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1. Introduction. Let p(n) denote the number of partitions of n (into
positive integers) and let p(n,m) denote the number of partitions of n into
exactly m parts, where the summands are counted with their multiplicities.
For convenience, define p(0) = 1 and p(n) = 0 if n < 0.

It is obvious that

(1) p(n,m) = p(n−m) for n ≥ 1 and m ≥ n/2.
We shall show that this relation holds asymptotically for a wider range of
m in the following sense.

Theorem 1. Let c =
√

2/3π and 0 < ε < 1. If m ≥ c−1(1 + ε)
√
n log n

then the relation

(2) p(n,m) = p(n−m)(1 +O(n−ε/2))

holds uniformly in m as n→∞.

An interesting consequence of the theorem is the following result.

Corollary 1. If m ≥ c−1√n logn+ x
√
n, where x→∞, then

p(n,m) = p(n−m)(1 +O(e−cx/2)).

The term c−1√n log n is nothing but the asymptotic value of the mean
number of summands in a random partition of n, each partition of n being
equally likely; cf. [17]. Note that the number of partitions of n with m 1’s is
given by p(n−m)−p(n−m−1) for 0 ≤ m ≤ n; and, consequently, p(n−m)
is nothing but the number of partitions of n which have ≥ m 1’s. Thus the
element 1 plays an important rôle in the counting function p(n,m) when m
is larger than the mean value. Our aim in this paper is to show that such a
phenomenon holds for more general partitions.

The proof of the theorem is rather simple and relies on a method that we
previously employed in [10] (for Dirichlet series) for an analytic proof of a
result of Nicolas [15]. From the formula (2), it is obvious that our method is
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based on explicitly isolating the contribution of the element 1 to the counting
function p(n,m). This method is quite general and can be applied to other
partition problems; it can be regarded as analytic version of the sieve of
Eratosthenes; cf. [14, Ch. IV]. A general theorem under a scheme due to
Meinardus [13] will be derived in Section 4, which applies, in particular, to
partitions into powers. Finally, we further refine the analysis to establish the
limiting distribution (with convergence rate) for the number of summands
in partitions into parts ≥ k, 1 ≤ k = o(n1/4(log n)−1), thus extending and
improving the results by Auluck et al . [2].

Notation. We shall use the notation [zn]f(z) to represent the coefficient
of zn in the Taylor expansion of f(z). The notation [umzn]g(u, z) is then
defined as [um]([zn]g(u, z)). All limits (including O, �, o and ∼), whenever
unspecified, will be taken as n→∞. The constant c always denotes

√
2/3π.

2. The proof of Theorem 1. Let p(2)(n,m) denote the number of
partitions of n into m parts, each being ≥ 2. Then

p(n,m) =
∑

0≤j≤m
p(2)(n− j,m− j)

=
∑

0≤j≤n−m
p(2)(n−m+ j, j)−

∑

1≤j≤n−2m

p(2)(n+ j,m+ j)

= p(n−m)−
∑

1≤j≤n−2m

p(2)(n+ j,m+ j).

Using the inequalities (cf. Lemma 1 below)

(3) p(2)(n,m) ≤ p(n− 2m),

we obtain

p(n,m) = p(n−m) +O
( ∑

0≤j<n−2m

p(j)
)
.

From the well-known asymptotic relation (cf. [1, 14])

(4) p(n) =
ec
√
n

4
√

3n
(1 +O(n−1/2)),

it follows that

p(n,m) = p(n−m)
(

1 +O

(
(n−m)ec

√
n−2m−c√n−m

√
n− 2m

))
.

This completes the proof.

3. The generality of the method. Let Λ = {λ1, λ2, . . .} be a (finite
or infinite) sequence of positive integers such that 1 ≤ λ1 < λ2 < . . . Let
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pΛ(n,m) = p
(1)
Λ (n,m) denote the number of partitions of n into m parts λj ,

so that ∑
n,m

pΛ(n,m)umzn =
∏

j≥1

1
1− uzλj .

Similarly, we define p(ν)
Λ (n,m) via the generating function

∑
n,m

p
(ν)
Λ (n,m)umzn =

∏

j≥ν

1
1− uzλj (ν = 1, 2, . . .).

The inequality (3) bears the following general form.

Lemma 1. For all positive integers n, m and µ,

p
(µ)
Λ (n,m) ≤ [zn−λµm]

∏

j>µ

1
1− zλj−λµ .

P r o o f. Observe that p(µ)
Λ (n,m) is the number of solutions of the equa-

tions {
rµλµ + rµ+1λµ+1 + . . . = n,
rµ + rµ+1 + . . . = m,

where the rj ’s are non-negative integers; or, equivalently, the number of
solutions of the equations{

rµ+1(λµ+1 − λµ) + rµ+2(λµ+2 − λµ) + . . . = n− λµm,
rµ+1 + rµ+2 + . . . ≤ m.

The lemma follows since the number of such solutions is less than or equal
to the number of partitions of n− λµm into parts λj − λµ, j > µ.

Proposition 1. For any positive integer µ, we have

(5) pΛ(n,m) =
∑

1≤ν<µ
(−1)ν−1Sν +Rµ

where

(6) Sν = [zn−λνm]
( ∏

1≤j<ν

zλν−λj

1− zλν−λj
)(∏

j>ν

1
1− zλj−λν

)
,

and |Rµ| ≤ Sµ.

P r o o f. (Compare [14, Thm. 4.1].) For µ = 1, the result reduces to
Lemma 1. We suppose µ ≥ 2. First of all, observe that

p
(1)
Λ (n,m) =

∑

0≤j≤m
p

(2)
Λ (n− λ1j,m− j)

=
∑

j≥0

p
(2)
Λ (n− λ1m+ λ1j, j)−

∑

1≤j≤n−λ2m
λ2−λ1

p
(2)
Λ (n+ λ1j,m+ j).
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It is easily verified that for each N ≥ 0,
∑

j≥0

p
(2)
Λ (N + λ1j, j) = [zN ]

∏

j≥2

1
1− zλj−λ1

.

By induction we obtain (6) with

Rµ = (−1)µ−1
∑

1≤j1≤n−λ2m
λ2−λ1

∑

1≤j2≤n−λ3m−(λ3−λ1)j1
λ3−λ1

. . .

∑

1≤jµ−1≤n−λµm−(λµ−λ1)j1−...−(λµ−λµ−2)jµ−2
λµ−λµ−1

p
(µ)
Λ

(
n+

∑

1≤i<µ
λiji,m+

∑

1≤i<µ
ji

)
.

Applying Lemma 1, we deduce the required result.

Corollary 2. For any odd number ν ≥ 1 and even number µ ≥ 2,

S1 − S2 + . . .− Sµ ≤ pΛ(n,m) ≤ S1 − S2 + . . .+ Sν .

Obviously, Rµ = 0 when µ > µ0, where µ0 is the largest positive integer
such that n− λµ0m ≥ 0.

Corollary 3. If m > (n+ λ1)/λ2 − 1 then

pΛ(n,m) = p
(2)
Λ (n− λ1m), where p

(2)
Λ (n) = [zn]

∏

j≥2

1
1− zλj−λ1

.

The decomposition (5) is especially useful when m becomes large and
µ = 2.

4. An analytic scheme. In this section we apply Proposition 1 to
derive a result generalizing Theorem 1 using a Mellin transform technique,
hereafter referred to as an analytic scheme, due to Meinardus [13]; cf. also
Andrews [1, Ch. 6]. Concrete examples to which this result applies will be
discussed in the next section.

Let 1 ≤ λ1 < λ2 < . . . be a sequence of positive integers satisfying the
following conditions:

(M1) Let D(s) =
∑
j≥1 λ

−s
j . The Dirichlet series D converges in the half-

plane Re s > α > 0, and can be analytically continued into the half-plane
Re s ≥ −α0, for some α0 > 0. In Re s ≥ −α0, D is analytic except for a
simple pole at s = α with residue A.

(M2) There exists an absolute constant c1 > 0 such that D(σ+it)� |t|c1
uniformly for σ ≥ −α0 as t→ ±∞.

(M3) Define g(τ) =
∑
j≥1 e

−λjτ , where τ = r+ iy with r > 0 and −π ≤
y ≤ π. There exists a positive constant ϑ < 1 such that |g(r + iy)| ≤ ϑg(r)
uniformly for r ≤ |y| ≤ π as r → 0+.
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Condition (M3) is a condition of Haselgrove and Temperley [8]. Set

β := (AΓ (1 + α)ζ(1 + α))1/(α+1),

where Γ denotes the Gamma function and ζ is Riemann’s zeta function, and

B := lim
s→α

(
D(s)− A

s− α
)
.

Let p(2)
Λ (n) be defined as in Corollary 3.

Theorem 2. Suppose the sequence Λ satisfies (M1)–(M3). If α = 1
(
∑
j≥1 λ

−1
j diverges), then

(7) pΛ(n,m) = p
(2)
Λ (n− λ1m)(1 +O(n−α

′/2 + n−(λ2−λ1)ε/2)),

uniformly for m ≥ A+ε
2β

√
n log n, where ε > 0, α′ = min{1, α0}, and

(8) p
(2)
Λ (n) = ξnυe2β

√
n(1 +O(n−α

′/2)),

with υ = 1
4 (2D(0)− 5 + 2Aλ1) and

ξ =
λ1e

D′(0)+B−1

2
√
π

β3/2−D(0)−Aλ1
∏

j≥2

e−λ1/λj

1− λ1/λj
.

On the other hand , if 0 < α < 1 (
∑
j≥1 λ

−1
j converges), then

(9) pΛ(n,m) = p
(2)
Λ (n− λ1m)(1 +O(n−α

′′/(α+1) + e−β(λ2−λ1)ωn)),

uniformly for m ≥ ωnn
1/(α+1), where ωn is any sequence of n tending to

infinity , α′′ = min{1, α, 1− α, α0}, and

(10) p
(2)
Λ (n) = ηnκe(1+α−1)βnα/(α+1)

(1 +O(n−α
′′/(α+1))),

with

κ =
2D(0)− 4− α

2(α+ 1)
and η =

λ1e
D′(0)

2
√
π

β3/2−D(0)
∏

j≥2

1
1− λ1/λj

.

Note that if α = 1, then β =
√
A/6π and 2β = c

√
A.

P r o o f (sketch). We first dispose of the case when m ≥ n/λ1 by Corol-
lary 3. We next show that the two sequences

Λ1 = {λj − λ1}j≥2 and Λ2 = {λ2 − λ1} ∪ {λj − λ2}j≥3

also satisfy (M1)–(M3). The formulae (7)–(10), apart from the error terms,
follow then from Meinardus’s original theorem. For techniques leading to
the required (better) error terms, see Appendix.

LetD1(s) =
∑
j≥2(λj−λ1)−s andD2(s) = (λ2−λ1)−s+

∑
j≥3(λj−λ2)−s

for Re s > α. Analytic continuations of these two functions in terms of D
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can be obtained in the usual way (cf. [6]). We have

D1(s) = D(s)− λ−s1 +
∑

l≥1

(
s+ l − 1

l

)
λl1(D(s+ l)− λ−s−l1 ),

D2(s) = (λ2 − λ1)−s +D(s)− λ−s1

+
∑

l≥1

(
s+ l − 1

l

)
λl2(D(s+ l)− λ−s−l1 − λ−s−l2 ),

the right-hand side providing the required analytic continuation for Re s ≥
−α0. Note that when 0 < α < 1 both functions so continued have a simple
pole at s = α − 1 (if α − 1 > −α0); and that when α = 1 the pole at 0 is
cancelled by the corresponding binomial factor s. Thus Λ1 and Λ2 satisfy
(M1) with the number α0 there replaced by min{1−α, α0} when 0 < α < 1
(and remains otherwise unaltered). These representations also guarantee
that condition (M2) holds for both sequences (with a possibly different c1)
by the same property of Λ. Also from these representations, we deduce that

(i) if α = 1 then

D1(0) = D(0)− 1 +Aλ1, D2(0) = D(0)− 1 +Aλ2,

D′1(0) = D′(0) + log λ1 +B − 1−
∑

j≥2

(
log
(

1− λ1

λj

)
− λ1

λj

)
;

(ii) if 0 < α < 1 then

D1(0) = D2(0) = D(0)− 1,

D′1(0) = D′(0) + log λ1 −
∑

j≥2

log
(

1− λ1

λj

)
.

Finally, the remaining condition (M3) is easily checked. Thus, we obtain
(8) and (10). Now by Proposition 1 with µ = 2, we have

pΛ(n,m) = p
(2)
Λ (n− λ1m) +R2,

where

R2 � [zn−λ2m]
1

1− zλ2−λ1

∏

j≥3

1
1− zλj−λ2

.

If α = 1 the right-hand side is bounded above, on applying Meinardus’s
theorem to the sequence Λ2, by

R2 � (n− λ2m)υ+A(λ2−λ1)/2e2β
√
n−λ2m.

From this estimate and (8), the result (7) follows. If 0 < α < 1 then by
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applying the same theorem

R2 � (n− λ2m)κ exp
(
α+ 1
α

β(n− λ2m)α/(α+1)
)
,

which together with (10) implies (9).

By a similar method, we derive that the expected number of summands,
where each Λ-partition of n is equally likely, is asymptotic to (cf. [19])





√
A

c

√
n logn if α = 1,

D(1)
β

n1/(α+1) if 0 < α < 1.

Furthermore, from the generating function

1
1− uzλ1

∏

j≥2

1
1− zλj =

1− zλj
1− uzλ1

∏

j≥1

1
1− zλj ,

it follows that the number of Λ-partitions of n in which there are ≥ m λ1’s
is given by pΛ(n−λ1m), where pΛ(n) is the total number of Λ-partitions of
n (cf. [13, 1]):

pΛ(n) = [zn]
∏

j≥1

1
1− zλj

= %nσe(1+1/α)βnα/(α+1)
(1 +O(n−min{1,α,α0}/(α+1))),(11)

with

σ =
2D(0)− 2 + α

2(α+ 1)
and % =

eD
′(0)β1/2−D(0)
√

2π(α+ 1)
.

Since the error term in (11) is better than that in Meinardus’s original paper,
a sketch of the proof is given in the Appendix.

5. Applications. Consider first the case when λj = j + k − 1, where
k ≥ 1 is a fixed integer. The assumptions of Theorem 2 being easily checked
with α = 1, we obtain (1)

pΛ(n,m) = p(n− km)(1 +O(n−ε/2)),

uniformly for m ≥ c−1(1 + ε)
√
n logn, 0 < ε < 1, and for each fixed k. Thus

removing from the set of positive integers the first k − 1 numbers does not
change drastically the asymptotic behaviour of pΛ in the specified range.

(1) The quantities pΛ, when written without their subscript, have Z+ as their under-
lying set.
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Note that in this case a direct application of Proposition 1 using (4) is
simpler. Moreover, the condition that k = O(1) can be relaxed and we can
show that

pΛ(n,m) = p(n− km)(1 +O(n−ε/2e−k(logn)2/(4c
√
n))),

for m ≥ c−1(1 + ε)
√
n log n and 1 ≤ k = o(ε

√
n(logn)−1).

For examples for which A 6= 1, take D(s) = (1− k−s)ζ(s), where k ≥ 3.
Then our theorem applies with A = (k − 1)/k.

As another application of Theorem 2, consider the case when λj = jk,
where k is a fixed positive integer ≥ 2. The conditions (M1)–(M3) being
satisfied as in [8] (using estimates from Waring’s problem), we obtain

pΛ(n,m) = p
(2)
Λ (n−m)(1 +O(n−1/(k+1) + e−β(2k−1)ωn)),

uniformly for

m ≥ ωnnk/(k+1) with β =
(

1
k
Γ (1 + 1/k)ζ(1 + 1/k)

)k/(k+1)

,

where ωn →∞ and

p
(2)
Λ (n) = γkn

−(5k+1)/(2k+2)e(1+k)βn1/(k+1)
(1 +O(n−1/(k+1))),

with

γk = (2π)−(k+1)/2(1 + 1/k)−1/2β2
∏

j≥2

1
1− j−k .

Note that the expected number of summands is asymptotic to (cf. [19])

ζ(k)
β

nk/(k+1)(1 +O(n−1/(k+1))),

for k ≥ 2.

6. Cases of failure. In this section we show by two examples that al-
though conditions (M1)–(M3) are rather restrictive, results similar to The-
orem 2 may hold for more general partitions. From the above discussions,
we naturally predict for general Λ-partitions that

pΛ(n,m) ∼ [zn−λ1m]
∏

j≥2

1
1− zλj−λ1

,

for m in a certain range (lying to the right of the mean value), even without
explicit representation of the asymptotic behaviour of the right-hand side
in terms of elementary functions as in the results of the last section. This is
the case for, say, partitions into primes.

Take first λj = k(j − 1) + h, where k ≥ 2, 1 ≤ h < k and (h, k) = 1.
Then pΛ(n,m) = 0 whenever n− hm 6≡ 0 (mod k). Applying (5), we obtain
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by the derivations of (2)

pΛ(n,m) = p((n− hm)/k)(1 +O(n−ε/2)),

for m ≥ 1+ε√
k c

√
n log n and for n− hm ≡ 0 (mod k), the O-term depending

on k. We can of course let k →∞ with n and the relation still holds provided
that k = o(

√
n).

Next consider the Mahler partition λj = 2j−1. Let

p
(2)
Λ (n) = [zn]

∏

j≥1

1
1− z2j−1

.

Then by (5), we have pΛ(n,m) = p
(2)
Λ (n−m) +R2 where

|R2| ≤ [zn−2m]
z

1− z
∏

j≥2

1
1− z2j−2

=
∑

0≤j≤(n−1)/2−m
p

(2)
Λ (j).

Using standard analytic methods as in [3, 18] or the Tauberian theorems in
[16, 21], we can verify that pΛ(n,m) ∼ p(2)

Λ (n−m) whenever (m log n)/n→
∞. Note that the expected number of summands in a random Mahler par-
tition is asymptotic to (cf. [18]) (2 log 2)n/ log n, each partition of n being
assigned the same probability.

7. Limiting distributions. In this section we show that the above
method is also suitable for deriving limiting distribution of the number of
summands. For simplicity we consider only the case when λj = j+k−1, that
is, Λ is the set of positive integers ≥ k. For further results on the limiting
distribution of the number of summands in partitions, see [8, 22–25, 12,
20, 7].

Let ξ(k)
n represent the number of summands (counted with multiplicities)

in a random Λ-partition of n (i.e., into parts ≥ k), each Λ-partition of n
being equally likely. Auluck et al . [2] showed, by a method due to Erdős and
Lehner [5], that

(12) Pr{ξ(1)
n = m} =

pΛ(n,m)
p(n)

∼ n−1/2 exp
(
− c

2
x− 2

c
exp

(
− c

2
x

))
,

uniformly for m = c−1√n log n + x
√
n, x = O(1). The distribution on the

right-hand side is an extreme-value distribution; cf. [25]. We shall further
refine the analysis in Section 2 to obtain the following result which is more
general and precise than (12).

Theorem 3. If m = c−1√n logn+ x
√
n then

(13) Pr{ξ(k)
n = m}

=
(2/c)k−1

(k − 1)!
√
n

exp
(
− c

2
kx− 2

c
exp

(
− c

2
x

))(
1 +O

(
k2(log n)2
√
n

))
,
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uniformly for all x and for 1 ≤ k = o(n1/4(log n)−1). Furthermore, if k →
∞, where k = o(n1/4(log n)−1), then for

(14) m =
2
√
n

c
log

2
√
n

ck
+ x

2
√
n

c
√
k

(x = O(1)),

we have

(15) Pr{ξ(k)
n = m} =

e−x
2/2

√
2π σn,k

(
1 +O

(
x3
√
k

+
k2(log n)2
√
n

))
,

uniformly in k, where σn,k = 2
√
n/(c
√
k).

Note that when k = 1, the result (13) may be derived from the general
formulae of Szekeres [24, 25]; cf. also [4]. Once we have started with (5),
the remaining derivations become more or less standard; thus details will be
omitted.

P r o o f (sketch). By Proposition 1, we have for any µ ≥ 1,

(16) p(n,m) =
∑

1≤ν≤µ
(−1)ν−1[zn−(ν+k−1)m]fν(z) +Rµ+1,

where

fν(z) =
( ∏

1≤k<ν

zk

1− zk
)(∏

k≥1

1
1− zk

)
,

and |Rµ+1| ≤ [zn−(µ+k)m]fµ+1(z). Set

N = π−1
√

6(n− (ν + k − 1)m)

and write z = e−τ , where τ = N−1 + iθ, |θ| ≤ π. It can be verified that (cf.
[1, Ch. VI])

(17) fν(e−τ ) =
τ−ν+3/2eπ

2/(6τ)
√

2π (ν − 1)!
(1 +O(ν2|τ |)),

uniformly for 1 ≤ ν = o(n1/4) and |θ| ≤ N−1. On the other hand, we have

(18) |fν(e−τ )| < fν(e−1/N )e−N/20,

for N−1 < |θ| ≤ π. This can be seen as follows. Obviously,

|log fν(z)| ≤ log fν(|z|)− |z|
1− |z|

(
1− 1− |z|
|1− z|

)
.

Now if N−1 < |θ| ≤ π then

1− |z|
|1− z| =

1− e−1/N
√

(1− e−1/N )2 + 2e−1/N (1− cos θ)
≤
(

1 +
4e

π2(e− 1)2

)−1/2

,

where we have used the inequalities 1 − cos θ ≥ 2θ2/π2 for |θ| ≤ π, and
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x2e−x(1 − e−x)−2 ≥ e(e − 1)−2 for 0 ≤ x ≤ 1. Now using the inequality
e−1/N (1− e−1/N )−1 ≥ N/e for N ≥ 1, we obtain

|z|
1− |z|

(
1− 1− |z|
|1− z|

)
≥ N

e

(
1−

(
1 +

4e
π2(e− 1)2

)−1/2)
>
N

20
,

as required. From the two estimates (17) and (18), we deduce, by Laplace’s
method, that

[zn−(ν+k−1)m]fν(z) =
(2/c)ν−1(n− (ν + k − 1)m)(ν−3)/2

4
√

3 (ν − 1)!
ec
√
n−(ν+k−1)m

×
(

1 +O

(
ν2

√
n− (ν + k − 1)m

))
,

for 1 ≤ ν = o(n1/4). In view of the asymptotic formula (cf. also [4])

pΛ(n) = [zn]
∏

j≥k

1
1− zj

=
(k − 1)!

4
√

3

(
c

2

)k−1

n−(k+1)/2ec
√
n(1 +O(k2n−1/2)) (k = o(n1/4)),

obtained by applying, say, the saddle-point method, we have

(19) pΛ(n)−1[zn−(ν+k−1)m]fν(z)

=
(2/c)ν+k−2

(k − 1)!(ν − 1)!
n(ν+k−2)/2e−c(ν+k−1)m/(2

√
n)

×
(

1 +O

(
k2 + ν2
√
n

+
ν(ν + k)m

n
+

(ν + k)2m2

n3/2

))
.

Thus for m = c−1√n log n+ x
√
n and k = o(n1/4(log n)−1), we obtain

pΛ(n)−1[zn−(ν+k−1)m]fν(z)

=
(2/c)ν+k−2e−c(ν+k−1)x/2

(k − 1)! (ν − 1)!
√
n

(
1 +O

(
ν2 + k2
√
n

(logn)2
))

.

From this relation and (16), (13) follows (by choosing a sufficiently large µ
in (16)). Similarly, substituting (14) into (19), we deduce (15).

The theorem is comparable with the results of Fristedt [7] for the limiting
distribution of the size of the kth largest summand (Yk, in his notation) in
a random partition of n (integers ≥ 1). Actually, the two quantities have,
by conjugacy, the same distribution. Although his range of validity of (15)
for k is slightly larger than ours (k = o(n1/4)), our local limit theorems (13)
and (15) are stronger than his global limit theorems (without convergence
rates).
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We can rewrite the formula (13) in a different form as follows. If

m =
2
√
n

c
log

2
√
n

cy
, y > 0,

then

Pr{ξ(k)
n = m} =

ck

2
√
n
· y

ke−y

k!

(
1 +O

(
k2(logn)2
√
n

))
,

a gamma distribution.

8. Concluding remarks. One may extend Theorem 3 to general parti-
tions under Meinardus’s (or other) scheme, the result obtained being com-
parable to those in [8, 12, 20]. One may also consider the case of repeated
λj , that is, the sequence Λ satisfies 1 ≤ λ1 ≤ λ2 ≤ . . . , the computations
involved being more complicated.

The method used here is also suitable for the quantities studied by Szalay
and Turán in [22, 23]. The generating functions there are of the forms
( ∏

1≤j<k

1
1− zj

)(∏

j≥k

1
1− uzj

)
and

( ∏

1≤j≤k

1
1− uzj

)(∏

j>k

1
1− zj

)
,

where k ≥ 1.
It should be mentioned, as emphasized in [9], that if the multiplicity of

each summand is counted only once, or if each part is allowed to appear
at most once, then the limiting distributions of the number of summands
are Gaussian for a large class of partitions. For more quantitative results,
see [9].

General combinatorial inequalities for pΛ(n,m) are developed in [11],
which are especially useful for partitions with a small number of summands.

Appendix. In this appendix, we sketch the proof of (11); details can be
found in [9]. In Meinardus’s original paper, the error term for pΛ(n) in (11)
is of the form O(n−κ1), where (cf. [13, 1])

κ1 =
α

α+ 1
min

{
min{1, α0}

α
− δ

4
,

1
2
− δ
}
,

δ being an arbitrary positive number.
Set

F (z) =
∏

j≥1

(1− zλj )−1.

Write z = e−τ = e−r−iy, where r > 0 and −π ≤ y ≤ π. By Mellin transform
(cf. [13, 1]), we have

(20) F (e−τ ) = eD
′(0)τ−D(0)eAΓ (α)ζ(α+1)τ−α(1 +O(|τα′ |)),
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uniformly for |y| ≤ r, as r → 0+, where α′ = min{1, α0}. On the other hand,
by our assumption (M3), we deduce that

(21)
|F (e−r−iy)|
F (e−r)

� e−c2r
−α

(c2 > 0),

uniformly for r ≤ |y| ≤ π. From the estimate (20), it follows that

(22)
|F (e−r−iy)|
F (e−r)

� e−c3r
−α/7

(c3 > 0),

uniformly for r1+3α/7 ≤ |y| ≤ r, as r → 0+. Choose now

(23) r =
(
AαΓ (α)ζ(α+ 1)

n

)1/(α+1)

.

By Cauchy’s formula using (20)–(23), we have

(24) pΛ(n) = I1 + I2 +O(F (e−r)enr−c4n
α/(7α+7)

),

where

I1 =
eD
′(0)+nr

2π
r1−D(0)

\
|t|≤r3α/7

(1 + it)−D(0)einrt+AΓ (α)ζ(α+1)r−α(1+it)−α dt,

and

I2 � r1−D(0)+α′enr
\

|t|≤r3α/7

|1 + it|−D(0)eAΓ (α)ζ(α+1)r−α Re(1+it)−α dt(25)

� r1−D(0)+α′+α/2enr+AΓ (α)ζ(α+1)r−α ,

where we used the inequalities

Re(1 + it)−α ≤ (1 + t2)−α/2 ≤ 1− (1− 2−α/2)t2 for −1 ≤ t ≤ 1.

For I1, setting b =
√
α(α+ 1)AΓ (α)ζ(α+ 1) and making the change of

variables v2 = b2r−αt2, we obtain

I1 =
eD
′(0)+nr+AΓ (α)ζ(α+1)r−α

2πb
r1−D(0)+α/2

br−α/7\
−br−α/7

e−v
2/2Tr(v) dv,

where

Tr(v) = 1 +
(α+ 2)v2 − 6D(0)

6b
rα/2iv +O((v6 + v2)rα),

from which we deduce that

(26) I1 =
eD
′(0)+nr+AΓ (α)ζ(α+1)r−α

√
2π b

r1−D(0)+α/2(1 +O(rα)).

Thus (11) follows from (23)–(26).
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[5] P. Erd ő s and J. Lehner, The distribution of the number of summands in the
partitions of a positive integer , Duke Math. J. 8 (1941), 335–345.

[6] P. Fla jo le t, X. Gourdon and P. Dumas, Mellin transforms and asymptotics:
harmonic sums, Theoret. Comput. Sci. 144 (1995), 3–58.

[7] B. Fr i s tedt, The structure of random partitions of large integers, Trans. Amer.
Math. Soc. 337 (1993), 703–735.

[8] C. B. Hase lgrove and H. N. V. Temper ley, Asymptotic formulae in the theory
of partitions, Proc. Cambridge Philos. Soc. 50 (1954), 225–241.

[9] H.-K. Hwang, Limit theorems for the number of summands in integer partitions,
submitted.
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