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ASYMPTOTIC BEHAVIOUR OF STOCHASTIC SYSTEMS
WITH CONDITIONALLY EXPONENTIAL

DECAY PROPERTY

Abstract. A new class of CED systems, providing insight into behaviour
of physical disordered materials, is introduced. It includes systems in which
the conditionally exponential decay property can be attached to each en-
tity. A limit theorem for the normalized minimum of a CED system is
proved. Employing different stable schemes the universal characteristics of
the behaviour of such systems are derived.

1. Introduction. Let {Ai : i = 1, 2, . . .} and {Bi
j : i, j = 1, 2, . . . , j 6=

i} be two independent sequences of nonnegative independent identically dis-
tributed (i.i.d.) random variables (r.v.’s). Let the symbol “�” stand for one
of the three operations: summation, minimum, or maximum, and let n ∈ N,
b̃n, r, s > 0, and c ≥ 0 be constants.

Definition. A sequence X1n, . . . , Xnn of independent r.v.’s is called
the CED system given {Ai : i = 1, 2, . . .} and {Bi

j : i, j = 1, 2, . . . , j 6= i}
with the operation � and the parameters n ≥ 2, b̃n, c, r, and s iff it has the
conditionally exponential decay property , i.e., the conditional tails

(1) P (Xin ≥ x | Ai = a, b̃n(Bi
1 � . . . �Bi

i−1 �Bi
i+1 � . . . �Bi

n) = b)

have for each i = 1, . . . , n a common exponential decay form:

(2) 1−G(x | a, b) ≡
{

exp(−axr) if c = 0,
exp(−a min(xr, (b/c)s)) if c > 0,

for a, b, x ≥ 0.
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Note that when the parameter c is positive each r.v. Xin, interpreted as
an element of the CED system, is infinite with a nonzero probability, i.e., its
distribution function (d.f.) is improper. The parameter n simply indicates
the number of elements in the system.

The right-hand side of formula (2) satisfies all requirements of the con-
ditional tail (1) [Billingsley (1979)]. Namely, it is a Borel function with
respect to a and b, and is nonincreasing with respect to x. Moreover, it is
nonnegative and at most 1. It turns out that this suffices for construction of
a sequence of CED systems given the same families of r.v.’s with the same
operation � and the same parameters c, r, s.

Existence Theorem. Let FA and FB be d.f.’s such that FA(0) = 0
and FB(0) = 0. Let {b̃n : n = 2, 3, . . .} be a sequence of positive constants,
an operation � = +, min or max, r, s > 0, and c ≥ 0. On some probability
space there exist :

• independent sequences {Ai : i = 1, 2, . . .} and {Bi
j : i, j = 1, 2, . . . ,

j 6= i} of nonnegative i.i.d. r.v.’s such that FA and FB are d.f.’s of Ai and
Bi

j , respectively ;
• and a sequence

(3)

X12 X22

X13 X23 X33
...

X1n X2n . . . Xnn
...

of CED systems, n = 2, 3, . . ., given {Ai : i = 1, 2, . . .} and {Bi
j : i, j =

1, 2, . . . , j 6= i} with the operation � and the parameters n, b̃n, c, r, and s.

The above theorem allows us to define the asymptotic description of
the behaviour of a CED system in Section 2, which leads to a new result
for random variables which are infinite with a nonzero probability. The
result, presented in Theorems 1 and 2, provides the universal characteristics
of CED systems. Moreover, the differential equation obtained in Theorem
2 may be recognized as the most useful tool in statistical mechanics [Van
Kampen (1987)], namely, a generalized master equation. Section 3 contains
the proofs of all theorems formulated in this paper. In the last section we
sketch the application of the presented approach to disordered systems in
the case of dielectric relaxation in polar materials and in the analysis of
nonexponential first-order chemical reactions.

2. Asymptotic behaviour of CED systems. The main idea of sta-
tistical physics [Van Kampen (1987)] assumes that the behaviour of any
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stochastic physical system as a whole is represented by an appropriate
averaging over its elements. For CED systems the averaged minimum
m̃ min(X1n, . . . , Xnn), m̃ > 0, is proposed, which has been suggested by
applications [Weron (1991)]. When the parameter n is sufficiently large
(i.e., the system consists of a very large number of elements) the behaviour
of the system can be approximately described by the following limit in dis-
tribution:

(4) X = lim
n→∞

m̃n min(X1n, . . . , Xnn)

if it exists. Here m̃n, n = 2, 3, . . . , are positive normalizing constants. Imme-
diately, there arises a question if and under what assumptions the limiting
r.v. X exists.

Theorem 1. Let {Ai : i = 1, 2, . . .} and {Bi
j : i, j = 1, 2, . . . , j 6= i}

be independent sequences of nonnegative i.i.d. r.v.’s such that the d.f. of
B1

2 is continuously differentiable. Let � = +, min, or max, and r, s > 0.
Assume that for sequences of positive constants {b̃n : n = 2, 3, . . .} and
{m̃n : n = 2, 3, . . .} the following nonzero limits in distribution exist :

(5) A = lim
n→∞

A1 + . . . + An

m̃r
n

and

(6) B = lim
n→∞

m̃r/s
n b̃n(B1

2 � . . . �B1
n).

Additionally , let the limits A and B be finite with probability 1.
For some c ≥ 0 consider a sequence (3) of CED systems, n = 2, 3, . . . ,

given {Ai : i = 1, 2, . . .} and {Bi
j : i, j = 1, 2, . . . , j 6= i} with the opera-

tion � and parameters n, b̃n, c, r, and s. Then the nondegenerate limit in
distribution

X = lim
n→∞

m̃n min(X1n, . . . , Xnn)

exists. Moreover , the d.f. F of X has the form

(7) F(x) = 1− exp
( x∫

0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
,

where FA and FB are the d.f.’s of A and B, respectively , and L(F ; ·) denotes
the Laplace transform of a d.f. F .

The existence of the limiting random properties A and B (see (5) and
(6)) is therefore a sufficient condition for the possibility of asymptotic char-
acterization of the behaviour of the CED system by the r.v. X, given by (4).
Moreover, the above theorem gives us the connections between the d.f.’s of
A, B, and X. To specify the form of F (see (7)), let us first focus our atten-
tion on the �-stability property. Although the stability concept associated
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with operations over the set of i.i.d. r.v.’s can be introduced in the general
case, we restrict ourselves to nonnegative r.v.’s.

Let Z1, Z2, . . . be nonnegative nondegenerate i.i.d. r.v.’s which are finite
with probability 1. The distribution of Z1 is �-stable iff for any n there
exists a positive constant ãn such that

Z1
d= ãn(Z1 � . . . � Zn),

where “ d=” denotes equality in distribution. It is known that the stan-
dard summation scheme produces nonnegative α-stable distributions [Feller
(1966), Zolotarev (1986), Janicki and Weron (1994)], and the maximum
and minimum schemes lead to nonnegative extreme-value laws [Leadbet-
ter, Lindgren and Rootzen (1986)]. For other possible stable schemes, see
Mittnik and Rachev (1991), Rachev (1991). The important property of
stable distributions is that they have domains of attraction. Namely, for
nonnegative i.i.d. r.v.’s Z1, Z2, . . . which are finite with probability 1, if the
nondegenerate limit in distribution Z = limn→∞ãn(Z1 � . . .�Zn) exists then
it is �-stable. (Here ãn, n = 1, 2, . . . , are positive normalizing constants.)

For convenience we collect in the following table the forms of the d.f.’s
F� of �-stable laws considered in the present paper (� = +, min, and max).

� Stable scheme Form of F�

+ Z1
d= ãn(Z1 + . . .+ Zn) L(F�;x) = exp(−(Λx)α), x ≥ 0,

for some 0 < α < 1, Λ > 0

min Z1
d= ãnmin(Z1, . . . Zn) F�(x) = 1− exp(−(Λx)γ), x > 0,

for some γ > 0, Λ > 0

max Z1
d= ãnmax(Z1, . . . Zn) F�(x) = exp(−(Λx)−γ), x > 0,

for some γ > 0, Λ > 0

From the above stable schemes it follows that the d.f.’s FA and FB take
on specific forms. This leads to:

Theorem 2. Under the assumptions of Theorem 1:

• When c = 0 the limiting d.f. F, given by (7), has the form

(8) F(x) = 1− exp(−(Λ1x
r)α).

• When c > 0 there are two possible types of the d.f. F:

F(x) = 1− exp(−(Λ1 min(xr, (b0/c)s))α)

and the solution of the differential equation

(9)
dF
dx

(x) = αrΛα
1 xrα−1(1− FB(cxr/s))(1− F(x)), F(0) = 0,
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where:

(10)

L(FB ; x) = exp(−(Λ2x)γ) for some 0 < γ < 1, Λ2 > 0 if � = +;

FB(x) = 1− exp(−(Λ2x)γ) for some γ > 0, Λ2 > 0 if � = min;

FB(x) = exp(−(Λ2x)−γ) for some γ > 0, Λ2 > 0 if � = max .

In all cases, x ≥ 0, 0 < α ≤ 1, and Λ1 is a positive constant.

3. Proofs

P r o o f o f t h e E x i s t e n c e T h e o r e m. To prove the existence the-
orem we construct first a probability space (Ω,B, P ). Define R+ = R+ ∪
{+∞}. Let

Ω1 = R+ = {a1 ∈ R+}
and for n > 1,

Ωn = R2n−1
+ × Rn

+

= {(an, b1
n, . . . , bn−1

n , bn
1 , . . . , bn

n−1, x1n, . . . , xnn) ∈ R2n−1
+ × Rn

+}
be measurable spaces with the corresponding Borel σ-fields Bn. Since
G(x | a, b) (see (2)) as a function of x is a d.f., improper in case c > 0,
it defines a probability measure µ(· | a, b) on R+ for any fixed a, b ∈ R+.
Namely, for a Borel subset C of R+,

(11) µ(C | a, b) =
∫
C

dG(x | a, b)

and

(12) µ({+∞} | a, b) = 1−
∞∫
0

dG(x | a, b).

Then the probability measure Pn on the product space (
∏n

k=1 Ωk,
∏n

k=1 Bk)
given by

(13) Pn(C)

=
∫

R+

. . .
∫

R+

{ ∫
R+

. . .
∫

R+

1C dµ(x12 | a1, b̃1b
1
2) . . . dµ(x1n | a1, b̃n(b1

2 � . . . � b1
n))

. . . dµ(xnn | an, b̃n(bn
1 � . . . � bn

n−1))
}

dFA(a1) . . .

. . . dFA(an)dFB(b1
2) . . . dFB(bn

n−1)

is well defined [Billingsley (1979)]. Moreover, the family {Pn : n = 1, 2, . . .}
is consistent. Therefore, it follows from the Kolmogorov extension theorem
[Breiman (1992)] that there exists a probability measure P on the infinite
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product space (Ω,B), where Ω =
∏∞

n=1 Ωn and B =
∏∞

n=1 Bn, such that

(14) P |Πn
k=1Bk

= Pn.

It will now be shown that the projections, defined for ω ∈ Ω,

(15)

Ai(ω) = ai, i = 1, 2, . . . ,

Bi
j(ω) = bi

j , i, j = 1, 2, . . . , i 6= j,

Xin(ω) = xin, n = 2, 3, . . . , i = 1, . . . , n,

are r.v.’s satisfying the conclusion of the existence theorem. Note that the
projections (15) are directly related to the spaces Ωn, n = 1, 2, . . . , which
is illustrated in the following table:

Space Projections

Ω1 A1

Ω2 B12 A2, B
2
1

X12 X22

Ω3 B13 B23 A3, B
3
1 , B

3
2

X13 X23 X33
...

...
Ωn B1n B2n B3n . . . Bn−1n An, B

n
1 , . . . B

n
n−1

X1n X2n X3n . . . Xn−1,n Xnn
...

...

For finite subsets S1 ⊂ N and S2 ⊂ {(j, k) ∈ N×N : j 6= k} let m denote
the greater of max S1 and max{max(j, k) : (j, k) ∈ S2}. For any positive
constants ãi, i ∈ S1, and b̃k

j , (j, k) ∈ S2, it follows from (14) and then from
(11)–(13) that

P (Ai ≤ ãi, i ∈ S1, Bk
j ≤ b̃k

j , (j, k) ∈ S2)

= Pm(Ai ≤ ãi, i ∈ S1, Bk
j ≤ b̃k

j , (j, k) ∈ S2)

=
∏
i∈S1

FA(ãi)
∏

(j,k)∈S2

FB (̃bk
j ).

Hence, for any i, j ∈ N, i 6= j, the functions FA and FB are d.f.’s of Ai and
Bi

j , respectively, and Ai, i = 1, 2, . . . and Bi
j , i, j = 1, 2, . . . , i 6= j, form

independent sequences of nonnegative i.i.d. r.v.’s.
To show that for the projections Xin, Ai, B

i
1, . . . , B

i
i−1, Bi

i+1, . . . , B
i
n the

conditional tail (1) has the form (2) for each n ∈ N and 1 ≤ i ≤ n it is
enough to prove that for any subset C = {Ai ∈ C1, b̃n(Bi

1 � . . . � Bi
i−1 �

Bi
i+1 � . . . �Bi

n) ∈ C2}, where C1, C2 are Borel subsets of R+, we have
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(16) P ({Xin ≥ x} ∩ C)

=
∫
C

{1−G(x | Ai, b̃n(Bi
1 � . . . �Bi

i−1 �Bi
i+1 � . . . �Bi

n))} dP.

From (11)–(14),

P ({Xin ≥ x} ∩ C)

= Pn(Xin ≥ x,Ai ∈ C1, b̃n(Bi
1 � . . . �Bi

i−1 �Bi
i+1 � . . . �Bi

n) ∈ C2)

=
∫

R+

. . .
∫

R+

1C1(ai)1C2 (̃bn(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))

×
{ ∫

R+

1[x,∞](xin) dµ(xin | ai, b̃n(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))
}

× dFA(ai) dFB(bi
1) . . . dFB(bi

i−1) dFB(bi
i+1) . . . dFB(bi

n).

For any fixed a, b ∈ R+, (11) and (12) give us∫
R+

1[x,∞](xin) dµ(xin | a, b) = 1−G(xin | a, b).

Therefore
(17) P ({Xin ≥ x} ∩ C)

=
∫

R+

. . .
∫

R+

1C1(ai)1C2 (̃bn(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))

× {1−G(xin | ai, b̃n(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))}

× dFA(ai)dFB(bi
1) . . . dFB(bi

i−1)dFB(bi
i+1) . . . dFB(bi

n).

On the other hand,

(18)
∫
C

{1−G(x | Ai, b̃n(Bi
1 � . . . �Bi

i−1 �Bi
i+1 � . . . �Bi

n))} dP

=
∫
C

{1−G(x | Ai, b̃n(Bi
1 � . . . �Bi

i−1 �Bi
i+1 � . . . �Bi

n))} dPn

=
∫

R+

. . .
∫

R+

1C1(ai)1C2 (̃bn(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))

× {1−G(xin | ai, b̃n(bi
1 � . . . � bi

i−1 � bi
i+1 � . . . � bi

n))}

× dFA(ai) dFB(bi
1) . . . dFB(bi

i−1) dFB(bi
i+1) . . . dFB(bi

n).

Comparing the results (17) and (18) we obtain (16), which completes the
proof.
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P r o o f o f T h e o r e m 1. In CED systems the form of the condi-
tional tail (1) does not depend on i (see (2)). Hence, the independent r.v.’s
X1n, . . . , Xnn are identically distributed and we have

P (m̃n min(X1n, . . . , Xnn) ≥ x) = (P (X1n ≥ x/m̃n))n.

Consequently, the d.f. F of X equals

(19) F(x) = 1− lim
n→∞

(P (X1n ≥ x/m̃n))n

and in order to show that the limiting r.v. in (4) exists, it is enough to prove
that the limit on the right-hand side of (19) exists.

C a s e 1: c = 0. By the law of total probability, from property (2) we get

P (X1n ≥ x) = L(FA; xr),

where FA is a d.f. of A1. Consequently,

(P (X1n ≥ x/m̃n))n = (L(FA; (x/m̃n)r))n.

On the other hand, by assumption (5),

(20) lim
n→∞

(L(FA; (x/m̃n)r))n = L(FA; xr).

Therefore, the limiting d.f. F in (19) exists and has the form

F(x) = 1− L(FA; xr),

which is in agreement with (7) when c = 0.

C a s e 2: c > 0. By the law of total probability, from (2) we get

P (X1n ≥ x) =
∞∫
0

∞∫
0

exp(−a min(xr, (b/c)s)) dFA(a) dFB,n(b),

where FB,n(b) is the d.f. of b̃n(B1
2 � . . . � B1

n) (see (1)). Therefore by the
Fubini theorem we have

P (X1n ≥ x/m̃n) =
c(x/m̃n)r/s∫

0

L(FA; (b/c)s) dFB,n(b)

+ L(FA; (x/m̃n)r)(1− FB,n(c(x/m̃n)r/s)).

As FB , the d.f. of B1
2 , is a continuously differentiable function, FB,n is also

continuously differentiable, and for x > 0 we obtain

(21)
d

dx
P (X1n ≥ x/m̃n) = (1− FB,n(c(x/m̃n)r/s))

d

dx
L(FA; (x/m̃n)r).

(Note that for x = 0 the term d
dxL(FA; (x/m̃n)r) can be infinite, see (24).)
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From (21) we get

d

dx
(P (X1n ≥ x/m̃n))n = n(P (X1n ≥ x/m̃n))n−1

× (1− FB,n(c(x/m̃n)r/s))
d

dx
L(FA; (x/m̃n)r),

which is equivalent to

(22)
d

dx
ln(P (X1n ≥ x/m̃n))n

= (P (X1n ≥ x/m̃n))−1(1− FB,n(c(x/m̃n)r/s))

× n
d

dx
L(FA; (x/m̃n)r).

To prove that the limit in (19) exists let us first show that the right-hand
side of (22) has a limit as n →∞:

(i) Since min(xr, (b/c)s) ≤ xr, we have

(23) L(FA; (x/m̃n)r) ≤ P (X1n ≥ x/m̃n) ≤ 1.

From (20), limn→∞L(FA; (x/m̃n)r) = 1 and so

lim
n→∞

(P (X1n ≥ x/m̃n))−1 = 1.

(ii) It follows from assumption (6) that

lim
n→∞

FB,n(c(x/m̃n)r/s) = FB(cxr/s).

(iii) For any nonnegative r.v. A with d.f. FA it follows from the Lebesgue
theorem that

(24)
d

dx
L(FA; x) = −

∞∫
0

ae−ax dFA(a),

and we have
d

dx
(L(FA; (x/m̃n)r))n =

d

dx
L(FA,n; xr)(25)

= − rxr−1
∞∫
0

ae−axr

dFA,n(a),

where FA,n is the d.f. of the normalized sum (A1 + . . . + An)/m̃r
n. This

normalized sum is assumed to tend in distribution to the r.v. A (see (5)),
and so for any x > 0,

(26) lim
n→∞

∞∫
0

ae−ax dFA,n(a) =
∞∫
0

ae−ax dFA(a).
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On the other hand, from (24) we get

(27) −rxr−1
∞∫
0

ae−axr

dFA(a) =
d

dx
L(FA; xr).

Therefore from (25)–(27) we obtain

(28) lim
n→∞

d

dx
(L(FA; (x/m̃n)r))n =

d

dx
L(FA; xr).

Since

n
d

dx
L(FA; (x/m̃n)r) = (L(FA; (x/m̃n)r))−(n−1) d

dx
(L(FA; (x/m̃n)r))n

it follows from (20) and (28) that

lim
n→∞

n
d

dx
L(FA; (x/m̃n)r) =

d

dx
lnL(FA; xr).

Consequently, the right-hand side of (22) has a limit as n → ∞, equal to
(1− FB(cxr/s))(d/dx) lnL(FA; xr).

Let us now prove that limn→∞(P (X1n ≥ x/m̃n))n exists. For conve-
nience define Sn(x) ≡ (P (X1n ≥ x/m̃n))n. Let x, x0 > 0. Integrating (22)
on the interval [x0, x] (or [x, x0]) we have

(29) ln
(

Sn(x)
Sn(x0)

)
=

x∫
x0

(P (X1n ≥ u/m̃n))−1(1− FB,n(c(u/m̃n)r/s))

× n
d

du
lnL(FA; (u/m̃n)r) du.

For any u such that min(x, x0) ≤ u ≤ max(x, x0) we have

0 ≤ (P (X1n ≥ u/m̃n))−1 ≤ (P (X1n ≥ max(x, x0)/m̃n))−1,

0 ≤ 1− FB,n(c(u/m̃n)r/s) ≤ 1,

and from (24),

0 ≤ −n
d

du
L(FA; (u/m̃n)r) ≤ −c1n

d

du
L(FA; (u/m̃n)r)

∣∣∣∣
u=min(x,x0)

,

where c1 is a positive constant. Consequently, we deduce from (29) by means
of the Fatou lemma that for any x, x0 > 0 the following limit exists:

(30) lim
n→∞

Sn(x)
Sn(x0)

= exp
( x∫

x0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
.

Let x0 > 0 be fixed. We will evaluate the limit limn→∞Sn(x0). The
sequence Sn(x0) is bounded by (23). Hence, there exists a convergent sub-
sequence Snk

(x0) with a limit S(x0). Moreover, by (20) we have

0 < L(FA; xr
0) ≤ S(x0).
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Therefore, by (30), for any x > 0 the limit

S(x) ≡ lim
k→∞

Snk
(x)(31)

= S(x0) exp
( x∫

x0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
also exists. Observe now that taking the limit as k →∞ we have, by (23),

L(FA; xr) ≤ S(x) ≤ 1

and hence limx→0S(x) = 1. On the other hand, by (31),

lim
x→0

S(x) = S(x0) exp
( 0∫

x0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
.

Thus

lim
k→∞

Snk
(x0) = S(x0) = exp

( x0∫
0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
.

Since we can repeat the same arguments for any convergent subsequence of
Sn(x0) we see that they all have the same limit and

lim
n→∞

Sn(x0) = exp
( x0∫

0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
.

Combining the above result with (30) we conclude that for any x > 0 we
have

lim
n→∞

Sn(x) = exp
( x∫

0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
,

which obviously does not depend on x0. Therefore we obtain

F(x) = 1− lim
n→∞

(P (X1n ≥ x/m̃n))n

= 1− exp
( x∫

0

(1− FB(cur/s))
d

du
lnL(FA; ur) du

)
.

Consequently, the limiting r.v. X in (4) exists and its d.f. F has the
form (7).

P r o o f o f T h e o r e m 2. The r.v. A (see (5)) is the limit in distribu-
tion of the normalized sums of nonnegative i.i.d. r.v.’s. Therefore, from the
theory of stable laws, it has to be either α-stable (stable with respect to the
summation) or degenerate (A = a0 with probability 1, where a0 > 0 under
the assumptions of the theorem). Consequently, we have

(32)
d

du
lnL(FA; ur) = −αrΛα

1 urα−1,
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where α = 1 and Λ1 = a0 in the degenerate case; otherwise, 0 < α < 1 is an
index of stability and Λ1 is a positive constant.

Similarly, the limiting r.v. B (see (6)) has to be either �-stable or degen-
erate (B = b0 with probability 1, b0 > 0). Therefore, for c > 0 we deduce
from (7) and (32) that in the degenerate case

F(x) = 1− exp(−(Λ1 min(xr, (b0/c)s))α).

When B is nondegenerate it is �-stable and its d.f. FB is a continuous
function. Hence, the d.f. F is differentiable and by (7) and (32) it satisfies
the differential equation (9).

When c = 0 we obtain (8) from (7) and (32).

4. Applications. In the past decade, a considerable attention has
been paid to attempts to establish fundamental physical models for the ex-
perimentally observed “universal characteristics” in dynamical properties of
disordered physical systems such as amorphous semiconductors, insulators,
polymers, molecular solid solutions and glasses [Jonscher (1983), Palmer
et al . (1984), Montroll and Bendler (1984), Klafter and Shlesinger (1986),
Dissado and Hill (1987), P lonka (1991), Scher et al . (1991), Klafter et
al . (1992), Hunt (1994)]. From the mathematical point of view, the most
important and puzzling problem is to recognize the stochastic dependence
between variables describing individual entities constituting the system that
leads to the universal characteristics. Inspired by the physical investigations
[Klafter and Shlesinger (1986), P lonka (1991), Weron and Jurlewicz (1993)]
we present in this section an abstract stochastic description, based on the
concept of CED systems, for two examples of disordered materials, hoping
that it may be helpful in searching for the solution of the above problem.

Example 1 (Dielectric relaxation in dipolar materials). The physical ba-
sis for the dielectric response behaviour in the bound dipole class has been
the subject of extensive research [Jonscher (1983), Montroll and Bendler
(1984), Klafter and Shlesinger (1986), Dissado and Hill (1987), Weron and
Weron (1987), Scher et al . (1991), Weron (1991) and Weron (1992)]. It has
become clear that the functions which describe the dielectric relaxation in
condensed systems deviate considerably from the predictions of the expo-
nential relaxation law [Jonscher (1983), Dissado and Hill (1987)]. On the
basis of experimental observations it has been argued that from two types
of function proposed, the “stretched exponential” function

(33) φ(t) = exp(−(ωpt)1−n)

and the “double-power” type function

(34) −dφ(t)
dt

∝
{

(ωpt)−n for t � 1/ωp,

(ωpt)−m−1 for t � 1/ωp,



Asymptotic behaviour of stochastic 391

the second one fits the observed behaviour better. Here φ(t) is the so-called
relaxation function of the system, 0 < n,m < 1, and ωp is a characteristic
constant. The relaxation function φ(t) expresses the probability that the
system, consisting of a large number N of relaxing dipoles, as a whole does
not change its initial state up to time t, so it has to be given by [Weron
(1991)]

(35) φ(t) = lim
N→∞

P (ãN min(θ1N , . . . , θNN ) ≥ t),

where ãN is a suitable normalizing constant, and the r.v. θiN is the time
needed for changing the initial orientation by the ith dipole, 1 ≤ i ≤ N .

Let us find now the direct relation of the concept of the CED system to
the dielectric relaxation in dipolar materials. In general, because of the clus-
ter (“defect” region) structure of these materials [Dissado and Hill (1987)],
individual dipoles and their local environment do not remain independent
during the process of relaxation. In this picture, not every dipole subject to
an external field has to change its initial position with probability 1, even
after a very long time. There is a constraint given by the time of structural
reorganization of the slowest cluster in the surroundings. In a system con-
sisting of a number N of relaxing dipoles, the probability that the ith dipole
has not changed its initial position up to time t given its relaxation rate βi

and the maximum of the times ηi
j , j 6= i, of structural reorganization in

all surrounding clusters (under a suitable normalization) is equal to [Weron
and Jurlewicz (1993)]

P (θiN ≥ t | βi = b, b̃N max(ηi
1, . . . , η

i
i−1, η

i
i+1, . . . , η

i
N ) = t′)

= exp(−b min(t, t′))

for b̃N > 0, b, t, t′ ≥ 0. Hence, the sequence θ1N , . . . , θNN is a CED system
given {βi} and {ηi

j} with the operation � = max and with parameters
N, b̃N , c = 1 and r = s = 1. Therefore, under the assumptions of Theorems 1
and 2 which are expected to be satisfied from physical considerations, the
relaxation function (35) is well defined and has the form φ(t) = 1−F(t) for
F(t) taken from (7). Moreover, by (9) and (10), it satisfies the differential
equation

dφ

dt
(t) = −αΛ(Λt)α−1(1− exp(−(Λt)−γ/k))φ(t).

Here Λ = Λ1 and k = (Λ2/Λ1)γ . The above equation is called the general
relaxation equation [Weron (1992)] and, as shown in [Weron and Jurlewicz
(1993)], its solution has the double-power form (34) if and only if γ ≥ α.
The exponents n, m of the power law are

n = 1− α and m =
{

α/k if γ = α,
γ − α if γ > α.
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The CED system idea also yields the stretched exponential form (33) and
the conventional exponential form φ(t) = exp(−Λt), Λ > 0, of the relaxation
function (35). These forms follow from (7) when the parameter c is assumed
to be equal to 0. This corresponds to the case when the cluster structure
is neglected and the interpretation of relaxation phenomena is based on
the concept of a system of independent exponentially relaxing dipoles. The
exponential relaxation, not obeyed by most of the investigated systems,
is obtained in the very special case of degenerate limit limN→∞(β1 + . . .
+ βN )/aN .

Example 2 (Nonexponential first-order reactions). Classical chemical
kinetics formulated for isolated reactions in homogeneous systems fails to
describe experimental data even for elementary reactions at low tempera-
tures or in very short time periods [P lonka (1991)]. Lowering the tempera-
ture to slow down the reaction rate and to use the standard spectroscopic
techniques one usually vitrifies the system, and in glasses one is forced to
deal with the full complexity of the disordered medium.

On the basis of experimental data it has been found [P lonka (1991)]
that bimolecular reactions A+B → AB are adequately described by kinetic
equations for the concentrations cA and cB of reacting particles A and B,
respectively, with a time-dependent reaction rate coefficient k(t). Namely,

(36) −dcA(t)
dt

= k(t)cA(t)cB(t).

For first-order reactions, i.e., when cB(0) � cA(0) and hence cB ≈ const,
the coefficient k(t) has been observed to be equal to

(37) k(t) = k0(t/τ0)α−1, 0 < α < 1.

Moreover, the higher the temperature or the longer the time period the less
dispersive the reaction in a given system, i.e., the closer to 1 the numerical
value of α, which corresponds to the classical kinetics with time-independent
specific reaction rate [P lonka and Paszkiewicz (1992)].

Integration of (36) with cB ≈ const and the time-dependent coefficient
(37) yields

(38) cA(t)/cA(0) = exp(−(t/τ0)α).

The “stretched exponential” function (33) is then the empirical form of decay
laws adequate not only in relaxation phenomena but also in reaction kinetics.
The form of k(t), once regarded as empirical, has been shown [P lonka (1991),
P lonka and Paszkiewicz (1992)] to follow from reaction modelling in systems
with a static disorder which becomes fully evidenced when the reaction rates
exceed markedly those of internal rearrangements. However, the universality
of the empirical law (37) has not been proved yet.
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It can be shown now that the universal form (37) of the time-dependent
reaction rate coefficient k(t) is a consequence of Theorems 1 and 2 for CED
systems with parameter c = 0. Namely, in first-order reactions, where
cB(0) � cA(0), each particle A has to react with probability 1 after a long
enough time and the probability that the life-time θiN of the ith A-particle
is longer than t, given only its reaction constant ξi, decays exponentially:

P (θiN ≥ t | ξi = a) = exp(−at).

This means that the sequence θ1N , . . . , θNN is a CED system given {ξi}
with parameters c = 0 and r = 1. Moreover, cA(t)/cA(0) is the probability
that the life-time of a system of reactants prepared at t = 0 is longer than t.
Under the assumptions of Theorems 1 and 2 which are expected to be sat-
isfied from the chemical point of view, cA(t)/cA(0) equals 1 − F(t), where
F(t) is given by (8) with r = 1 and 0 < α ≤ 1, which is in agreement with
empirical form (38) with τ0 = 1/Λ1. Consequently, in the case of first-order
chemical reactions the required time-dependent form (37) of the reaction
rate coefficient k(t) is the only possible one.
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