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ON CONVEX COMBINATIONS OF TWO VALUES

Abstract. We study values for cooperative TU-games which are convex
combinations of the Shapley value and the solidarity value, introduced in
our recent paper [1]. First, we axiomatize the convex combination of the
two values in the case when the coefficients are given exogenously. Next, we
give an axiomatic description of the whole family of such values.

1. Introduction. Let N be a finite set of n players, called the grand
coalition. For any coalition T ⊆ N , the small letter t will generically denote
the cardinality of T . To simplify the notation one-member coalitions, for
example {i}, will sometimes be denoted by i.

Let Γ denote the linear space of all n-person transferable utility (TU)
games. A value on Γ is thought of as a vector-valued mapping, say ϕ : Γ →
Rn, which uniquely determines, for each v ∈ Γ , a distribution of the wealth
available to the players through their participation in the game v.

The famous Shapley value ΦSh on Γ is given by the formula

ΦSh
i (v) =

∑
T3i

(n− t)!(t− 1)!
n!

[v(T )− v(T\i)], i ∈ N, v ∈ Γ.

In our recent paper [1], we introduced another value for TU-games, called
the solidarity value. Let T be a non-empty coalition and let v ∈ Γ . The
quantity

Av(T ) :=
∑
k∈T

[v(T )− v(T\k)]/t

is the average marginal contribution of a member of the coalition T . The
solidarity value ΦSol on Γ is defined by

1991 Mathematics Subject Classification: 90D12, 90D06.
Key words and phrases: cooperative transferable utility games, Shapley value, average

values.

[47]



48 A. S. Nowak and T. Radzik

ΦSol
i (v) =

∑
T3i

(n− t)!(t− 1)!
n!

Av(T ), i ∈ N, v ∈ Γ.

To illustrate the difference between these two values, we give a simple
example.

Example. Let N={1, 2}. Assume that v(N) = 3, v(1) = 1, and v(2) =
0. The Shapley value for this game is ΦSh(v) = (2, 1) while the solidarity
value for v is ΦSol(v) = (1.75, 1.25). If the solidarity value is accepted by
the players as a solution for this game then one can say that player 1 seems
to be quite generous for player 2, because his or her “bargaining position”
in this game is much stronger than that of player 2. On the other hand, it is
interesting to note that the ratio of the marginal contributions to the grand
coalition of players 1 and 2 equals (v(N)− v(2))/(v(N)− v(1)) = 1.5 and is
much closer to ΦSol

1 (v)/ΦSol
2 (v) = 1.4 than to ΦSh

1 (v)/ΦSh
2 (v) = 2.

This example shows that the solidarity value can be accepted by the play-
ers as a solution of the game if there are some friendly relations between them
which are not reflected by the characteristic function itself. The solidarity
value does not seem to be a very good solution concept for studying pure
economic models. However, when we think of some real social or political
situations (or conflicts) sometimes we may have an impression that (at least
in some subcoalitions) people would be willing to accept the solidarity value.

The Shapley value ΦSh does not benefit null players in any game v. (By
definition, i ∈ N is a null player if v(S∪i) = v(S) for any coalition S ⊂ N\i.)
According to ΦSh every null player in v gets nothing in this game. Thus, the
Shapley value represents a rather severe (from social point of view) solution
concept. On the other hand, the solidarity value ΦSol represents a pretty
strong social approach. Namely, a null player in v can be rewarded by ΦSol

with a positive payoff, at least in some games. Therefore, to diminish the
“severity” of ΦSh as well as the strong social properties of ΦSol, it seems
reasonable to consider compromise values between the Shapley value and
the solidarity value. In this paper, we study such values in the form of
convex combinations of these two values. An example is the average value
given by

[ΦSh(v) + ΦSol(v)]/2, v ∈ Γ.

2. Average values. Let ϕ be a value on Γ . We adopt the following
standard axioms:

Axiom A1 (Efficiency). For any game v ∈ Γ ,
∑

i∈N ϕi(v) = v(N).
AxiomA2 (Additivity). For any games v, w ∈ Γ , ϕ(v+w) = ϕ(v)+ϕ(w).
Axiom A3 (Symmetry). Let v ∈ Γ . For any automorphism π of the

game v, ϕi(v) = ϕπ(i)(v).
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We remind that π is an automorphism of the game v if v(π(S)) = v(S)
for each coalition S ⊂ N .

The next postulate was introduced in [1].

Axiom A4 (A-null player). If i ∈ N is an A-null player in a game v ∈ Γ ,
that is, Av(T ) = 0 for every coalition T containing i, then ϕi(v) = 0.

If every coalition T including player i has the average marginal contribu-
tion Av(T ) = 0, then according to A4 player i gets nothing from the game
v. As shown in [1], Axioms A1–A4 uniquely determine the solidarity value.

We now introduce a new definition and an axiom which enables us to
derive the average values mentioned above.

Definition 2.1. A player i ∈ N has a reverse contributions property in
a game v ∈ Γ if for each coalition S including player i,

v(S)− v(S\i) = −Av(S) := −1
s

∑
k∈S

[v(S)− v(S\k)].

Axiom A5 (Reverse contributions). If i ∈ N has the reverse contribu-
tions property in a game v ∈ Γ , then ϕi(v) = 0.

In other words, if the marginal contribution of player i to any coalition
S is the negative of the average contribution of the members of S, then such
a player gets nothing from the game. We have the following result.

Theorem 2.1. There exists a unique value ϕ on Γ satisfying Axioms
A1–A3 and A5 and it is of the form

ϕi(v) =
1
2
ΦSh

i (v) +
1
2
ΦSol

i (v), i ∈ N, v ∈ Γ.

This result is a special case of a more general theorem which we will
prove in Section 3.

3. A generalization. In this section, we present a natural generaliza-
tion of Axiom 5, involving some non-negative parameter α.

Definition 3.1. Let α ≥ 0 be fixed. Player i is said to have the
α-reverse contributions property in a game v ∈ Γ if for each coalition S
including player i,

(3.1) v(S)− v(S\i) = −αAv(S) := −α
1
s

∑
k∈S

[v(S)− v(S\k)].

Now we are ready to propose the next axiom. According to the above def-
inition, player i has the α-reverse contributions property when his marginal
contribution to any coalition S is the negative of the average contribution
of the members of S, up to the coefficient α. Therefore, it is very natural
to write Axiom A5 in a more general form as follows.
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Axiom A6 (α-reverse contributions). If i ∈ N has the α-reverse contri-
butions property in a game v ∈ Γ , then ϕi(v) = 0.

We can now state a generalization of Theorem 2.1.

Theorem 3.1. Let α ≥ 0. There exists a unique value Φλ on Γ satisfying
Axioms A1–A3 and A6 and it is of the form

(3.2) Φλ
i (v) = λΦSh

i (v) + (1− λ)ΦSol
i (v) for i ∈ N, v ∈ Γ,

where λ = 1/(1 + α) > 0.

Throughout the rest of this section, let α ≥ 0 be fixed arbitrarily.
To prove Theorem 3.1, we introduce a special basis for the linear space Γ .

Definition 3.2. Let λ = 1/(1 + α). For each T ⊂ N , T 6= ∅, we define
the game wT by

(3.3) wT (S) =


t!
s!

s−t∏
j=1

(λt + j) if S ⊃ T ,

0 otherwise,

assuming that
∏0

j=1(λt + j) = 1. In particular, wT (T ) := 1.

Lemma 3.1. The family {wT : T ⊂ N, T 6= ∅} of games defined by (3.3)
is a basis for the linear space Γ .

P r o o f. The proof is similar to that of Lemma 2.2 in [1].

Lemma 3.2. Let T be any non-empty coalition such that T 6= N , and let
S = T ∪D where ∅ 6= D ⊆ N\T . Then, for every player i ∈ S\T , we have

(3.4) (1 + α)wT (S) = wT (S\i) + α
1
s

∑
k∈S

wT (S\k)

and , moreover , every player i ∈ N\T has the α-reverse contributions prop-
erty in the game wT .

P r o o f. Assume first that d ≥ 2, where d is the cardinality of D. Using
(3.3), we get

(1 + α)wT (S)− wT (S\i)− α
1
s

∑
k∈S

wT (S\k)

= (1 + α)
t!
s!

s−t∏
j=1

(λt + j)− wT (S\i)− α
1
s

∑
k∈D

wT (S\k)

= (1 + α)
t!

(t + d)!

d∏
j=1

(λt + j)− t!
(t + d− 1)!

d−1∏
j=1

(λt + j)
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− α
d

(t + d)
t!

(t + d− 1)!

d−1∏
j=1

(λt + j)

=
t!

(t + d)!

d−1∏
j=1

(λt + j)[(1 + α)(λt + d)− (t + d)− αd] = 0,

because λ = 1/(1 + α). Thus (3.4) follows for d ≥ 2. If d = 1, then the
above calculations also prove (3.4) if we put

∏d−1
j=1(λt + j) = 1.

Consider now any player i ∈ N\T . Let S be an arbitrary coalition
including player i. If T is not a subset of S, then both sides of equation
(3.1) with v = wT are equal to zero. If T is a subset of S, then i ∈ S\T , and
equation (3.1) with v = wT is readily equivalent to (3.4), which has already
been established. Thus, player i has the α-reverse contributions property.

Lemma 3.3. If ϕ is a value on Γ satisfying Axioms A1–A3 and A6, then
for each non-empty coalition T 6= N , and any real number c, we have

(3.5) ϕi(cwT ) =


c(t− 1)!

n!

n−t∏
j=1

(λt + j) if i ∈ T ,

0 if i 6∈ T ,

and if T = N , then ϕi(cwT ) = c/n for each i ∈ N .

P r o o f. Fix any non-empty coalition T 6= N . If c = 0, then the lemma
follows immediately from Axioms A1 and A2. Assume that c 6= 0. From
Lemma 2.2, we easily conclude that every player i ∈ N\T has the α-reverse
contributions property in the game cwT . By Axiom A6, ϕi(cwT ) = 0 for all
i ∈ N\T , and the remaining part of (3.5) follows now from (3.3) and the
efficiency and symmetry axioms. If T = N , the proof is trivial.

From A2 and Lemmas 3.1 and 3.3, we deduce the following simple fact.

Lemma 3.4. Any value satisfying axioms A1–A3 and A6 is a linear map-
ping from Γ into Rn.

P r o o f o f T h e o r e m 3.1. First, we show the existence of a value
satisfying our Axioms A1–A3 and A6. Clearly, Φλ given by (3.2) satisfies
Axioms A2–A3. Φλ also satisfies A1 since both the Shapley and the soli-
darity values are efficient [1], [2]. To prove that Φλ also satisfies A6 with
α = (1− λ)/λ ≥ 0, note that

Φλ
i (v) =

∑
S3i

(n− s)!(s− 1)!
n!

(λ[v(S)− v(S\i)] + (1− λ)Av(S))(3.6)

=
∑
S3i

(n− s)!(s− 1)!
n!(1 + α)

(v(S)− v(S\i) + αAv(S))
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for any v ∈ Γ , i ∈ N . Thus, if player i has the α-reverse contributions
property in a game v, then it follows from (3.6) that Φλ

i (v) = 0, that is, Φλ

satisfies our assumption A6.
To prove the uniqueness, consider a value ϕ on Γ which satisfies A1–A3

and A6. By Lemma 3.4, ϕ is a linear mapping. Clearly, the value Φλ is
also linear. Applying Lemma 3.3 to both values ϕ and Φλ, we conclude
that ϕ(wT ) = Φλ(wT ), for each base game wT defined by (3.3). Thus,
ϕ(v) = Φλ(v) for every v ∈ Γ .

4. Axiomatization of the class of values {Φλ : λ ∈ (0, 1]}. In
this section we do not assume that λ (or equivalently α) is exogenously
given and describe axiomatically the class of all possible values of the form
given in Theorem 3.1. We first fix some notation and state an auxiliary
lemma.

For i ∈ N , let Γ0(i) be the linear space of all games v ∈ Γ in which i is
a null player, and let Γ1(i) be the linear space of all games v ∈ Γ in which
i is an A-null player. Further, we put Γ (i) := {v ∈ Γ : v(i) = 0}.

Lemma 4.1. For each i ∈ N , Γ (i) is the direct sum of the linear spaces
Γ0(i) and Γ1(i), that is,

(4.1) Γ (i) = Γ0(i) + Γ1(i)

and

(4.2) Γ0(i) ∩ Γ1(i) = {0}.

P r o o f. Fix i ∈ N . To prove (4.2), let v ∈ Γ0(i) ∩ Γ1(i). Then, for each
coalition S ⊆ N\i, we have

v(S ∪ i) = v(S) and
∑

k∈S∪i

[v(S ∪ i)− v((S ∪ i)\k)] = 0.

Hence, we have

(4.3)
∑
k∈S

[v(S ∪ i)− v((S ∪ i)\k)] = 0.

If we put S = {j} in (4.3), where j 6= i, we get v({i, j}) = v(i). Since
v ∈ Γ0(i), we have v(i) = 0 and, moreover, v({i, j}) = v(j). Thus, we get
v(j) = v({i, j}) = v(i) = 0. Similarly, by induction on the cardinality of S,
we can show that v(S) = v(S ∪ i) = 0 for each S ⊆ N\i. In other words, v
is the null game, and (4.2) easily follows.

Note that Γ0(i) ⊂ Γ (i), Γ1(i) ⊂ Γ (i), and that the dimension of the
space Γ (i) equals 2n − 2. To prove (4.1), it now suffices to show that both
Γ0(i) and Γ1(i) are at least (2n−1 − 1)-dimensional linear spaces.
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Define the following two classes of games:

(4.4)
B0(i) = {uT : i 6∈ T and T 6= ∅},
B1(i) = {wT : i 6∈ T and T 6= ∅},

where

uT (S) =
{

1 if S = T or S = T ∪ i,
0 otherwise,

and wT are the base games (3.3).
One can easily check that B0(i) is a set of linearly independent games.

Similarly, by Lemma 3.1, all games in B1(i) are linearly independent. On the
other hand, we can directly verify that B0(i) ⊂ Γ0(i), and from Lemma 3.2,
it follows that B1(i) ⊂ Γ1(i). The cardinality of B0(i), and also of B1(i), is
equal to 2n−1−1. Thus, Γ0(i) and Γ1(i) are at least (2n−1−1)-dimensional
linear spaces and the lemma follows.

In order to axiomatize the above mentioned class of values, we now give
our new axioms. It is natural to expect that the “extreme points” ΦSh and
ΦSol in the set of values of our interest will play an important role in our
approach.

Axiom A7 (Shapley value proportionality). Suppose that i ∈ N is an
A-null player in two games v and w. Then

Φi(v)ΦSh
i (w) = Φi(w)ΦSh

i (v).

The next axiom is simply symmetric to the previous one.

Axiom A8 (Solidarity value proportionality). Suppose that i ∈ N is a
null player in two games v and w. Then

Φi(v)ΦSol
i (w) = Φi(w)ΦSol

i (v).

Axiom A9 (Rationality). If for some i ∈ N , v ∈ Γ and for each coalition
S including player i, we have

v(S)− v(S\i) ≥ 0 and Av(S) :=
1
s

∑
k∈S

[v(S)− v(S\k)] ≥ 0,

then Φi(v) ≥ 0.

The conclusion of Axiom A7 can be written in the following more read-
able way:

Φi(v)/Φi(w) = ΦSh
i (v)/ΦSh

i (w)

provided that we know that both Φi(w) and ΦSh
i (w) are different from zero.

A similar remark concerns Axiom A8.
Here is our second main result in this paper.
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Theorem 4.1. A value Φ on Γ satisfies Axioms A1–A3 and A7–A9 if
and only if there exists some α ≥ 0 such that Φ = Φλ described in Theo-
rem 3.1 with λ = 1/(1 + α).

P r o o f. The implication (⇐) is obvious. The proof of (⇒) consists of
three steps.

S t e p 1. We first prove that for every i ∈ N there exists a real number
λi such that

(4.5) Φi(v) = λiΦ
Sh
i (v) + (1− λi)ΦSol

i (v) for all v ∈ Γ.

For this, fix an i ∈ N , recall (4.4), and choose any w ∈ B1(i) ⊂ Γ1(i) such
that ΦSh

i (w) > 0. Put λi = Φi(w)/ΦSh
i (w). By Axiom A7, we have

(4.6) Φi(v) = λiΦ
Sh
i (v) for all v ∈ Γ1(i).

Similarly, choose any u ∈ B0(i) ⊂ Γ0(i) with ΦSol
i (w) 6= 0 and put γi =

Φi(u)/ΦSol
i (u). By Axiom A8, we have

(4.7) Φi(v) = γiΦ
Sol
i (v) for all v ∈ Γ0(i).

On the other hand, we know that

(4.8) ΦSh
i (v) = 0 for all v ∈ Γ0(i),

and

(4.9) ΦSol
i (v) = 0 for all v ∈ Γ1(i).

Using (4.6)–(4.9) and Lemma 4.1, we infer that

(4.10) Φi(v) = λiΦ
Sh
i (v) + γiΦ

Sol
i (v) for all v ∈ Γ (i).

Consider now the game w in Γ (i) described by: w(S) = n if S = N , and
w(S) = 0 otherwise. The efficiency and symmetry axioms A1 and A3 imply
immediately that Φi(w) = 1. Similarly, ΦSh

i (w) = ΦSol
i (w) = 1. Substituting

v = w in (4.10), we get γi = 1 − λi, and consequently (4.5) holds for each
v ∈ Γ (i).

Consider now the game u defined as follows: u(∅) = 0 and u(S) = 1 for
all S 6= ∅. Of course, u 6∈ Γ (i). Taking into account the fact that Γ and
Γ (i) are (2n − 1)- and (2n − 2)-dimensional linear spaces, respectively, we
conclude that any game v in Γ can be represented as a sum v = v + cu with
some v ∈ Γ (i) and a scalar c. Using the additivity, efficiency and symmetry
axioms, we get for any v ∈ Γ ,

Φi(v) = Φi(v) + Φi(cu) = λiΦ
Sh
i (v) + (1− λi)ΦSol

i (v) + c/n.

On the other hand, we have

λiΦ
Sh
i (v) + (1− λi)ΦSol

i (v) = λiΦ
Sh
i (v) + (1− λi)ΦSol

i (v) + c/n.

Thus (4.5) holds for any game v ∈ Γ .



Convex combinations of two values 55

S t e p 2. Let n ≥ 2. We now prove that λi in (4.5) is independent of
i ∈ N . Note that the efficiency axiom implies that∑

i∈N

[λiΦ
Sh
i (v) + (1− λi)ΦSol

i (v)] = v(N) for all v ∈ Γ,

which, by the efficiency of ΦSol, is equivalent to∑
i∈N

λi[ΦSh
i (v)− ΦSol

i (v)] = 0 for all v ∈ Γ.

This, in turn, because of the efficiency of ΦSh and ΦSol, gives

(4.11)
n∑

i=2

γi[ΦSh
i (v)− ΦSol

i (v)] = 0 for all v ∈ Γ,

where

(4.12) γi = λi − λ1 for i = 2, . . . , n.

Define the games vk (k = 2, . . . , n) in the following way:

vk(S) =
{

1 if S = N\k,
0 otherwise.

Using (4.11), we get

(4.13)
n∑

i=2

γi[ΦSh
i (vk)− ΦSol

i (vk)] = 0, k = 2, . . . , n.

At the same time, we have ΦSh
k (vk) = −1/n, ΦSol

k (vk) = −1/n2 and ΦSh
i (vk)

= 1/(n− 1)n, ΦSol
i (vk) = 1/(n− 1)n2 for all i 6= k. Hence, (4.13) reduces to

the following linear system:

(n− 1)γk −
∑
i 6=k

γi = 0, k = 2, . . . , n,

with the unique solution γ2 = . . . = γn = 0. By (4.12), it follows that
λi = λ := λ1 for all i ∈ N .

S t e p 3. Assume that n ≥ 2. We now prove that λ ∈ [0, 1]. For this,
fix i ∈ N and consider the unanimity game vN\i given by vN\i(S) = 1 for
S = N or S = N\i, and vN\i(S) = 0 otherwise. By Axiom A9 applied to
v = vN\i, we obtain Φi(vN\i) ≥ 0. On the other hand, we have

ΦSh
i (vN\i) = 0, ΦSol

i (vN\i) = (n− 1)/n2.

Using (4.5) with λi = λ, we get

0 ≤ Φi(vN\i) = λΦSh
i (vN\i) + (1− λ)ΦSol

i (vN\i) = (1− λ)(n− 1)/n2,

hence λ ≤ 1.
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Consider now the game w defined by w(N) = −1, w(N\i) = −n, and
w(S) = 0 otherwise. By Axiom A9 applied to w,Φi(w) ≥ 0. At the same
time

ΦSh
i (w) = (n− 1)/n, ΦSol

i (w) = 0.

Thus, we have

0 ≤ Φi(w) = λΦSh
i (w) + (1− λ)ΦSol

i (w) = λ(n− 1)/n,

hence λ ≥ 0. Putting α = (1− λ)/λ, we complete the proof for n ≥ 2.
If n = 1, the proof of (⇒) is trivial.
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