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Next, in the special case where Z is finite, say Z = {o;,...,an}, we
may, given g € O(U \ {ax}) (k = 1,...,N), define f(z) = Zszlgk(z)
(z € U\ Z). Then clearly f — g has a removable singularity at ax, for each
k=1,...,N. Thus, in case Z is finite, to specify a principal part at each
point of Z is equivalent to specifying an element of M(U; Z).

Now let Z be countably infinite. Write I = | J,,..; U, where, for each n,

(i) U, is open and has compact closure U,, C Upi1;
(ii) every bounded component of C\ U, meets C\ U.

(This may, for example, be achieved by letting—for all sufficiently large n—
Up={z€U:|z| <n, dist(z,C\Uyp) > 1/n}.)

Then by Runge’s theorem (e.g. in the form of [17], Chapter 5, §3, The-
orem 3), for each n, O(U}U, is dense in O(Un) (for the usual Fréchet
topologies). In particular, writing d,, : O(Up+1) — O(Ur) for restriction,
the IL-sequence O = (O(U,);dpn)n>1 is a Mittag-Leffler sequence (in the
sense defined after Theorem 4) with inverse-limit group L(Q) = O(U).

For each n, Z, = ZNU, is finite, and U\ Z = ,,5,(Un \ Zn); so also if
Oz = (O(Un \ Zn);dn)n>1 (where d, is the obvious restriction map) then
L(0z) 2 O(U\ Z) as well. If, for each n, dy, : M(Up1; Zng1) — M{Un; Z2,)
is the homomorphism naturally induced on the quotient groups and we write
M = (M(Un; Zn); dn}n>1, then there is the short exact sequence

e @ — O — M —= 0

in ILGA, with the sequence O stable, by Thecrem 4(i).

Yince each Z, is finite, it should be clear, from the discussion of the
case “Z finite” above, that to give a prescription of principal parts at the
points of Z is precisely equivalent to specifying an element of L{M). But,
by Theorem 5, the sequence

0 s OU) — O(U \ Z) — L(M) — 0

is exact. In particular, every element of L(AM) is the image of some element
of O(U'\ Z), so that the Mittag-Leffler problem is always soluble.

3.1.2. The Weiderstrass theorern. The theorem of Weierstrass may be
regarded as a multiplicative analogue of the Mittag-Leffier theorem. How-
ever, the preliminaries from elementary complex analysis are a little more
delicate. We shall swmmarize these preparatory results in a lemma, with a
brief indication of proof. For a compact subset K of C, we shall use the
standard notation R(K) for the uniform closure in C(K) of the rational
functions without poles in K. For any open subset U of C, O*(U) denotes
the multiplicative group of nowhere-zero holomorphic functions on U (i.e.
the group of units of O(U)).
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LEMMA 4. (i) Let K be a compact subset of C, and let A be a subset
of C\ K that meets every bounded component of C\ K. Then for every
nowhere-zero f € R(K) there are g € R(K) and a rational function v,
having all its zeros and poles in A, such that f =red on K.

(i) Let U be an open subset of C, and A o subset of C\ U that meets
every bounded component of C\ U. Let f be a nowhere-zero holomorphic
function on U. Then there are sequences (gn), (rs), where each gn € OU)
and each T i3 a rational function having all its zeros and poles in A, such
that Tnefn — f on U (in the usual Fréchet topology of O(U)).

(iii) Let U, V be open subsets of C with U C V and such that every
bounded component of C\ U meets C\ V. Then O*(V)|U is dense in
O* (.

Proof. (i) We first use Runge’s theorem (see reference in §3.1.1) to find a
rational function s having all its poles in A and such that || f—s||x < infx | f].
Tt is then elementary that s is nowhere-zero on K and also fs™' € e 8o
s = p/q, say, where p and g are polynomials, such that g has all its zeros in A,
while p has no zeros in K. We then factorize p(z) = (z—01) ... (5 — 0 ), 58¥
(where a,- .., are not necessarily distinct, and p has leading coeflicient
1, without loss of generality). If, for any & € C\ K, we define uq € R(K} by
ua(z) = 2 — @ (z € K), then it is well known, and elementary, that: (a) if
o and (3 belong to the same component of C\ K, then uquz* € ) and
(b) if & belongs to the unbounded component of C\ K, then u, € eBUK),
We then consider the factorization p = ug, ... Uq,, of p. If, for example, oy
is in the unbounded component of C\ K, then u,, is an exponential on K
if ey lies in a bounded component of C \ K, then there is a point of A, say
A1, in the same component, so that u., = uy, e, for some by € R{K).
Treating each factor in a similar way, we obtain, say, p= pre”, where p; is
a polynomial with all its zeros in 4 and h € R(K). Take r = p; /¢ and the
proof of (i) is complete.

(i) The deduction of (ii) from (i) uses the form of Runge’s theorem in
[17], Chapter 5, §3, Theorem 1, together with the following simple exercise:
if K is a compact subset of I/ such that no component of U\ K is relatively
compact in U (which is precisely the condition for O(U)|K to be dense
in R(K)), then every bounded component of C\ K contains a component
(necessarily bounded) of C\ U. Under the hypothesis of (ii}, it then follows
that every bounded component of C\ K contains a point of 4. The deduction
of (ii) is now simple.

(iii} This is an easy consequence of (ii).

From this last lemma, it then follows that, if we write U = J,~q Un,

satisfying the same conditions (i) and (ii) given in the discussion of the
Mittag-Leffler theorem in §3.1.1, then the IL-sequence O* = (O*(Uy};dy)
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(where each d, is again a restriction mapping) is a Mittag-Leffler sequence.
(This is in contrast to the general situation for commutative Fréchet alge-
bras; see the discussion in §3.6.) Then, with Z = (ag)r>1 a discrete sub-
set of U, as in §3.1.1, we define the Weierstrass group of the pair (U, Z)
to be W(U;Z) = O*(U \ Z)/O*(U). Analogously to the discussion of the
Mittag-Leffler theorem, we use the stability of O* to deduce that W (U; Z) =
%iLnW(Un; Z,). From this it follows easily that:

(i) given any sequence n(k) of non-negative integers, there is an f €
O(U), having a zero of order n(k) at ay (for all & for which n{k) > 0), and
having no other zeros in U;

(i) given any sequence n(k) of integers, there is a meromorphic function
g on U such that, for each k, g has a zero of order n(k) at ay, if n(k) > 0,
a pole of order ~n(k} at ay if n(k) < 0 and such that g is holomorphic and
non-zero at every other point of I/,

We just remark that (i) follows directly from the stability argument
(since, just as in §3.1.1, each Z,, is finite, and the finite case is trivial}, while
(ii) follows by applying (i) twice and taking a quotient of two holomorphic
functions.

3.2. The quotient of a Fréchet algebra by a closed ideal. Let A be a
Fréchet algebra, A = Lipg(An; dy) an Arens-Michael representation of A. Let
I be a closed, two-sided ideal of A. With the notation of §1, let I, = mwn{Jf)
(closure in A,). Then, by Lemma 1, I = (7,5, 7, *(In); i.e. the Arens—
Michael isomorphism, say @ : A ~» lim(An;dy), induces an isomorphism
Iz m(fn,mdwn), where En = nun-i-l B In+1 — In‘ Let dn : An+1/In+1 -
A, /L, be the homomorphism induced by dp. Then we have the following
simple result:

THEOREM 6. With the above notation, the Arens—Michael isomorphism
induces an isomorphism

A/I = ]iJ..,.n(An/In; Jn)

Proof. By Lemma 1, the IL-sequence I = {(In;dy) is a Mittag-Leffler
sequence; it is therefore stable, by Theorem 4(i). Let A = (Aq; dyn); the result
then follows from Theorem 5, by considering (with an obvious notation) the
short exact sequence 0 —Z — A — A/T — 0.

Remark. The result of Theorem 6 is not just elementary algebra of
inverse limits—in the sense that the result does not extend to an arbitrary
complete LMC algebra (i.e. an inverse limit of Banach algebras over a general
directed index set, see [15]). Indeed, using a remark in the final paragraph
of [13], §31, 6, we may find an example of a complete, commutative LMC
algebra A with a closed ideal I such that A/T is not complete. (The example
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in [13] is of a locally convex topological vector space; it may be converted
into an LMC algebra by giving it the zero mutiplication, and then adjoining
an identity if wished.) Since an inverse limit of Banach spaces is necessarily
complete, this is an example in which A/] # [im Ay /I;.

3.8. Finitely generated ideals. In [4], Theorem 4.2, Arens proved one
of the most interesting results in the general theory of Fréchet algebras,
concerning finitely generated ideals. In faet, the result in [4] was proved for
a more general class of inverse limits of complete metric rings; the additional
generality has some interest and we will also, in this section, work with such
rings. We shall give an extension of the result of Arens, but only in the
case of commutative rings. (In the non-commutative case we would have
nothing to add to the Arens result, beyond a different way of organizing the
proof.) By an F-ring we mean a complete metrizable topological ring. We
remark that an arbitrary ring becomes an F-ring when given the discrete
topology; so the topological-algebraic results which follow include purely
algebraic results as special cases.

Let A be a commutative F-ring, and suppose that, say, o : A — L(A)isa
topological-ring isemorphism of A with the inverse limit of a Mittag-Leffer
sequence A = (An;d,)p>1 of commutative F-rings and continuous homo-
morphisms (see definition just before Theorem 5). (We could take A = L(A),
with o the identity mapping; but, in several places, writing an explicit iso-
morphism « is notationally more convenient.) For example, 4 might be a
given commutative Fréchet algebra and o an Arens-Michael representation
of A (in which case each A, would be a Banach algebra). To be consistent
with the standard notation for Fréchet algebras, define the continuous ho-
momorphisms my, : A — 4, by a(a) = (7a(a))n>1 (@ € 4). By Theorem 1,
Tn(A) is dense in A, for each n.

Following Arens, we say that an m-tuple (z1,...,%m) of elements of a
commutative ring R with identity is regular (in 4] it is right regular) if and
only if there are elements y;,...,ymn of R such that 2:;1 zryx = 1. Then
the result of Arens 4], Theorem 4.2 (but restricted to commutative rings),
is as follows.

THEOREM 7 (Arens). Suppose ay,...,am 5 o finite subset of A such that
Tnl,. -, Tnlm 18 @ Tegular system in Ay, for each n. Then ay,...,dm is a
regular system in A,

Theorem 8, below, gives a result about a larger class of finitely generated
ideals; Theorem 7 will be an immediate consequence. We now introduce the
notion that will generalize the Arens notion of regularity.

Let A be a commutative Fring. If @ = (a1,-..,am),b = (by,. .., bp) €
A™, let ab= 357 agby. For o € A™ define Z(a) = {z € A™ : z.a = 0}.
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If we make A™ into a complete metric space in the obvious way (as the
product of m copies of A), then it is clear that Z{a) is a closed subspace
of A™. We shall define a notion of A-independent m~tuple a € A™, whose
intended intuitive content is that “the only elements in Z(a) are the obvious
ones” . Consider first the case of an ordered pair g = (01, a2). Then evidently
Z(a) contains all pairs (agh, —a1b), for arbitrary b € A; also, since Z(a) is
closed, it contains the closure of this set. The notion of A-independence
to be introduced will say that these are the only elements of Z(a). The
appropriate notion for general m > 1 is as follows.

For a commutative F-ring A and integer m > 1 let 5,,(4) be the set
of all skew-symmetric (m x m)-matrices with entries from A. If a € A™
(regarded as a (1 x m)-vector), let

S(a) = {eX : X € S, (4)}.
Remark that S{a) C Z(a) since, for each X € §,,(4), (aX.a) = aXa® =0,

by the skew-symmetry of X. Hence also S(a} C Z(a). We say that the

m-tuple a € A™ is A-independent if and only if §(a) = Z(a).

Remarks. 1. In the case m = 2, the definition of A-independence re-
duces to that discussed in the previous paragraph.

2. In the case m = 1, since S1(A) = 0, a single element a; (or, more
pedantically, the 1-tuple (a1)) is A-independent if and only if Z{a;) = 0.
For example, if A is an integral domain then every non-zerc element of A
is A-independent. On the other hand, ay is regular in the sense of [4] if and
only if it is invertible (and A must have an identity).

3. Unfortunately, the notion of A-independence does not have good per-
manence properties, For example, we may easily find examples of (i) an alge-
bra 4 and an A-independent n-tuple (a1,...,an) € A" but with (@1, ..., tm)
not A-independent for any 1 < m < n —1; (i) an example where, for in-
gtance, (a) is A-independent but {a,b) is not; (iii) an example in which
A-independence is not preserved by a continuous homormorphism; (iv) A-
independence is not preserved by passing either to a subalgebra or a super-
algebra. These negative remarks make the result of Lemma 6(iil) below a
little surprising.

4. There is a connection between the present notion of A-independence
and the type of regularity that arises in the definition of the Taylor spectrum
of a commuting n-tuple of operators introduced in [19]. We shall not use
this connection, so merely remark that if we identify an element o € A
with the corresponding multiplication operator on A (recall that A is here
commutative), then regularity of an m-tuple @ € A™ in the Taylor sense
is defined as the exactness of a certain Koszul complex. To require (in the
present notation) that S(a) = Z{a) is equivalent to the exactness of this
complex just af the penultimate term. Moreover, since we only require that
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5(a) = Z(a), the notion of an A-independent m-tuple is even slightly less
restrictive.

Next we show that A-independence really does generalize regularity, in
the commutative case.

PROPOSITION 2. Let A be a commutative F-ring with identity, leta € A™
and suppose that there is some u € A™ such that u.a = 1. Then S{a) =
S(a) = Z(a), so that, in particular, a is A-independent.

Proof Let u = (u1,...,um), so that 3 v ukar = 1. Let z € Z(a) and
define x;; = u;z; — uzz for 4,7 = 1,...,m. Then the matrix X = (zy) is
skew-symmetric and for 7 =1,...,m,

—Z (GZZIL) T_Lj = 24,

(@X); =3ty = > ai(wizs—uyz) = ( > am) 2
i i i
i.e. z=aX, so that z € S(a).

ExAMPLE. Let A = O(C"), the Fréchet algebra of all entire functions
In N variables. We shall show that, for each m = 1,..., N, the m-~tuple

{#1,..., zm) of coordinate projections is A-independent (it is not, of course,
regular in the sense of [4]); in fact, even §(z1,...,2m) = Z(z1,...,2y) for
each m.

'The proof will be by induction on m. For m = 1, the result is clear, since
A is an integral domain. Now let 2 < m < N and suppose that the result
holds for m —1 variables. Let f = (f1,..., fi) € Z(21,...,2m), i.€. suppose
that

(%) Z frze =0.
k=1

By rearranging its Taylor series, we may uniquely write

fm = Z hii:---w":mwl (zmv EERE

where the summation is over all (i1,...,im_1) € (Z7)™ ! and each coeffi-
cient function is an entire function in the variables zn,,.. ., 2y.

Put 21 = ... = zm_1 = 0 in (%); then fm(O,...,O,zm,...,zN) =0,
ie. hO O(Zma . ZN) =0 So fm = a1z + ...+ Ay — lzm—l: where
ai,...,am-1 € A. Relation (*) may thus be written as Zk 1 (fit arzm)z
=0.

By the induction hypothe51s there is a matrix X = (23;) € S;_1(4)
such that fi + apzm = Z 1 @kizg (k=1,...,m — 1). Together with the
equation f, = a1z + . + Om—12m—1, this may be written as

i im—1
Zyn)2t o
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fl —a1 z1
- X :
- ?
fm-« 1 T0m—1 Zipenl
.fm |2 T s e | I 0 Zm

which completes the proof.

NOTATION. If, say, T : A — B is a homomorphism (of commutative
rings), we shall use the same symbol T for the maps {rom e.g. A™ to B™
(or from Sm(A) to Sp,(B)) defined by applying the original homomorphism
T' to each component (or entry). Thus, for example, if ¢ = (@1,. - 0m) € A™
then T'(a) means (Taq, ..., Tay).

If A is an F-ring, then A™ and §,,(4) are also F-rings when topologized
as the cartesian product of the appropriate finite number of copies of A.

LEMMA 5. Let T : A — B be a continuous homomorphism of commuta-
tive F-rings. Let (az,...,am) € A™, let by, = T(as), for k= 1,...,m, and
letb=(b1,...,bn). Then:

(i) T(Z(a)) € 2(b), T(S(a)) € S(b);

(ii) if T(A) is dense in B, then T(S(a)) is dense in S(b);

(ili) ¥ T(A) is dense in B and if b is B-independent, then T(S(a)) is
dense in Z(b) and so, also, T(Z(a)} is dense in Z(b).

Proof. (i) This is a very elementary exercise.

(i) Let z € §(b); so z = bX for some X € Sp(B). But, since T(A) is
dense in B, it is trivial that T'(5.,(A4)) is dense in Sy, (B). We may thus pick,
say, ¥ € Sp,(A) such that T'(aY’) is in any chosen neighbourhood of bX.

(i) This is immediate from (ii), since S(a) < Z{a) and we are now
assuming that S(b) is dense in Z(b).

We now return to the situation in which « : 4 — L(A) is an isomor-
phism of the commutative F-ting A with a Mittag-Lefler sequence 4 =
(An; d)n>1 of commutative P-rings and continuous homomorphisms.

LEMMA 6. With the notation just described, let o € A™, for somem > 1.
(1) The ianmovrphism & induces an z‘somorphz‘sm

Sla) =1 L_(S Tnla)); dn).
(41_( (mn(a )),dn)J-

mn(0) 18 An-independent, then a is A-independent

(ii) 5(a) C Z(a) S
(iit) If, for each n > 1
and
Z(a) = L( (mn(a)); dn).
Proof. (i) From Lemma 5(ii) it follows _that m,(S(a}) is dense in
S(7s(a)) for each n. By Lemma 1, S(a) ]g_S(vrn a)).
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(i) Trivial.

(ii) I, for each m, m,(a) is A,-independent, then S{mn(a)) = Z(wn{a))
for each n. Hence the resulf is immediate from (i) and (if).

THECREM 8. Let a € A™ be such thot m,(a) 15 An-independent, for every
n > 1. Let J(a) =Y oo, Aax and, for each n, let J,(a) = Y pe, Anwa(ar)-
Then the isomorphism o induces isomorphisms

() J(@) = lm(Ju(a)idn)s
(i) A/7(a) 2 Hm(An/Tn(a); ).

(Here dy = dn|Jnr1{a) and d,, : Apy1/Jns1(a) — An/Jn{(a) is the homo-
morphism induced between the quotient rings.}

Proof. (i) For each n, define the mapping oy, : A™ — A, by
"

On(@rs oo tm) = 3 Tal0x) (51,0, 3m) € AT,
k=1

Then oy, is an additive-group homomorphism, with imeo, = J,(a) and
ker o, = Z(mp(a)). We write jn : Z(mp(a)) — A7 for inclusion.

Let 2, A™, J(a) be the IL-sequences (Z(mwn(a));dn|Z(mns1(a))),
(A7 dy), (Jula);d, ) respectively; then we evidently have a short exact
sequence in ILG, with an obvious notation:

0— Z L A™ Ty T(a) — 0.
By Lemmas 5 and 6, Z is a Mittag-Leffler sequence with L(Z) = Z(a). The
sequence A™ is just the mth power of the Mittag-Leffler sequence A, so it is
trivially itself a Mittag-LefHler sequence with L(A™) = A™. By Theorem 4,

Z is a stable IL-sequence and so, by Theorem 5, the inverse-limit functor
induces an isomorphism

L{T(a)) 2 A™/Z(a) & J(a).

(ii) We now consider, with an obvious notation, the short exact sequence

n ILG
0-— J(a) = A" A/T(a) — 0,

where i is a sequence of inclusions, and ¢ is a sequence of quotient maps. By
(i), J(a) is a quotient of the Mittag-Leffler sequence A™, and so is stable
by Theorem 4 and Proposition 1(i). Also from (i) we have L(J{a)) & J(a).
The result therefore follows from Theorem 5.

Remark. From this last result we have an immediate proof of Theo-
rem 7, in the case of a commutative F-ring. For, if a € A™ is such that,
for each n, m,(a) is regular, then J,(a) = A,, for each n, and also (@) is
A-independent, by Proposition 2. Theorem 8(ii) then gives A/J(a) 2 0, i.e.
J(a) = A, so that o is regular. This corpletes the proof of Theorem 7.
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3.4. Formal power series and Banach algebras. We recall (see e.g. [2], §1)
that an element  of a commutative (unital) Banach algebra A is said to have
finite closed descent (FCD) if and only if AzV¥+! is dense in Az? for some
integer N > 0; we write §(x) = N if N is the least integer with this property.
We refer to (2], Lemma, 1, for a summary of the elementary properties of
elements of finite closed descent. In particular, if §(z) = N then also Az™ is
dense in Az¥ for all n > N; moreover, the ideal I (z) =M,>1 Az™ is dense
in Az, If we define L, : A — 4 by La{y) = zy (y € A), then L, maps
I{z) bijectively onto itself. It follows that I(z) is naturally isomorphic to
the inverse limit of the sequence A4 <= 4 &= 4 &= ([2], Corollary 1).

In [1], one main ingredient in proving the embedding of 7 = CJ[X ]l in
certain Banach algebras was the following result, of interest in its own right
(where we write 7, : A — A/I{z) for the quotient homomorphism):

THEOREM 9. Let A be a commutative, unital Banach algebra and let
x € A. The following are equivaleni:

(i) © has FCD; :

(ii) there is a (unique) unital homomorphism 6, : F — A/I(z) such that
Or (X) = mp(z).

(See [1], Lemma 3, {2], Proposition 1.)

We shall show that the proof of (i)=(ii) in Theorem 9 may be rather

attractively expressed using the ideas of the present paper. The next lemma
also shows some new properties of elements of finite closed descent.

LEMMA 7. Let A be a commutative, unital Banach algebra and let xz € A
have FCD. Then the sequences A and B in ILGA defined by

A Adm gl 4l

b
B: Awdioag? Boagt
(where each f, is an inclusion) are both stable.

Proof. (i) Let §(z) = N and consider the sequence, say

N N N
Ay: A& a4l ale
r—— LN LN
which is a subsequence of A. Put Iy = Az®; then Iy €= Iy <= ...is a
Mittag-Leffler sequence and so stable by Theorem 4. But also LY (A) C Iy,
50 that Ay is stable by Corollary 1. But then A is stable by Lemma 3.

(ii) We have a short exact sequence in ILG A, namely
0—K— A% B—0,

where pp{a) = az™ € Az" (n > 1) and K is simply the sequence of kernels.
But A is stable by (i), so the stability of B follows from Proposition 1(i).
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Now let z € 4 have FCD, let g, : A — A/Az™ be a quotient mapping
(n > 1). Then, since I(z) = [,,»; As", there is a naturally induced injective
homomorphism, say T : A/I{z) — 11m(A/Am :4y,), where i, : A/Az™Tl —
A/Az™ is the homomorphism induced by the inclusion Azt C Az™.

COROLLARY 2. With the above notation, and with @ having FCD, the
mapping T : AfI(z) — lim(A/Az";i,) 15 an isomorphism.

Proof. For each n we have the canonical short exact sequence
0 — Az™ — A — AfAz™ — 0.

By Lemma 7(ii), the sequence B = (Az™; j,,) (where each 7, is an inclusion)
is stable. Of course, [{B) & [, Az" = I (z) so, by Theorem 5, T effects
an isomorphism, as stated.

We may now at once deduce

Proof of (i)=(i) of Theorem 9. For each n > 1, there is clearly
the unique unital homomorphism 6, : F — A/Az™ such that 6,(X) =

dn(z), given by N o
en(z AkX’“) = g ( 3 /\kwk).
k=0 k=0

Clearly, 0, = infp41 (n > 1), so the sequence (f,) defines a homomor-
phisra, say, 8 : F — lim(A4/Az";4,). But, by Corollary 2, this last algebra
is isomorphic (by the ‘natural 1somorph1sm) to A/I{z), which completes the
proof.

3.5. Elements of locally finite closed descent in o Fréchet algebra. For
this application, which is concerned with extending the results of §3.4 to
Fréchet algebras, the reader is referred to [2] (especially Lemma 7; this was
the example that motivated the ideas of the present paper.)

3.6. The group of units of a Fréchet algebra: Arens-Royden theorems.
Let A be a unital Fréchet algebra (not necessarily commutative), and let
ot A — lim(Ay; dn) be an Arens-Michael representation of A as an inverse
limit of unital Banach algebras. One of the most basic results about Fréchet
algebras is that an element » € A is invertible if and only if 7, (z) is invertible
in A, for every n (see [15], Thecrem 5.2(c}). (From the result of Arens, [4],
Theorem 4.2, there is also the deeper fact that z is right-invertible if and only
if 7, (2:) is right-invertible in A, for every n.) Thus, writing G(4), G(4,) for
the groups of units (i.e. invertible elements) of A, A, respectively, we find
that o induces a topological-group isomorphism, o : G(4) = lim(G(4,,);dn)
(where d,,|G{Ant1) is written simply as d,,).

Each G(A,) is an open subset of A,, and so is complete-metrizable
(in a metric that is topologically equivalent to the metric induced by the
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norm of A,). Thus, say G = (G(A4y);dn)ns>1 is an IL-sequence of complete
metrizable topological groups and continuous homomorphisms and we know
that L(G) = G(A). However, G is not, in general, a Mittag-Leffler sequence,
l.e. it is not always true that d, (Gr,41) is dense in G,,. The following example
is instructive.

ExaMmpLE: A continuous surjection T : A — B of Banach algebras, with
T(G(A)) not dense in G(B). Let A={2€C:|2| <1}, = {z e C:
|z] = 1}. Let A = C(A), the uniform algebra of all continuous, complex-
valued functions on A, let B = C(I') and let T : A — B be the restriction
map. Then T'(A4) = B. However, T(G(A)) is precisely the component of the
identity in G(B) (i.e. it consists of all nowhere-zero continuous functions
on I' that have continuous logarithins); this set is a proper open-and-closed
subgroup G(B), so that T(G(A)) is not dense in G(B).

In fact, this last simple example illustrates the general situation. For a
Fréchet algebra A, we write Go(A) for the component of the identity in the
topological group G(A) and let E(A) be the set of all finite products of
exponentials. It is at least evident that E(A) is a subgroup of Gg(4). We
recall that, if A is a unital Bonach algebra, then E(A) = Go(A). In the case
of a unital Fréchet algebra, E{A) is dense in Go{A4) (see Lemma 9(ii) below)
but, as shown by Davie [6], there are examples (even with A commutative) in
which E(A) # Go(A) (see the discussion of Arens-Royden theorems below).

Lemma 8. Let A, B be unital Fréchet algebras and let T : A — B be a
continuous homomorphism with T(A) dense in B. Then T{E(A)) is dense
in B(B).

Proof. Let h € E(B), say A = € ... e, for some finite subset {b1,-..

.,bg} of B. Since T(A) is dense in B, we can, by choosing ay,...,a; in
A with T(aj) close to b; (7 = 1,...,k), and setting g = e® ...e", make
T(g) = eT(@) | eTle) dloge to b,

CorOLLARY 3. If, in Lemma 8, B is a Banach algebra (with A any
undtal Fréchet algebra), then T'(Go(A)) 1s dense in Go(B).

Prool. This is immediate from the lemma, since E(A) C Gy(A), while
E(B) = Gu(B).

Lemma 0. Let A be o unital Fréchet algebra, with o : A - lim(Ar; dp)
an Arens-Michael representatwn Then c induces zsomorphzsm

= Jm(G(A _
(11) GO(A) & E_ll.’ll(Go(A,J dn), and, moreover, the sequence representing
Go(A) is a Mittag-Leffler sequence.
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Further,
(i) B(A) is dense in Go(A).

Proof. (i) is just the classical result of Michael referred to above,

(ii} Tn the relative topologies of G(A), G(A,) respectively, Go(A4) is
closed in G{A} and Gy{A,) is closed in G(A,). By Corollary 3, for each
1, Tn(Go(A)) is dense in Gg(A,). By Lemma 1 (applied to the IL-sequence
(G{An);dr)), o induces an isomorphism Gp(A4) = lim(Go(An);dn). More-
over, it follows from Corollary 3 that (Go(An);dn) is a Mittag-Leffler se-
quence. :

(ii1) Since, by Lemma 8, m,(E(4)) is dense in Go(4y), for each n, we

deduce from Lemma 1 also that E(A) = Go(A4).

THEOREM 10. Let A be a unital Fréchet algebra, with c: A— fim(An; dy)
an Arens—-Michael representation. Then o induces gn isomorphism

G(A)/Go(4) = Hm(G(An)/Go(An); dn)-

(As usual, we have written dy, : G(Ant1)/Go(An1) — G(A,)/Go(Ay) for
the homomorphism induced on the guotient groups by dy,.)

Proof With a hopefully obvious notation, we consider the short exact
sequence in ILG

0~ Gy — G — G/Gy — 0.
By Lemma 9(ii}, Gy Is a Mittag-Lefller sequence, hence stable by Theorem 4.

Since by Lemma 9 we have L{G) = Gp(A) and L{G) = G(A), the result
follows by Theorem 5.

Remark. Theorem 10 suggests connections with the Arens—Royden
theorem (the exposition in [11], Chapter III, §7 is especially well-suited to
the present section). Let A be a commutative Fréchet algebra. Then there
are, in fact, two theorems that generalize the Arens-Royden theorem for
commutative Banach algebras, one describing G(A)/Gy(A) and the other
describing G(A)/F(A).

It may be useful to recall the example of Davie [6], referred to above, of
a commutative Fréchet algebra with Go(4) # E(A). (I am grateful to Jean
Esterle for drawing my attention to this example.) We shall denote Davig’s
example by D; write N= {1,2,...} and then define

D= {fe C(C): fis bounded on N},

where D is given the topology of uniform convergence on the compact sub-
sets of € and on N. Clearly, D is a commutative Fréchet algebra with iden-
tity. The functions €™ and e~2"* are both in D, so that €>™* is in G(D);
it is not, however, in E(D), since none of its continuous logarithms on C be-
longs to D. However, it is even true that G(D) = Gy(D). For, let f € G(D);
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then it is simple to see that, for each compact subset K of C, there is a
function gx € D such that f(z) = expgx(z) for all z € K UN. Thus
f € E(D) = Go(D). We remark that, if we define the topological space X
to be the union of C and the Stone—Cech compactification SN of N, identified

along N, then A = C(X).

Let @ 4 be the set of all continuous characters on the commutative, unital
Fréchet algebra A. We write w for the weak-* topology o(®a,A) on &4, If
A= @(An;dn) is an Arens—Michael representation of 4, let ¢, be the
set of all characters on A that are continuous with respect to the seminorm
pr on A (in standard notation, see §1). Then the mapping ¢ + ¢ o m,
(¢ € Pa,} is a homeomorphism from the character space of 4, (in its usual
Gelfand topelogy) onto the subset &, of $4. Then &4 = | J_; B, expresses
@4 as the union of an increasing sequence of compact subsets; moreover,
every w-compact subset of $ 4 is a subset of some &,,. However, as remarked
by Davie [6], for many purposes it is more useful to give @4 the so-called
k~topelogy s: this topology is defined by specifying that a subset F of &4 is
s~closed if and only if F M K is w-compact for every w-compact subset K
of @4 (or, equivalently, if and only if F N &, is w-compact for every n). It
is then elementary that w < & and that w|K = &|K for every w-compact
subset K of $4. Also, a function f: &4 — C is k-continuous if and only if
fIK is continuous on K, for every compact subset K of @,4. (Note that if,
for example, ($4;w) is locally compact, then w = &.) One good reason for
preferring & to w is that, when @4 is given the topology k&, then C($4) is a
Fréchet algebra, in the topology of uniform convergence on compact subsets
of @A-

We may now easily deduce the first form of the Arens-Royden theorem
for Fréchet algebras. (As far as I know, this is a new result.)

THEOREM 11. Lel A be o commutative, unital Fréchel algebra, let & 4
have the k-topology &, and let C = C(P ). Then the Gelfand mapping of A
effects an isomorphism

G(A)[Go(A) = G(C)/Go(C).

Proof. By the Arens-Royden theorem for Banach algebras (e.g. [11],
Chapter III, Corollary 7.3), for each n, the Gelfand mapping effects an
isomorphism G(An)/Go(A,) & G(Ch)/Go(Cy), where C, = C($,). The
result now follows at once by applying Theorem 10 to the Fréchet algebras
Aand C.

Remark. Theorem 11 shows that G(A)/Go(A} depends only on the
topology of 4 (either w or x, since w determines x uniquely). The question
of identifying G{C)/Go(C) with some other topological invariant of &, is
then pure topology; we remark that it is not in general equal to H*($4;Z),
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which in fact occurs with the second extension of the Arens—-Royden theorem
(Theorem 12). We merely make the obvious remark that G{C)/Go(C) is
isomorphic to limg H YK;7Z) as K runs through the compact subsets of $4.

In §2 ol [6], Davie proved a different version of the Arens-Royden theorem.
for Fréchet algebras, using E(A) rather than Gg(4). In fact, Davie’s proof
(contained in Theorems 2.2 and 2.3 of [6]) may be rather nicely presented
using the idea of a stable sequence. We shall give this as another illustration
of the ideas of the present paper.

TrueoreM 12 (Davie [6]). With the notation of Theorem 11 (in perticu-
lar, @4 has the topology &), the Gelfand mapping effects an isomorphism

G(A)/E(A) = G(C)/E(C).

Proof. With standard notation A = lim(An;dy), we have, for each n, a
short exact sequence of groups and homomorphisms

0 — Ap 22 G(An) x Cp 25 G(C,) — 0,
where
8a(a) = (e,3) (a €A, au(bg) =be ¥ (beC4,), g Cy),

and a — @ is the Gelfand mapping of A,,.

We claim that the assertion of exactness is essentially a translation of the
Arens-Royden theorem for the Banach algebra A,,. Firstly, 8, is injective,
for if @ € ker#,, then both e = 1 and @ = 0, i.e. a is quasinilpotent, it
follows easily that a = 0. Next, it is clear that im6, < kergn; but also, if
(b, g) € kergpn, then b = €9 so it follows (Arens-Royden for Banach algebras
or, if preferred, the implicit function theorem for Banach algebras) that
there is a unique element ¢ € A, such that hoth b = e®* and @ = g, ie
(b,g) € im@,. That g, is surjective again follows from the Arens-Royden
theorem applied to the Banach algebra A,,. '

It is also clear that the sequences {6,), {¢,) define morphisms of the
obvious sequences in ILGA.. But the kernel sequence (A,,) is just the Arens-
Michael representation of A, so is certainly a Mittag-Leffler sequence and
is thus stable. By Theorem 5 (and using Lemma 9 to identify the inverse
limits), it follows that the inverse-limit sequence

0— A5 ) x ¢ -5 GIC) — 0

is also exact. It is easily checked that the homomorphisms 4 and g are given
by

Bla) = (e*,@) (acd), galbg)=be™ (beG(4), ge0),

and then the exactness translates precisely into the stated theorem.
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Remarks. 1. Following Davie {6, we may then deduce that E(A) is the
path-component of the identity in G(A). Thus, the distinction between the
two extensions of the Arens-Royden theorem is that Theorem 11 decribes
the space of components of G(A), while Theorem 12 describes the space of
path-components. As noted in [6], G(C)/E(C) (and hence also G(A}/ E(A))
is isomorphic to H' (@ 4;Z) (see [11], Chapter III, Corollary 7.4).

2. The fact that the group homomorphism, say I' : G(4) — G(C) (the re-
striction to G(A4) of the Gelfand representation of A), induces isomorphisms
G(A)/E(A) = G(C)/B(C) and G(A)/Gy{A) = G(C)/Go(C), implies that

I also induces an isomorphism
Go(A)/E(A) = Go(C)/E(C).

At the end of the paper (Example 2 following Theorem 16), Go(A) JE(A)
is identifled with a certain cohomology group, which leads to a somewhat
different proof of the isomorphism.

There are a few more comments on the relation between E{A) and
Go(A). Suppose, then, that 4 is a commutative, unital Fréchet algebra, and
define the group homomorphism E : A — E(A) by E(a) = €™ (o & A); of
course, F' is a homomorphism from the additive group of A onto the multi-
plicative group E(A). It is well known that, if A is a commutative Banach
algebra, then ker E is the additive subgroup, say £(4), of A generated by
the idempotents of A (in fact, the proof is included in the Fréchet-algebra,
case in Theorem 13). Every element of £(A) is expressible as a finite sum,
Z?:l n{j)ej, where each n(j) € Z and {e; : 1 < j§ < k} is a finite set of
pairwise orthogonal idempotents. )

To describe ker E in the more general case of a commutative Fréchet
algebra, we need another idea. If A is a Fréchet algebra, we call a sequence
in A, say (ax)rp1, locally finite if and only if, for every continuous, submulti-
plicative seminorm p on A4, there is an integer N = N (p) such that p(ax) = 0
for all k > N. (Equivalently, if 4 = @(An; d,) is an Arens—Michael repre-
sentation of A, then for each n > 1 there is NV = N(n} such that m,(ax) = 0
for all k > N.} It is clear that if (ax) is a locally finite sequence in A then
Y ois1 @k Is convergent in A. Note that, if A is a Banach algebra, then any
locally finite sequence in A is eventually zero.

We now define the set £(4) to consist of all sums 3., n(k)ex, where
(ex)rz1 is a locally finite sequence of idempotents in A and each n{k) € 7Z;
we may always, without loss of generality, suppose the idempotents in the
sequence to be pairwise orthogonal. In case A is a Banach algebra, the new
definition of (A) reduces to the original one. Evidently, £(A) is an additive
subgroup of A and, for each n, 7,(e(A)) C £(A4,). It follows at once that
£(A) C ker E. In fact, we have the following result.
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THEOREM 13. Let A = lim(A,;d,) be o commutative, unital Fréchet
algebra. Then ker E = £{A) and the Arens—Michael isomorphism induces an
isomorphism £(A) =2 lim(e(An); dp ) (where dn = dnle(Ania))-

Proof Let a € ker B; then the Gelfand transform @ is a continuous
integer-valued function on & 4, so, for each n € im @, the set a~1(n) is open-
and-closed in &4 (for the weak*-topology w). For any compact subset K of
& 4, in particular for each &,, @ can take only finitely many different values
on K. Hence @ takes at most countably many different values on @4; let
them be {n(1},n(2),...}. Let Uy = {¢ € $4 : a(¢} = n(k)}; then (Uy) is a
pairwise disjoint sequence of open-and-closed subsets of $4. By the Shilov
idemnpaotent theorem (applied in each Banach algebra A, phis a routine
argument), for each k there is a unique idempotent e € A with €, = 1y,
(the characteristic function of Ug).

For each n, &,, meets at most finitely many of the sete Uy. So, for all k >
N{(n), say, 7 (er) 1s an idempotent in A,, with Gelfand transform zero; thus
mn(ex) = 0 (k > N(n)), so {ex)g>1 is locally finite, Also, a = ¥ 4o 1 n(k)ex,
for both terms of the equation have the same Gelfand transform, while their
difference is in ker E. This proves that £(A4) = ker E.

Clearly, e(A) C lim(e(Ay,); dn ). Conversely, if a € A and if 7,(a) € £(4,)
for every n, then 7,(E(a)) = 1, for all n; thus Fa) == 1 and so a € {4).
This completes the proof.

EXAMPLE. The IL-sequence £(A) = (e(An);dn) is not always stable.
With what is hoped to be an obvious notation, the short exact sequences of
abelian groups and homomorphisms

0 —elAn} — Ag L, E(A,) — 0

define a short exact sequence in ILGA. By Theorem 13, lime(A,) = e(A);
also, lim A, = A, and, by Lemma 9 (E(A,) = Go(4,) for each n), im F(4,)
2 (7g{A). The corresponding inverse-limit sequence is thus

0 — =(A) —>A£>G’0(A) ),

In this last sequence im E = E(4), so if, for example, A is Davie's algebra
D, then E(A) # Go(A). It follows that, for such an algebra, the kernel
sequence e(A) is not stable. {See Example 2 following Theorem 16 for the
determination of H*(g(4)).)

4. IL-sequences of abelian groups. If we specialize the theory of
§2 to IL-sequences of abelian groups, i.e., formally we discuss the category
ILGA, then there is a reasonable measure of the non-stability of a sequence,
in terms of a simple cohomology theory. As explained in §1, such a theory
is discussed in [14], Appendix, in the language of derived functors. We shall
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describe an equivalent approach in the language of sheaves on a very special
topological space.

Let N be the ordered set of natural numbers, N = {1,2, .. .}, and, for each
n €N, let Uy = {1,...,n}. We define a topology o on N by requiring that a
subset U C N is o-open if and only if either (i) U =0 or N, or (ii) U = U,
for some n € N. It is readily checked that o is a non-Hausdorff (but Ty-)
topology on N; we shall write N” for the set N equipped with the topology
. Notice that each n € N has a unique smallest {open) neighbourhood,
namely U,.

Given a sequence X = (X,; fn)n>1 in ILGA, we define 7%, a presheaf
of abelian groups on N7, by setting F* () = 0, F¥ (N} = L(X) and, for
each n € N,

I
.FX(Un) = {(3}‘1, RN In) = 1_[.}{z Iy = f-,;(.’.t?i+1) (1 <i<n— l)} = X,.
i=1

Observe that, since U, is the unique smallest neighbourhood of n, the
direct-limit process used in defining the stalk F¥ of F¥ at n is here trivial,
so that, for each n € N, FY & F¥(U,) =2 X,,. It is then also clear that
F* is even a sheaf (in the sense of Godement; otherwise expressed, it is
a complete presheaf, which is then isomorphic to the corresponding sheaf ).
It should now also be clear, without a more formal discussion, that the
notion of “exact sequence” in the category ILG A corresponds precisely to
the sheaf-theoretic notion; also the inverse-limit functor L translates into
the global section functor for the category of sheaves of abelian groups on
the space N7,

There is a sheaf cohomology theory for sheaves of abelian groups on
a completely arbitrary topological space (originally due to Grothendieck),
which may be constructed, as in [12], §4.3, using the notion of a flabby
resclution. It may be recalled that a flabby sheaf is one in which all the
restriction homomorphisms are surjective; each sheaf has a flabby hull. We
shall explain the translation of this construction into the language of the
category ILGA. Not surprisingly, since the space N” is so special, the flabby
resolution process is very simple to describe.

Thus, let X = (Xp; fa)np: be in ILGA and set X, = [Tp_, Xx (n = 1).
Define j’"vn : X“’n.{.l e }‘Z"n to be the projection onto the first n coordinates.
Evidently, X = ()"fn; fn) is a sequence in ILGA in which each homomor-
phism f,, is surjective. It is also clear that L(?? ) = T1i2, Xi. For each n
define the group homomorphism &, : X, — X, by

En(ﬂﬁ) = ((fl . .fn.-1)($), R fﬂ—l(m):m) (x € Xn),

so that £,(z} is the unique element of F¥(IJ,) that has the element z in
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its nth component. Then ¢, is an injective homomorphism with ime, =

FX(Uy,). It is trivial to check that £,fn = fnénsa for each n, so that the .

sequence (en)n>1 defines an injective morphism & : X' — X in the category
ILGA. The pair (X; g) will be called the flabby hull of X'. (It corresponds
precisely to the sheaf-theoretic flabby hull, when translated into the language
of F*, F*))

There is thus a short exact sequence
(%) 0— X -5 X X¥/ime —0
in ILGA {x is the quotient morphism). Write X/ime =Y = (Yn; gn), s2y;
then Yy, = (TT5y X&)/F*(Un) and g, : Ynt1 ~ ¥, is the map induced on
the quotient groups by the projection map f,,. But it is then clear that each
gn is also surjective, i.e., the short exact sequence (*) is already a complete
flabby resolution of X (when translated into the parallel sheaf-theoretic
language).

We now define

HP(X) = HY(N; F*)  (p>0).
From (%), we then have (using e.g. [12], Théoréme {4.7.1)(a)):

THEOREM 14. Let X be a sequence in ILGA. Then HP{X) =0 (p = 2)
and H(X) = L(X).

The basic theorem of sheaf cohomology (e.g. [12], Théoréme (4.4.2)) then
gives:

THEOREM 15. Given any short exact sequence 0 — X = Y £, Z—=0
in ILGA, there is a (functoriolly determined) ezact sequence of abelian
groups and homomorphisms,

0 — L(x) =2 1) 22, 1)
2, () E, iy 2O, gy .

Remark on the notation. In this last theorem, L is the inverse-
limit functor, as described in §1, H* is the first cohomology functor and ¢ is
the connecting homomorphism arising from the given short exact sequence.
Explicit descriptions of H! and of ¢ will be given after the next result.

We now wish to give an explicit description of the cohomology groups
HY(X). Thus let X = (X,; f.) be a sequence in ILGA, Let X = J]>7; X,
(= L{X}) and define the mapping A: X -+ X by

Alzr,32,...) = (21 ~ fiza, 29 — fows,...).

Then A is a group endomorphism and, clearly, ker A = L(X).
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ProroOSITION 3. With the above notation,
HYX) = X/im A.

Proof Let X = (Xn, fa)nz1 and let (X g) be its flabby hull. We write

A’D for the sequence X augmented on the left by 0. Thus, say, Ay is the
sequence

Xo: o x Lrx, L
where by =0 and h,, = :,,51 (n > 2). We define a morphism 6 : X — fo by
setting 61 = 0 (6, : X1 — 0) and, for each n > 2,

bn(w1, -y ®n) = (21~ fie, 22 — faZa, .., Tact — fo—1Zn).
It is readily verified that the sequence (6,,) does define a morphism.
For every n > 1, keré, = ime,, so there is a short exact sequence in
ILGA

0— X s ¥ S ims—0.
Since X is flabby, H 1(.5? ) == 0; hence part of the exact cohomology sequence
given by Theorem 15 is

0 — L{x) 2 p(xy 2O

so that H*(X) & L({im §)/ im L(§).
Forn 2> 2,

» L{im §) — HY(X) — 0,

imé, = {(»"31‘".}”1502,---,$n~1—fn—1$n) : (mla"'a

n n-—-1
.’Iln) &3 H.Xk} = H Xg.
k=1 k=1
It follows that L(4) = A, while L{im§) & [])..; Xx = X, and the result is
proved.

COROLLARY 4. Let X be a sequence in ILGA. Then X iz stable if and
only if HY(X)=0.

Proof This is immediate from the definition of stability and the propo-
gition just proved.

Remarks. (i) Suppose that o : X — ¥ is a morphism in ILGA. Then,
with what is hoped to be an obvious notation, there is a natural mapping,
say & : X — Y, defined by &{z1,za,...) = (@i (z1), @a(ze),...). If we write
Ax, Ay for the endomorphisms of X, ¥ respectively (defined as was A just
before the last proposition), then it is immediately checked that GAx =
Ay . Thus & naturally induces a homomorphism X/im Ay — ¥/im Ay;
it is this homomorphism which is the translation of the functorially induced
H'{(a) in terms of the concrete representation of the H-groups given by
the proposition.
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(ii) Similarly, if we have a short exact sequence 0 — & I N
Z — 0in ILGA, then we may give a concrete description. of the connecting
homomorphism o that appears in the statement of Theorem 15. We recall
that o : L(Z) — H(X). So, given a sequence z = (21,22,...) € L(Z), we
have z € Z = [, Z, and Az(z) = 0. We then choose y € ¥ such that
E(y) = z and then note that E(Ay(y)) = 0, 50 that there is some z € X
with &(z) = Ay (y). It is then not hard to verify that the coset x +im Ax,
an element, of A(X), is uniquely determined by the original z € L{Z). It is
the coset © + im Ax that is the element o(z).

COROLLARY 5. Let0 — X - Y £, Z — 0 be any short exact seguence
in ILGA, in which ) is stable. Then the associated connecting homomor-
phism effects an isomorphism

HY(X) =2 L(Z)/im L(3).

Proof. Since Y is stable, we have H*()?) = 0, by Corollary 4. But then
part of the exact cohomology sequence given by Theorem 15 is

L) 22, Lz s BY(X) 0,
from which the result is immediate.
The following result summarizes what has, mostly, already been proved.

THEOREM 16. Let X be a sequence in ILGA. Then the following prop-

erties are equivalent:
(i) & is stable;

(i) H1(X) = 0;

(iii) for every short ezact sequence 0 = X — Y —» Z — 0 in ILGA, the
inverse-limit sequence

0 -~ L(X) — L(y) — L(Z) ey )
18 also exoct.

Proof. The equivalence of (i) and (ii) is Corollary 5. That (i) implies (iii)
follows from Theorem 5 (or, alternatively, we may deduce that (ii) implies
(iii) from Theorem 15).

We shall complete the proof by showing that (iii) implies (ii). We consider
the canonical flabby resclution

0— X X2 ¥/ime — 0,
where (X;¢) is the flabby hull of X. By the assumption that (iii) holds, the
sequence
(%) 0 — L{X)

is exact.

YO, &) 2 L&/ ime) — 0
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But, from Theorem 15, there is another exact sequence, part of which
(since H1(X) =0) is
() L(F) 2, (¥ ime) 2 HY(X) ~— 0,

From (x), L(n) is surjective and then, from (#%), HI(X) = 0.

EXAMPLES. 1. At the end of §1, we gave an example of a non-stable
IT-sequence Z, of closed ideals in a Mittag-Leffler sequence A of Banach al-
gebras, where A was a standard Arens-Michael representation of the algebra
A = O(C) of all entire functions in one variable. Using the short exact se-
quence occurring in that example, together with Corollary 5, we may deduce
the more precise statement that

HY(T) = C[[=]l/0(C).

(Here, as in the original discussion of the example, an entire function is
identified with the formal power series provided by its Taylor series about 0.)

2. In the example at the end of §3.6, concerning the sequence e{A4) of
kernels of exponential maps, it was shown that the sequence need not be
stable. Applying Corollary 5 to the short exact sequence in that example at
once gives that, for every commutative Fréchet algebra A,

H'(e(A)) = Go(4)/ E(A).

Using this isomorphism, we may give (in the notation of Theorem 11) the
alternative proof of the result referred to in Remark 2, following Theorem 12.

THEOREM 17. Let A be a cormmutative unital Fréchet algebra, let $ 4 have
the k-topology k, and let C = C($4). Then the Gelfand mapping induces an
isomorphism Gp{A)/E(A) = Go(C)/E(C).

Proof Remark first that, if B is any commutative unital Banach alge-
bra, then the Gelfand mapping for B induces an isomorphism between z(B),
the additive subgroup generated by the idempotents of B, and the corre-
sponding group e(C($p)) (essentially using well-known results recalled in
the proof of Theorem 13).

If we now apply this result to each Banach algebra A, in an Arens—
Michael representation of A4, then it is clear that we obtain an isomor-
phism in the category ILGA between the sequences £(4) and £(C). Thus
HY(e(A)) = H'(£(C)), from which the theorem follows by the remark of the
last paragraph.

Remark. The group Gq(A)/E(A) thus depends only on the topology of
& 4; it is an invariant that is “invisible” to an Arens-Michael representation,
since Go(An)/E(Ar) is trivial for each n.
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