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Polynomials that divide many trinomials
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1. Introduction. Let

(1.1) p(X) = akX
k + ak−1X

k−1 + . . .+ a0

be a polynomial of degree k > 0 with rational coefficients. We call a poly-
nomial

(1.2) T (X) = Xm + aXn + b

with complex coefficients a, b and with m > n > 0 a trinomial . In 1965
Posner and Rumsey [2] made the following conjecture:

Suppose that p(X) divides infinitely many trinomials. Then there exist a
non-zero polynomial Q(X) of degree ≤ 2 and a natural number r such that
p(X) divides Q(Xr).

In a recent paper [1], this conjecture was shown to be true by Győry and
Schinzel. They proved that it suffices to assume that p divides at least

(1.3) (4sd)s
62180d+8sl

trinomials with rational coefficients. Here d is the degree of the splitting
field L of p over Q. s is the cardinality of the set of places of L consisting
of all infinite places and all places induced by the prime ideal factors of the
non-zero roots of p. Moreover, l is the number of distinct roots of p.

It is the purpose of this paper to improve on this result. In fact, we will
give an estimate that avoids the parameter s completely and involves only
the degree k of the polynomial p. We have

Theorem. Let p(X) be a polynomial of degree k > 0 with rational coef-
ficients which divides more than

(1.4) 244000k1000

trinomials T (X) as in (1.2) with complex coefficients. Then there exist a
non-zero polynomial Q(X) of degree ≤ 2 with rational coefficients and a
natural number r such that p(X) divides Q(Xr).

[267]
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We remark that L. Hajdu also improved (1.3) and extended it to the
number field case, but his bound depends on s too.

Our proof depends upon a recent result of Schlickewei and Schmidt [3]
on polynomial-exponential equations. We conjecture that the bound (1.4)
may be replaced by an absolute bound which does not involve the degree of
p at all. However, at present this seems to be out of reach.

In a subsequent paper we will deal with the generalization when the
trinomials are replaced by k-nomials, i.e. the problem stated at the end of
the Introduction in [1]. In that wider setting, we will treat also quantitative
versions of Theorems 2A and 2B of [1].

2. A reduction. The following simple lemma will be useful.

Lemma 2.1. Suppose that the trinomial T (X) = Xm + aXn + b has a
zero α of multiplicity ≥ 3. Then α = 0 (and consequently b = 0).

P r o o f. We have

T ′(X) = mXm−1 + naXn−1 = Xn−1(mXm−n + na).

Thus if α 6= 0 is a zero of multiplicity ≥ 3 of T , α is a zero of multiplicity
≥ 2 of T ∗ = mXm−n +na. But T ∗′ = m(m−n)Xm−n−1. So such an α 6= 0
does not exist.

Let α1, . . . , αl be the distinct zeros of p. We partition the set
{
α1, . . . , αl

}
into disjoint classes as follows: two zeros αi and αj belong to the same class
if there exists a root of unity ζ such that αi = ζαj .

It is clear that if p(0) = 0 then {0} makes up one class.

Proposition 2.2. Let the hypotheses be the same as in the Theorem.
Suppose moreover that p(0) 6= 0. Then, if p has a double zero α, the set of
zeros of p lies in a single class. If p does not have a double zero, then its set
of zeros splits into at most two distinct classes.

We proceed to deduce the Theorem from Proposition 2.2. First suppose
that p(0) = 0. Then any trinomial T (X) which is divisible by p(X) will be
of the shape

T (X) = Xm + aXn = Xn(Xm−n + a).

We may conclude that any zero α 6= 0 of p is simple and satisfies the equation

(2.1) αm−n + a = 0.

Let L be the splitting field of p over Q and write G for its Galois group. As p
has rational coefficients, any σ ∈ G permutes the non-zero roots of p. Thus
(2.1) implies that σ(a) = a for any σ ∈ G. We may conclude that a ∈ Q.

Write r = lcm(n,m − n) and t = r/(m − n). We put Q(X) = X(X +
at). Then obviously p(X) |Q(Xr) and Q(X) ∈ Q[X], as asserted in the
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Theorem. Thus we may suppose that p(0) 6= 0. If p has a double zero, then
by Proposition 2.2 there exist an a ∈ C and a natural number r such that

(2.2) αri = a for i = 1, . . . , l.

With the same argument as above we get a ∈ Q. In view of Lemma 2.1
we may conclude that with r from (2.2) and with Q(X) = (X − a)2 the
assertion of the Theorem is true.

Next suppose that p has only simple zeros. By Proposition 2.2 we may
find complex numbers a and b and a natural number r such that any root
of p(X) satisfies one of the equations

(2.3) xr = a or xr = b.

Again consider the Galois group G of the splitting field L of p over Q. If all
the roots of p satisfy a single one of the equations in (2.3), say the first one,
we may argue as above and infer that with r from (2.3) and Q(X) = X − a
the assertion of the Theorem is true. Otherwise, again since G permutes the
roots of p, in view of (2.3) we obtain two alternatives: either σ(a) = a and
σ(b) = b for each σ ∈ G, or we may conclude that a and b are permuted
under G.

In the first case a and b are rational numbers. We may take r from (2.3)
and Q(X) = (X−a)(X− b) to get the Theorem. In the second case a and b
are conjugates over Q and have degree 2. Therefore Q(X) = (X−a)(X−b) ∈
Q[X] and the Theorem follows with r from (2.3).

The remainder of the paper deals with a proof of Proposition 2.2.

3. Polynomial-exponential equations. We consider equations of the
type

(3.1)
q∑

l=1

Pl(x)αx
l = 0

in variables x = (x1, . . . , xN ) ∈ ZN , where the Pl are polynomials with
coefficients in a number field K and where

αx
l = αx1

l1 . . . α
xN
lN

with given αlj ∈ K∗ (1 ≤ l ≤ q, 1 ≤ j ≤ N). Let P be a partition of
the set Λ = {1, . . . , q}. The sets λ ⊂ Λ occurring in the partition P will be
considered elements of P: λ ∈ P. Given P, we may consider the system of
equations

(3.1P)
∑

l∈λ
Pl(x)αx

l = 0 (λ ∈ P),

which is a refinement of (3.1). Write S(P) for the set of solutions x of (3.1P)
which are not solutions of (3.1Q) if Q is a proper refinement of P.
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Given P, set l P∼ m if l and m lie in the same subset λ of P. Let G(P)
be the subgroup of ZN consisting of z satisfying

αz
l = αz

m for any l,m with l
P∼ m.

Write

A0 =
∑

l∈Λ

(
N + δl
N

)
,

where δl is the total degree of the polynomial Pl. Set

A = max{N,A0}.
The following proposition will be crucial in the proof of our Theorem.

Proposition 3.1. Suppose G(P) = {0}. Then

(3.2) |S(P)| < 260A3
d6A2

.

This is Theorem 1 of Schlickewei and Schmidt [3].

4. Application to our problem. We are considering trinomials

T (X) = Xm + aXn + b.

The hypothesis in Proposition 2.2 says b 6= 0. If a = 0, then the assertion of
Proposition 2.2 is trivial. Thus in the sequel we may suppose that ab 6= 0.
Also, given two trinomials

T1(X) = Xm1 + a1X
n1 + b1, T2(X) = Xm2 + a2X

n2 + b2,

we may suppose without loss of generality that (m1, n1) 6= (m2, n2), as
otherwise p(X) divides (a1 − a2)Xn1 + b1 − b2. And thus the assertion of
Proposition 2.2 would follow at once.

Let α be a zero of p(X). Define

p̃(X) = akα
kXk + ak−1α

k−1Xk−1 + . . .+ a1αX + a0.

Then p̃(X/α) = p(X). Thus, if α1, . . . , αk are the zeros of p, then α1/α, . . .
. . . , αk/α are the zeros of p̃. Clearly, in general p̃ does not have rational co-
efficients. However, given a trinomial T and defining T̃ in analogy with p̃, we
see that if p divides T then p̃ divides T̃ . We remark that our transformation
preserves the classes of zeros introduced in Section 2. So it will suffice to
prove Proposition 2.2 for p̃, which has the advantage that p̃(1) = 0.

Let α and β be any other zeros of p̃. If p̃ divides a trinomial T̃ = Xm +
AXn +B, we get

1 +A+B = 0,

αm +Aαn +B = 0,

βm +Aβn +B = 0.
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We may conclude that

(4.1)

∣∣∣∣∣∣

1 1 1
αm αn 1
βm βn 1

∣∣∣∣∣∣
= αn + βm + αmβn − αnβm − αm − βn = 0.

The hypothesis of our Theorem together with the reduction from the begin-
ning of this section imply that (4.1) has at least

(4.2) 244000k1000

solutions (m,n) ∈ Z2. On the other hand, equation (4.1) is a special instance
of the type of equations discussed in Section 3, in fact with six summands,
i.e. in the notation of Section 3 with q = 6. The elements α, β may be written
as α2/α1, α3/α1, where α1, α2, α3 are the three zeros of p. As p has degree
k, α and β generate a number field K of degree ≤ k3.

In our case we have N = 2 and δ1 = . . . = δ6 = 0. Thus we get A = 6.
Therefore, by Proposition 3.1 for any partition P of {1, . . . , 6} with G(P) =
{(0, 0)} the equation (4.1P) has not more than 260×63

(k3)6×62
solutions

(m,n) ∈ Z2. Since the total number of partitions of {1, . . . , 6} does not
exceed 66, we may conclude that the total set of partitions P with G(P) =
{(0, 0)} produces less than

(4.3) 218+60×63
k3×63

< 213000k650

solutions (m,n) ∈ Z2.
Comparing (4.2) and (4.3) we may infer that there exists a partition P

of the set {1, . . . , 6} with G(P) 6= {(0, 0)}. We are going to prove that this
implies that at least one of α, β, α/β is a root of unity. It will follow that
the three roots 1, α, β of p̃ are contained in at most two different classes and
this will imply the assertion of Proposition 2.1 if p has only simple zeros.

By a slight abuse of notation we will write {αx, βy, αyβx, αxβy, αy, βx}
instead of {1, . . . , 6}. We proceed to study the possible partitions:

(a) {αx, βy}, {αyβx, αxβy, αy, βx}.
Then G(P) among others has the defining relations

αyβx = αy, αyβx = βx,

whence βx = 1 and αy = 1. Thus either x = y = 0, i.e. G(P) = {(0, 0)}, or
one of α, β is a root of unity.

(b) {αx, βy}, {αyβx, αxβy}, {αy, βx}.
We get

αy−x = βy−x, αx = βy.
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Thus either y−x = 0 or α/β is a root of unity. If y = x then either x = y = 0
or again α/β is a root of unity.

(c) {αx, βy}, {αyβx, αy}, {αxβy, βx}.
We get

αyβx = αy, αxβy = βx.

Thus either x = 0 or β is a root of unity. If x = 0, then either y = 0 or again
β has to be a root of unity. We may conclude that either G(P) = {(0, 0)}
or one of α, β, α/β is a root of unity.

(d) {αx, βy}, {αyβx, βx}, {αxβy, αy}.
This is symmetric to (c).

(e) {αx, αyβx}, {βy, αxβy, αy, βx}.
We get

βy = αy, βy = βx

and conclude x = y = 0 or one of β, α/β is a root of unity.

(f) {αx, αyβx}, {βy, αxβy}, {αy, βx}.
We get

αx = αyβx, βy = αxβy

which implies x = 0 or α is a root of unity. If x = 0 then either y = 0 or
again α is a root of unity.

All the partitions containing a subset with two elements are symmetric
to the cases treated above or may be treated in a similarly easy way. So we
now study partitions with subsets of three elements:

(g) {αx, βy, αyβx}, {αxβy, αy, βx}.
We get αx = βy, αy = βx. Hence αx+y = βx+y. Thus either x + y = 0 or
α/β is a root of unity. If x + y = 0, we use βy = αyβx and αxβy = αy.
Together with the previous relations we obtain βy = α2y, β2y = αy, whence
β3y = α3y. Thus either y = 0 (and therefore also x = 0), or α/β is a root of
unity.

(h) {αx, βy, αxβy}, {αyβx, αy, βx}.
Then αx = βy, αx = αxβy. Thus either y = 0 or β is a root of unity. If
y = 0 then either x = 0 or α is a root of unity.

(i) {αx, αyβx, αxβy}, {βy, αy, βx}.
We get βy = αy, βy = βx. Either y = 0 or α/β is a root of unity. If y = 0
then either x = 0 or β is a root of unity.

All other cases are symmetric to the ones treated above or at least
equally easy. Altogether we have shown that if there exists a partition P
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with G(P) 6= {(0, 0)} then at least one of α, β, α/β is a root of unity. So
Proposition 2.2 follows if p has only simple roots.

We next assume that p has a double root α. We may choose our transfor-
mation p 7→ p̃ such that 1 is a double root of p̃. Let β be any other root of p̃.
Then given a trinomial T̃ = Xm+AXn+B we get T̃ (1) = T̃ ′(1) = T̃ (β) = 0.
Thus

(4.4)

∣∣∣∣∣∣

1 1 1
m n 0
βm βn 1

∣∣∣∣∣∣
= (n−m) +mβn − nβm = 0.

This is an equation of the type considered in Section 3. Here N = 2, δ1 =
δ2 = δ3 = 1, A = 9, and as β is the quotient of two roots αi, αj of p, it
has degree ≤ k2. With our reductions we see that we are only interested
in solutions (m,n) ∈ Z2 such that no subsum in (4.4) vanishes. Thus for
P = {1, 2, 3} Proposition 3.1 says that (4.4) has less than

260×93
(k2)6×92

< 244000k1000

solutions (m,n) ∈ Z2, provided that G(P) = {(0, 0)}. On the other hand,
the hypothesis of the Theorem guarantees that we have at least 244000k1000

solutions (m,n) ∈ Z2. We may infer that G(P) 6= {(0, 0)}. In our case the
defining relations for G(P) are

βx = βy = 1.

As G(P) 6= {(0, 0)}, this implies at once that β is a root of unity. Therefore
the two zeros 1 and β of p̃ lie in the same class. This proves Proposition 2.2
if p has a double root.
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