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Computation of the Selmer groups of certain
parametrized elliptic curves
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In their article [S-T], Roel J. Stroeker and Jaap Top considered elliptic
curves over Q defined by the equation

Ey: y*=(z+p)a®+p°),
where p € P is a prime number. They determined the Selmer groups cor-
responding to certain 2-isogenies and the sign of the functional equation of
these curves. Moreover, they gave a method for computing the Mordell-Weil
group E,(Q) in some cases.

The aim of this note is to generalize their method to curves over Q
defined by the equation
E.: y*=(z+2)(2*+ 2%
with arbitrary z € Q*. Whereas the methods are analogous to those of
R. J. Stroeker and J. Top, the results obtained here are quite different. We
shall develop an algorithm for computing the Selmer groups corresponding to
2-isogenies of these curves. This algorithm is based on four theorems, which
constitute the main results of Section 2 and describe the Selmer groups
of these curves. We also generalize the procedure for finding generators of
the Mordell-Weil groups of these curves. This procedure terminates if the
Tate—Shafarevich groups are trivial, which is certainly not so in general.
Stroeker and Top were able to prove that the Tate-Shafarevich group is
nontrivial in a special case of a prime £ = p = 9 mod 16 and (H}'ﬁ) =1
(see [S-T]), but I could not generalize their method.

I wish to thank Professor H. G. Zimmer for suggesting this topic to me
and for his advice, especially for his hint on the structure of the torsion
groups.

1. On the curves E, : y? = (z + 2)(2? + 22). We start with an elliptic
curve

[241]
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E.: y?*=(z+2)(2?+27?
with z € Q. If z = 0, then the given curve Fj is singular, so we shall assume
that z € Q*.

The transformation x = 2’ — z, y = 3/ yields another model, isomorphic

to E, over Q:
B y? =2” 222" + 2%
The discriminant of this curve is A, = —2826 £ 0, z € Q*.

For z; # 29, both from Q*, E,, and E,, are isomorphic over Q(+/22/21).
That means that these curves are twists of each other. Therefore, I can
confine myself to considering a smaller class of elliptic curves, namely those
E. with squarefree z.

It is therefore sufficient to consider elliptic curves of the form
(1) En: y?=a%—2ka® 4 2k%
with &k = £+p1 ... ps, where p; € P are distinct primes and « € Ng. For kK = 0,
we have k = +1.

The curves Ej, have the discriminant A, = —28k% and the Tate value
Cka = —32]{32.

For k = £p; ... pk, we conclude that (see [Tal)

£ L good reduction (mod ) forl e P, 1 €{2,p1,...,px},
kooHas additive reduction (mod l) forl € {2,p1,...,pu}.

All curves Ej contain the point P = (0,0) in Ex(Q) as a torsion point
of order 2. E;(Q) has no other points of order 2, because otherwise the
equation z2 — 2kx + 2k?> = 0 would have a solution in Q. Furthermore,
Er(Q) has no point of order 4, a fact which follows from the duplication
formula applied to P = (0,0).

For the exact determination of the torsion group of Ej/Q, we use the
reduction theorem in [Fo, II, §2, p. 44], for the number field Q:

THEOREM 1.1. Let E be an elliptic curve defined over Q by a p-minimal
Weierstrass equation for a given prime p € P. Then the order of the torsion
group of E/Q satisfies the following divisibility relation:

1. If E has good reduction mod p, then
‘Etor«@)‘ ‘ ‘E(Z/pZ)‘ : th-
2. If E has additive reduction mod p, then
|Etor(Q)| } |E(@p)/EO(Qp)| ‘p2+2t-

Here

‘= 0 forp>2,
11 forp=2,
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E is the reduction of E mod p and Eo(Q,) = {P € E(Q,) : P € E(Z/pZ)
is nonsingular}.

We use this general theorem, because we neither know the number of
prime factors of k nor the primes dividing k. As these are the primes where k
has additive reduction, we have to apply the divisibility relation for additive
reduction modulo p. By this theorem, applied to the primes 3 and 5, we
conclude that the torsion group of Ej/Q is

Ek,tors(@) = Z/2Z
Therefore, the Mordell-Weil group of the curve Ej, is
Ey(Q)=Z/2Z x 7,

with r = rk(Fx(Q)) the rank of Ej over Q.
The global L-series of Ej/Q is

1
L(saEk’Q) - H )
1 A — (U + 1) (12
1eEP\{2,p1,..-,Dx } + (A= (+1)) *

where A; = $E,(Z/1Z) denotes the number of points on the reduced elliptic

curve Ej, of Ej, (mod 1).
The conductor of these curves is given in the following proposition.

PROPOSITION 1.1. For k = £2%p; ...p, with « € {0,1} and p; € P\{2},
i=1,...,k, k € Ny, the conductor of Ey/Q is

N, = 27p% .. .pi.
Specifically, for k =0 and hence k = £2%, one has Ny, = 27.
With [MF IV] one has the following theorem:

THEOREM 1.2. Let k = vpy...p, with v € {£1,£2} and p1,...,px €
P\{2}, & > 0 and put

w==+v according as pi...px ==*1 (mod 4).

For n € Z, define the character

n
= 1. Dr n) .= _—
X = Xp1...p. (1) <p1...p,.g)
by the Jacobi symbol with x(n) =0 if ged(n,p1...ps) > 1. Then

L(87 Ek|@) = LX(S, Ew’@)a
where Ly (s, Ey,|Q) is the L-series of E,,/Q twisted by x.

For k = 41,42, E}; has conductor N = 27. Ogg [Og|] determined all
elliptic curves over Q with 2-power conductor. Honda and Miyawaki [H-M]
gave a complete table of all modular forms of weight 2 for IH(N) with N
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a power of 2. From these results, it follows that the 4 curves F1, E_1, F>,
FE_5 are modular.

The above relation between the L-series of the curves Fj implies the
following fact proved by induction on the number of different prime factors
in k on the basis of Proposition 17 in [Ko], p. 127.

PROPOSITION 1.2. All curves E), are modular.

The global L-series of Ej (for every integer k) is known to satisfy the
functional equation (cf. [B-S])

<@>Sr<s>us, E|Q) = e <\/§>2_SF<2 — L2 = BuQ),

where I is the usual Gamma function and e, € {£1}.
Table 1 from [MF IV] lists elliptic curves over Q with conductor 128 = 27.
The curves Ey; and Ey are isomorphic to the following curves in [MF IV]:

E_, =~ 1284, B, ~128C,
E_o = 128F, Ly = 128G.
Then with [B-S], one establishes the following theorem:

THEOREM 1.3. For k = vpy ...p, withv € {£1,£2} and p; € P\{2}, the
stgn of the functional equation of Ey, is:

p1...px (mod 8) Ep1...px E—p1..px €2p1...pk €—2p1...px
1 -1 1 1 1
3 1 —1 1 1
5 1 —1 —1 —1
7 -1 1 —1 —1

The conjecture of Birch and Swinnerton-Dyer implies that e is related
to the rank r of Ej over Q by €, = (—1)". Hence, by this conjecture, one
can find the parity of the rank of E}.

2. Selmer groups corresponding to 2-isogenies

2.1. Basic facts. A procedure for finding the rank of an elliptic curve
over Q with a torsion point of order 2 was developed by Tate (see [Si-Ta]
or [S-TJ). It is based on the classical Selmer— and Tate-Shafarevich groups.
I shall apply this procedure to the curves Ej.

For the elliptic curve over Q

(2) Ey: y? =2 —2ka® 4 2%,
with k = £p; ... px as above and its 2-isogenous curve

(3) B, Y?=X%4+4kX? - 4kK*X.
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I denote by v the corresponding 2-isogeny and by 1’ its dual isogeny:
y® y(2k® - x2)>

x2’ x2

V1 By — Ey, (x,y)H<

and

2 CAR2 Y2
V' E, — F, (X,Y)|—><Y Y(-dk X)>

4X2’ 8X?2
The Selmer groups corresponding to the 2-isogenies 1)’ and 1 of these curves
are

Skly'] = {1-Q*2,2-Q*%}

2k?
U {d Q1 d| 2k n? = dm* — 2km?e* + 764 has solutions
n,m # 0,e # 0 in R and (mutually prime) solutions in Z,

for all p € IP’}

and
Skl] = {+1-Q**}
2

4k
U {d Q2 d| -4k n? = dm* + 4kmZe? — 764 has solutions
n,m # 0,e # 0 in R and (mutually prime) solutions in Z,

for all p € P}.

One has a map ¢ : Ex(Q) — Si[¢] with
O 1-02,  (0,0)— 2k2-Q2=2-0Q%2,
(z,y) =z - Q2  for (z,y) € {0, (0,0)}
with
Kerd§ = o' E;(Q).

In an analogous way one can treat the isogenous curve Ej . The cokernels
of the following left hand side injections are called the Tate—Shafarevich
groups i [Y'] of Ey, resp. I [] of E}:

0 — EL(Q)/¢/EL(Q) — Sule/] — T[] 0,
0 — EL(Q)/YER(Q) — Sk[y] — Ik [y] — 0.

For the rank of the elliptic curves one obtains the formula



246 S. Schmitt

(4) rk(E;(Q)) = rk(Ex(Q))
= dimp, (Sk[¢']) — dim, (I [¢])
+ dimg, (Sk[¢]) — dimg, (I [1]) — 2.

For the primes p not dividing the discriminants A}, = 2'3k% of Ej resp.

Ay, = —28k5 of Ej, the corresponding equations
2k?
n? = dm* — 2km2e? + 764
resp.
2
n? = dm* 4 4km?e? — 764

define curves of genus 1 over F,,. By the Hasse theorem, which estimates the
number of points of elliptic curves over finite fields, these curves have a F,-
rational point for p > 3. For p = 3, one sees by straightforward calculation
that these curves have a Fs-rational point. By Hensel’s lemma (see e.g. [We]),
these points can be lifted to solutions of the above equations in Z,,.

For computing the Selmer groups, it suffices therefore to consider the
primes 2,pq,...,p, and oco.

For d < 0, the equation corresponding to the group Si[¢] has no solution
in R. It follows that d - Q*? is not in Si[¢)’] for negative d. For d > 0, the
equation corresponding to Si[¢)’] is solvable in R, and the same is true in
this case for the equations corresponding to Si[)].

Hence it remains to look for solutions in Z, for the primes p = 2,
D1,y ..., Pr only.

Obviously, {1-Q*2,2 - Q*?} resp. {+1 - Q*?} always lie in Sj[¢)'] resp.
Sk[¢]. From this observation it follows that
(5) {1-Q7%2-Q7} C Sy c {1-Q%2-Q"}

U{pi, - -pi - Q% 2p, . pi, - Q2

1§l§l€, 1§’L'1<...<7;l§1€}
and
(6) {10} CSly] C (£1-Q7, 4207}

U {:l:ph cDiy Q*2, :l:2p11 c oDy Q*Q :

1<I<k, 1<ip<...<i <k}
In order to decide for a number d € Q*, whether or not d - Q*? is in Si[¢)']
resp. Si[¢], I shall first assume that d is a squarefree integer and then I shall
test the numbers da? with a € Z\{0} such that da? | 2k? resp. da? | —4k>.

In determining the Selmer groups, I need some special Legendre symbols.

In this subsection, p is always a prime different from 2. I shall consider the
three cases p=1 (mod 8), p=5 (mod 8) and p =7 (mod 8).
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If p=1 (mod 8), then the elements (1 4+ +/—1),(—=1 £ /—1), (1 £ v/2)
and (—14+/2) define residue classes mod p. We have the following relations:
) (1+ﬁ> - (1—@) - (—1+ﬁ> - <—1—H>

p p p p

and

o (59)-(59)- (45 (54)

Let w € Z denote a primitive root modulo p. Since p = 1 (mod 8), the
relation

w8 = =1 (mod p),
defines some 4th root v/—1 mod p. From the identity
V2(1+ V=I)? = 2(2v/1) = 4V—1
we now derive the equation
V2(1+V-1) = £2v/-1.
Hence we have
L+v=1\ (1+v2\  [(1+V2(1++v-1)+/-1
( P ) ( p ) - ( p >
(e,

p

and conclude that
<1+\/—1> B (1+ﬂ>
p p )
For computing these Legendre symbols, it thus suffices to determine the

HT\{_T). We remark that because of the rela-

value of one of them, e.g. of (
tions (7) and (8) it does not matter which root of —1 or 2 mod p is used to
compute the symbols.

The remaining cases p =5 (mod 8) and p =7 (mod 8) lead to different
results:

For p = 5 (mod 8), the values 1 + /—1 and —1 £ /—1 define residue
classes modp. We obtain the relations

(1+ﬁ> (1—@) (—1+H> <—1—ﬁ)
p p ’ p p '
Therefore, one of the symbols in each equality attains the value 1. Hence for
determining the Selmer groups, it does not matter which sign of the roots
++1/—1 mod p is chosen so that, by a suitable choice of the sign, one can
1+\p/fl )

always ensure that ( =1, say.
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For p = 7 (mod 8) one derives similar results. Here the values 1 £ /2
and —1 + /2 define residue classes modp, and we obtain the relations

()58 ()5,

As in the case p =5 (mod 8), I can take one of ++/2 mod p to ensure that
(52
P

=1, say.

2.2. Determination of the Selmer groups. For determining the Selmer
groups for general k, I distinguish the two cases £k = +2p;...p, and k =
+p1 ...p, for distinct primes p1,...,p, € P\{2} and k € Ny. Here k = 0
means that kK = +2 or +1, respectively.

For the sake of simplicity, I introduce the following notation. For fixed
Diys--->Di, With 1 <1<k, 1<14; <... <79 <K we put

—_— . P1...Dk
P1L...Pg = —.
DPiy -+ - Djy
Here we have p1. . p, =1if p;; ...p;;, =p1...ps or if K = 0.
The main theorems are the following:

THEOREM 2.1. For k = £2p; ...p, with primes p1,...,p, € P\{2},
Sly'l={1-Q*2-Q"}
U{ph---piz‘Q*272pi1--~piz -Q*zilglglﬁl, 1§21 <...<il§/£,

Vi€ {i1,...,i}:pi=1,5 (mod 8)

A [Vi € {i1,...,ii} :pi =1 (mod 8) = <p1fp“(pli+‘E)> - 1}

iy - Di 2D, - - Di
A [Vj g {in, ... i} <p1p,> 1y (M> :1}}_
P pj
Its Fo-dimension satisfies dimp, S[¢)'] < Kk + 1.

THEOREM 2.2. For k = +2p; ...p, with primes p1,...,ps € P\{2},
S[y] = {+1-Q*%}

U{:tpil"'pil'@*2:1§l§ﬁ/, ]-SZ]_<<'LZSK/,

Vi € {i1,... i} :pi=1,7 (mod 8)

A [w € {ir,...,i} :pi=1 (mod 8) = <p17p”;1i+ﬁ)> - 1]

N e N e |3
J J

Its Fo-dimension satisfies dimp, S [¢)] < Kk + 1.
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THEOREM 2.3. For k = +p; ...p, with primes p1,...,p. € P\{2},
Skl ={1-Q**,2-Q**}

U{pil...pil'@*2,2pi1...pil-Q*zilélélﬁl, 1< <. <y <k,
Vi € {i1,...,u}:pi=1,5 (mod 8)

A [w € {ir,...,i} :pi=1 (mod 8) = <p1fp“(1+m)> — 1]

Di

A [ng{il,...,z’l}; (H) :1V<M) :1}

Alpiy---pi, =5 (mod 8) = k=3,7 (mod 8)]}

Its Fo-dimension satisfies dimp, Sk[¢)'] < k + 1.

THEOREM 2.4. For k = +p; ...p, with primes p1,...,p. € P\{2},
S[y] = {+1-Q*%}

U{:i:pil...pil-(@*zzlglgm, 1<ip <... <4 <k,
Vi e {i1,..., i1} :p; = 1,7 (mod 8)

A [w € {i1,...,i} ipi=1 (mod 8) = <p1fp”(1fm>> = 1]

D

A [VJ & {i1,...,i}: <pi1 ppz’> =1V <_pi11)'"'pi’> = 1]}
j j

U{:I:2pi1...pil-(@*2:0§l§/£, 1<i; <...<i; <k,

Vi€ {ir,...,it} :p; =1,7 (mod 8)
A [Vie{il,...,z’l} :pi=1 (mod 8) = <p1ﬁp“(1'+ﬁ)> :1]

bi
s . 2piy - .
A [V]%{zl,...,zl}: <pp

pil> —1v <_2pi1-~pil) _ 1}
j Py

Its Fo-dimension satisfies dimp,Sk[¢)] < k + 2. Here | = 0 means that
+2p;, ... pi, - Q2 is £2-Q*? and that {i1,..., i} is the empty set.

ANk =1,5 (mod 8)}
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I shall only prove Theorem 2.1. The other theorems are proven by similar
arguments (see [Sc]).

Proof of Theorem 2.1. Our task is to decide, for a given d =
Di, - - - Pi,, Whether or not d-Q*? resp. 2d-Q*? is in the corresponding Selmer
group. To this end I must consider all rational numbers whose squarefree
part is equal to d resp. 2d. Of course, the numbers we have to consider
must be integers and must divide 2k? or —4k2. In this situation we need an
appropriate notation:

For fixed p;,,...,p;, with 1 <1 <k, 1 <14 < ... <1 <k, I introduce
the power products

pit.p2s and  pit...pPs
with
Vo [0or2 i i,
710 iij{il,...,il},
and
ﬂ‘: 2—ij lfjg{’tl,,ll},
P70 if 5 € {it,... i)
The numbers p{* ...p2%= and py* ...p2 are squares, because a;, 3; € {0,2}
for all j. They also satisfy

(PP ) 0P ) =

I will consider the Selmer groups for even numbers k of the form k =
2upy ...ps with p1,...,ps € P\{2} and v € {£1}. The equation of the
elliptic curve Ej is then

Ey : 3!2:fUS—4Up1--.p,§a:2+8p%...pix.

For the Selmer group, I have the inclusion (5).
Ad Si[Y']: Choose d = p;, ...p;, for 1 <1<k, 1<i3 <...<i <K
Then, since d and 4d divide 8p? . ..p2, the equations

9) n? = Diy -+ PiDY - .pg“m‘l — dupy ... pem’e?

+ 8pi, .. .pilp’fl .. .pg"e4
= Diy - P [P pEemt — dupy T pemPe® + 8pit L plrel]
= iy (PSR peePm2 — 2up P pBe/262)2
+4p L pPeet]
and

(10) n? =4p;, ...pipY" .. pPem* — dvpy .. p.m?e?

+ 2p;, - - .pilp’fl ...p’g“e4
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have to be solved for m,n,e in Zy and Z, for all ¢ in {p;,...,p.} and for
any ai,...,q, as above. The equation (10) leads to a contradiction in Zs:
From 2| n, it follows that 4 |n?. As the solutions m,n, e must be relatively
prime integers and as 2t p;, .. .pilpfl ...pPre*, the equation (10) implies the
contradiction
0=n?=2 (mod 4).

Therefore, (10) has no solution in Zs.

Now I have to solve (9) in Zy and in Z, with ¢ € {p1,...,px}. Here I
distinguish the two cases q € {pi,,...,p;,} and ¢ & {piy,---,pi, }-

In Z,, for i € {i1,...,4;}: By Hensel’s lemma, the last equation in (9) is
soluble in Z,, if and only if the following conditions are satisfied:

-1
1. <p> =1<p;,=1,5 (mod 8) and

5 <—2vp17pn(—1 + H)) 1

bi

For p; = 5 (mod 8) the Legendre symbol (%ﬁ) takes both values
+1, depending on the choice of the root v/—1, so the last condition can
always be satisfied by a suitable choice of v/—1 for p; =5 (mod 8).

For p; =1 (mod 8), the equation (‘p—%“) = 1 holds, and hence condition

2 is equivalent to
Cpe(T+4/—1
2a.pi51(mod8):>(p1 Pu(l+ )):1.
pi

In Z,, for j & {i1,...,4}: Again by Hensel’s lemma, the first equation in
(9) is soluble in Z,, if one of the following conditions is fulfilled, depending
on the choice of the o;:

(pil---pil) 1y (2]%1 ---pil> _1
Dj Py

Remark. To prove that d € Sg[¢)'], one needs only one choice of

ai,...,q., so that the accompanying equation (9) has a solution in Z,
for ¢ € {2,p1,...,ps}. But the existence of solutions in Zy and Z,, for
i € {i1,...,4;} is independent of a1, ..., as, so we can choose the o in an

appropriate way that the above conditions are fulfilled, without changing
the other results.

In Zo, the first equation in (9) has a solution if and only if n? = 1
(mod 8). It follows from the above conditions for solutions in Z,, that
piy ---pi, = 1,5 (mod 8).

If pi, ...p;, =1 (mod 8), then m = 1, e = 2 gives n?> = 1 (mod 8), so
that there is a solution in Zs.



252 S. Schmitt

If p;, ...p;, =5 (mod 8), then m = 1,e = 1 gives n?> = 1 (mod 8), so
that there is a solution in Zs.

On combining the above results we have proved Theorem 2.1. m
Altogether, one derives from the rank equation (4) the coarse estimates:

PROPOSITION 2.1. For even k, one has rk(E,(Q)) < 2k. If k is odd, one
has tk(Fr(Q)) < 2k + 1.

Remark. The Selmer groups Si[¢'] and Sk[t)] can become arbitrar-
ily large, a fact which can be shown in the following way. If we take k =
+2p; ...p, with primes p; = 5 (mod 8), then the three conditions in The-
orem 2.1 are satisfied for all products p;, ...p;,. Hence the corresponding
Selmer group is

Sely'] = (Z/22)".
If we have k = £2p; ...p, with p; =7 (mod 8), then the three conditions
in Theorem 2.2 are satisfied for all p;, ... p;,, so we get

Sel¥] = (2/22).
One can also see that if k = +py ...p, with p; =5 (mod 8), then

no [(Z)2z)s i k>0,
Skl = { (Z)27) 1 if k < 0.

By looking at the last theorem, if k = +p;...p, with p; =7 (mod 8), we
get
~ {(Z/QZ)"“ if k=7 (mod 8),
Sk1h] = A2 e —
(Z.)27) if k=1 (mod 8).

Based on the above theorems, I developed an algorithm for computing
the Selmer groups for arbitrary z € Q*. After prime factorization and de-
termination of the squarefree part of z, it obtains a squarefree integer k and
uses the theorems to compute the Selmer groups for Fy = F,.

From the theory of Selmer groups corresponding to 2-isogenies, one can-
not determine but only estimate the rank of elliptic curves. For an exact
determination of the rank, one has to compute points of infinite order in the
Mordell-Weil group. This can be done in an analogous way as described in
[S-T]. I generalized their results to arbitrary rational &k in [Sc|]. The main
idea of this method is to look further at the equations which have to be
solved for computing the Selmer groups. Those equations can be “reduced”
in such a way that solutions of the new equations normally have smaller
absolute value than those of the old equations.

If, for a given k, the rank of the curve Ej over QQ is greater than 0,
then one can find points in Fx(Q) by testing all those possible equations.
These are only finitely many, and their number depends on the different
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prime factors of k. However, one has to take into account the relation of
these equations to the Tate-Shafarevich group. If an equation for d - Q*?
in the definition of the Selmer group (see Section 2.1) is everywhere locally
soluble, but has no solution in Q, then d - Q*? is in the corresponding Tate—
Shafarevich group. Hence the equations which have to be solved are also
everywhere locally soluble, but not globally in Q. If such a situation occurs,
one is often unable to see whether the equation has no global solution,
that is, that the Tate—Shafarevich group is nontrivial, or one has to search
longer for a global solution. Stroeker and Top were able to prove that the
Tate—Shafarevich group is nontrivial in a special case (see [S-T]), which I
could not generalize.

By considering these equations, one determines a certain set of points of
infinite order in Ex(Q). The generating points of Ex(Q) are then identified
in this set by estimating the heights as described in [Zi] and searching for
generators in a certain range as explained in Proposition 7.2 of [Si]. The
estimation of the heights for the curves Fy is

1 49 ~ 1
—510g|k‘\ — ElogQ < h(P)—h(P) < §log|k| +2log2

where T is the Néron-Tate height and A is the Weil height on Ej.
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