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1. Let Qi(l,m), i = 1, 2, 3, be three non-proportional non-singular diag-
onal quadratic forms with rational coefficients:

(1) Qi(l,m) ≡ ail2 + bim
2,

and denote by E the curve of intersection

(2) Q1(l,m) = r2, Q2(l,m) = s2, Q3(l,m) = t2.

Then E is an irreducible curve in P4 of degree 8 and genus 5. Suppose there
exists a point on (2) whose coordinates generate an extension field of Q of
odd degree n. It is straightforward to see by Riemann–Roch that E possesses
an effective rational divisor of degree 5, henceforth referred to as a rational
pentuple on E. Such a pentuple may not be irreducible over Q, for instance
comprising a rational pair and a rational triple.

We are concerned with how to determine whether or not the curve E
can possess rational pentuples. No such pentuple, and E can have no points
defined over extension fields of Q of odd degree.

The approach is modelled directly on that of Cassels [2]; see also Bremner
[1]. The Jacobian of the curve E is of dimension 5, and is in fact isogenous to
the product of five elliptic curves. It suffices to produce natural maps from
E to each of five curves Ei of genus 1, for then there are induced morphisms
from Jac(E) to Jac(Ei), and the latter is isomorphic to an elliptic curve.
The five morphisms then induce the required isogeny.
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We can display five curves Ei of genus 1, with respective maps µi : E →
Ei given by projection:

E1 : a1l
2 + b1m

2 = r2,

a2l
2 + b2m

2 = s2,
µ1(l,m, r, s, t) = (l,m, r, s);

E2 : a1l
2 + b1m

2 = r2,

a3l
2 + b3m

2 = t2,
µ2(l,m, r, s, t) = (l,m, r, t);

E3 : a2l
2 + b2m

2 = s2,

a3l
2 + b3m

2 = t2,
µ3(l,m, r, s, t) = (l,m, s, t);

E4 : a2r
2 + (a1b2 − a2b1)m2 = a1s

2,

a3r
2 + (a1b3 − a3b1)m2 = a1t

2,
µ4(l,m, r, s, t) = (m, r, s, t);

E5 : b2r
2 − (a1b2 − a2b1)l2 = b1s

2,

b3r
2 − (a1b3 − a3b1)l2 = b1t

2,
µ5(l,m, r, s, t) = (l, r, s, t).

Denote by Gi the group Ei(Q) of rational points on Ei, i = 1, . . . , 5.
Certainly a rational pentuple on E projects onto a rational pentuple of
points on each Ei, and again by Riemann–Roch, each Ei contains an effective
divisor of degree 1, that is, there exists a rational point on Ei. Consequently,
if any Gi is empty, there cannot exist a rational pentuple on E.

Henceforth we assume that each Gi is non-empty; and by choosing a
rational point Oi in Gi as the zero-point, each Ei may be given the structure
of Abelian variety of dimension 1 over Q. By abuse of notation, this Abelian
variety will also be denoted by Ei.

We now give an explicit method for determining rational points on each
Ei from a rational pentuple on E. Corresponding to the map µj , denote by
µj∗ the “push-forward” map from the group of divisors on E to the group of
divisors on Ej (see, for example, Fulton [4]). For a rational pentuple T on Ej
define νj(T ) to be the unique point on Ej satisfying the linear equivalence

(3) νj(T ) ∼ µj∗(T )−Πj

where Πj is a hyperplane section of Ej . A specific construction for νj(T ) is
easily given. Cut Ej by a quadric through µj∗(T ); then the plane through
the three residual points of this intersection cuts Ej residually in νj(T ).

2. Given a rational pentuple T on E, we show below how to construct
a rational pentuple S on E such that the points νi(S) in Gi, i = 1, . . . , 5,
are restricted to a finite set. It then remains (see Section 3) to determine
from such finite sets of rational points on E1, . . . , E5 whether indeed they
can arise from an ur-pentuple on E.
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Lemma 1. Let T be a rational pentuple on E , and let P ∈ G1. Then
there is a rational pentuple S on E such that

ν1(S) = ν1(T )− 2P,(4)

νj(S) = νj(T ), j = 2, 3, 4, 5.(5)

Here, the subtraction in (4) is that of G1.

P r o o f. Let µ∗1 be the “pull-back” map of divisors on E1 to divisors on
E, corresponding to the map µ1. By Riemann–Roch, there is an effective
rational divisor S on E satisfying the linear equivalence

(6) S ∼ T − µ∗1(P ) + µ∗1(O1).

Then

ν1(S) ∼ µ1∗(S)−Π1 ∼ µ1∗(T )−Π1 − µ1∗µ∗1(P ) + µ1∗µ∗1(O1)

∼ ν1(T )− 2P + 2O1

using (3) and the fact that µ1∗µ∗1 is multiplication by the degree of µ1

(see Fulton [4], Example 1.7.4). Via the Jacobian mapping, (4) now follows.
Further, from (3) and (6), for j = 2, . . . , 5,

(7) νj(S) ∼ µj∗(S)−Πj ∼ νj(T )− µj∗µ∗1(P ) + µj∗µ∗1(O1).

For clarity, consider j = 2. Suppose P is the point (lp,mp, rp, sp), and put
t2p = Q3(lp,mp). Then the points µ2∗µ∗1(P ) on E2 are the pair (lp,mp,
rp,±tp). From E2 there is a natural restriction φ to the quadric Q1 at (2)
given by φ(l,m, r, t) = (l,m, r) and then µ2∗µ∗1(P ) = φ−1(lp,mp, rp). Simi-
larly, denoting O1 by (l1,m1, r1, s1), we have µ2∗µ∗1(O1) = φ−1(l1,m1, r1).
However, any two points of a quadric are linearly equivalent, and so
(l1,m1, r1) ∼ (lp,mp, rp) on Q1. It follows that µ2∗µ∗1(P ) ∼ µ2∗µ∗1(O1) on
E2. More generally, µj∗µ∗1(P ) ∼ µj∗µ∗1(O1) on Ej for j = 2, 3, 4, 5, so that
(7) implies νj(S) ∼ νj(T ) on Ej , and (5) follows.

The referee observes that this proof is less mysterious if viewed in the
following light.

Consider the commutative diagram

E E1

E2 C12

µ2

²²

µ1 //

φ1

²²
φ2

//

where µ1 and φ2 “forget” t, and µ2 and φ1 “forget” s (with C12 the first
quadric at (2)). Then E is the fibre product of E1 and E2, and it follows
that µ2∗µ∗1 = φ∗2φ1∗ (see Fulton [4], Prop. 1.7). Since φ1∗(P ) ∼ φ1∗(O1) on
C12, (5) follows as before. In this way, the lemma is seen as a special case
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of a much more general result, and the proof extends entirely naturally to
all combinations of i, j instead of 1, 2.

A geometric construction to produce such a pentuple S is as follows. The
linear space of quadrics in P4 with basis {l2, lm, lr, ls, lt,m2,mr,ms,mt,
rs, rt, st} has 11 degrees of freedom. Cut E by a quadric of the system
through T , µ∗1(P ), 2µ∗1(O1). The intersection comprises 16 points, so the
residual intersection is a rational pentuple R, say. Again cut E by a quadric
through R, 2µ∗1(P ), µ∗1(O1), having residual intersection a rational pentuple
S. Then we have the following linear equivalence of divisors on E:

T + µ∗1(P ) + 2µ∗1(O1) +R ∼ R+ 2µ∗1(P ) + µ∗1(O1) + S,

so that S ∼ T − µ∗1(P ) + µ∗1(O1) as required.
Analogous lemmas to the above are obtained by replacing G1 by Gi,

i = 2, 3, 4, 5. There is the following consequence.

Theorem 2. For j = 1, . . . , 5, let Cj denote a set of points on Ej
forming a complete set of coset representatives for Gj/2Gj. Let T be a ra-
tional pentuple on E. Then there is a rational pentuple S on E such that
νj(S) ∈ Cj , j = 1, . . . , 5.

3. We describe how to determine possible pentuples T from a knowledge
of the νj(T ). For this purpose, it is expedient to define an alternative map ν′j
from rational pentuples on E to rational points on Ej by defining ν′j(T ) ∼
2Πj − 2Oj − µj∗(T ). Then νj(T ) + ν′j(T ) ∼ Πj − 2Oj and it follows (N.B.
the remark preceding Lemma 3) that ν′j(T ) ≡ νj(T ) mod 2Gj . Accordingly,
as before, ν′j(T ) can be restricted to a set Cj of representatives for Gj/2Gj .

Restrict attention to E1, denoting O1 by (l1,m1, r1, s1). The hyperplanes

l1a1l +m1b1m− r1r = 0 = l1a2l +m1b2m− s1s

each contain 2O1 in their intersection with E1. Then given a rational pen-
tuple T on E, there exist a, b, c, d, e, f ∈ Q such that the quadric

π(l,m, r, s) ≡ (al + bm+ cr + ds)(l1a1l +m1b1m− r1r)(8)

+ (el + fm)(l1a2l +m1b2m− s1s) = 0

contains both µ1∗(T ) and 2O1 in its intersection with E1. The residual point
of the intersection is ν′1(T ). Eliminating r, s between (8) and the equations
for E1 results in an equation P8(l,m) = 0, where P8 is homogeneous of
degree 8, with coefficients which are homogeneous quartic polynomials in
a, b, c, d, e, f . Perforce, P8 factorizes in the form

(9) P8(l,m) = (m1l − l1m)2(βl − αm)P5(l,m)

where ν′1(T ) = (α, β, γ, δ), and P5(l,m) is homogeneous of degree 5, with
roots for l : m comprising the ratios l : m for the five points of µ1∗(T ) (so
P5 is irreducible over Q if and only if T is irreducible over Q).
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Write

P8(l,m)/(m1l − l1m)2 = (βl − αm)P5(l,m)(10)

= c0l
6 + c1l

5m+ c2l
4m2 + c3l

3m3

+ c4l
2m4 + c5lm

5 + c6m
6

where ci are homogeneous polynomials of degree 4 in a, b, c, d, e, f .
Let

(11) P5(l,m) = Al5 +Bl4m+ Cl3m2 +Dl2m3 + Elm4 + Fm5,

where, without loss of generality (on multiplying P8(l,m) by a suitable con-
stant), A, B, C, D, E, F ∈ Z. Equating coefficients in (10) results after
simple algebra in

(12) A : B : C : D : E : F

= c0β
5 : (c0α+ c1β)β4 : (c0α2 + c1αβ + c2β

2)β3 :

(c0α3 + c1α
2β + c2αβ

2 + c3β
3)β2 :

(c0α4 + c1α
3β + c2α

2β2 + c3αβ
3 + c4β

4)β :

c0α
5 + c1α

4β + c2α
3β2 + c3α

2β3 + c4αβ
4 + c5β

5

with, from (10),

(13) c0α
6 + c1α

5β + c2α
4β2 + c3α

3β3 + c4α
2β4 + c5αβ

5 + c6β
6 = 0.

Now (13) is homogeneous of degree 4 in a, b, c, d, e, f and contains the fac-
tor π(α, β, γ, δ) from (8). (Indeed, (13) factorizes as the product of the
four linear terms π(α, β,±γ,±δ) corresponding to the choice of ν′1(T ) as
(α, β,±γ,±δ). This remark is useful in numerical computation, allowing
four choices of ν′1(T ) to be treated essentially simultaneously, with little
extra computational effort.) Using the linear relation π(α, β, γ, δ) to elim-
inate at (12) one of the quantities a, b, c, d, e, f results in A : B : C :
D : E : F being given as the ratios of six homogeneous quartic polyno-
mials in five variables. For each choice of ν′1(T ), there will be a set of such
polynomials. Provided these polynomials are algebraically independent, it is
then possible successively to eliminate a, b, c, d, e, f resulting in an equation
PBig(A,B,C,D,E, F ) = 0; though in practice this may scarcely be possi-
ble. (Algebraic independence here is not clear. In the analogous situation of
Cassels [2], there arise the ratios of four quadratics in P2, and independence
is straightforward to verify by direct computation.)

Repeating the construction on Ej , j = 2, . . . , 5, produces in each case a
finite list of possibilities for A : B : C : D : E : F as the ratio of homogeneous
quartic polynomials in five variables. Accordingly, fixing a choice of ν′j(T ),
j = 1, . . . , 5, results in five expressions for A : B : C : D : E : F as



46 A. Bremner

the ratios of homogeneous quartics in P4. With algebraic independence, we
could deduce five equations of type PBig(j)(A,B,C,D,E, F ) = 0. Assuming
in turn that these equations are algebraically independent, they may then
be solved for finitely many possible ratios A : B : C : D : E : F .

With |Cj | = |Gj/2Gj | = 2gj , there will be
∑5
j=1 gj choices for the ν′j(T ),

and it is clear that to determine the pentuples T in practice will be an ex-
tremely laborious calculation, if indeed at all possible. In fact, the construc-
tion is more accessible to showing that there are no pentuples on E, which
in a particular numerical example can be achieved without worrying about
the algebraic independence of the systems of equations. We shall construct
such an example (see Section 5) using local methods to prove that each set
of five expressions for A : B : C : D : E : F as the ratio of quartics in P4

is locally inconsistent for an appropriate prime p, so that there can be no
simultaneous solution for A : B : C : D : E : F .

4. We give some arithmetical information about curves of the type Ei,
which will be needed for the example of Section 5.

Let Γ denote the following elliptic curve:

Γ : e1x
2 + e2y

2 = z2,

e3x
2 + e4y

2 = w2,
ei ∈ Q;

with zero of Γ (Q) being the point O(x0, y0, z0, w0). We remark first that the
hyperplane e3x0x+ e4y0y−w0w = 0 cuts out the divisor 2(x0, y0, z0, w0) +
2(x0, y0,−z0, w0). Denote by (p, q, r, s) a generic point of Γ .

Lemma 3. The three points (x0, y0,−z0,−w0), (x0,−y0, z0,−w0),
(x0,−y0,−z0, w0) are of order 2 in Γ (Q), and we have the following :

(14)

(p, q,−r,−s) = (p, q, r, s) + (x0, y0,−z0,−w0),

(p,−q, r,−s) = (p, q, r, s) + (x0,−y0, z0,−w0),

(p,−q,−r, s) = (p, q, r, s) + (x0,−y0,−z0, w0),

where addition is that of Γ (Q).

P r o o f. The function (e3px + e4qy + sw)/(e1px + e2qy − rz) on Γ has
divisor 2(p, q,−r,−s)− 2(p, q, r, s), from which (x0, y0,−z0,−w0) has order
2 in Γ (Q). Moreover, the function

(−sy0 − qw0)x+ (sx0 + pw0)y + (−qx0 + py0)w
(−ry0 − qw0)x+ (rx0 + pw0)y + (qx0 − py0)z

has divisor (p, q, r, s) + (x0, y0,−z0,−w0) − (p, q,−r,−s) − (x0, y0, z0, w0),
and hence the first equation in (14) follows. The other two equations follow
mutatis mutandis.
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Lemma 4.

(i) (p, q, r, s) + (p,−q, r, s) = 2(1, 0,
√
e1,
√
e3) in Γ (Q(

√
e1,
√
e3)),

(15)
(ii) (p, q, r, s) + (−p, q, r, s) = 2(0, 1,

√
e2,
√
e4) in Γ (Q(

√
e2,
√
e4)).

P r o o f. The function ((
√
e3z0−√e1w0)x−(

√
e3x0−w0)z+(

√
e1x0−z0)w)

cuts Γ in the divisor 2(1, 0,
√
e1,
√
e3) + (x0, y0, z0, w0) + (x0,−y0, z0, w0),

and the function ((sz0− rw0)x− (sx0−pw0)z+ (rx0−pz0)w) in the divisor
(p, q, r, s) + (p,−q, r, s) + (x0, y0, z0, w0) + (x0,−y0, z0, w0); and (i) follows.
By interchanging (e1, e3) with (e2, e4) and x with y, (ii) follows.

Lemma 5.

(16) (x0, y0,−z0,−w0) = 2((0, 1,
√
e2,
√
e4)− (1, 0,

√
e1,
√
e3))

in Γ (Q(
√
e1,
√
e2,
√
e3,
√
e4).

P r o o f. The functions y and (y(
√
e1e4 +

√
e2e3)−√e3z−√e1w) cut Γ in

the divisors (1, 0,±√e1,±√e3) and (1, 0,
√
e1,−√e3) + (1, 0,−√e1,

√
e3) +

2(0, 1,
√
e2,
√
e4), respectively; and it follows that (1, 0,

√
e1,
√
e3) + (1, 0,

−√e1,−√e3) = 2(0, 1,
√
e2,
√
e4) in Γ (Q(

√
e1,
√
e2,
√
e3,
√
e4)). But from

the first equation at (14), (1, 0,−√e1,−√e3) = (1, 0,
√
e1,
√
e3) + (x0, y0,

−z0,−w0), and (16) now follows.

Using (14)–(16), the following theorem is now immediate.

Theorem 6. Let (p, q, r, s) ∈ Γ (Q).

(i) Suppose e1 or e3 is not a square in Q, and e2 or e4 is not a square
in Q. Then the points (p,±q,±r,±s) ∈ Γ (Q) represent eight distinct cosets
in Γ (Q)/2Γ (Q).

(ii) Suppose e1, e3 ∈ Q∗2 or e2, e4 ∈ Q∗2, but not both. Then the
points (p,±q,±r,±s) ∈ Γ (Q) represent precisely four distinct cosets in
Γ (Q)/2Γ (Q).

(iii) Suppose e1, e2, e3, e4 ∈ Q∗2. Then the points (p,±q,±r,±s) ∈ Γ (Q)
represent precisely two distinct cosets in Γ (Q)/2Γ (Q).

5. An example. Consider the curve

(17)

E : 4l2 − 11m2 = r2,

17l2 +m2 = s2,

l2 +m2 = t2,

whose Jacobian is isogenous to the product of the following five curves of
genus 1:
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E1 : 4l2 − 11m2 = r2,

17l2 +m2 = s2,

E2 : 17l2 +m2 = s2,

l2 +m2 = t2,

E3 : 4l2 − 11m2 = r2,

l2 +m2 = t2,
(18)

E4 : 4s2 − 191m2 = 17r2,

s2 + 16m2 = 17t2,

E5 : 191l2 − 11s2 = r2,

−16l2 + s2 = t2.

The Ei are elliptic curves, and we take as zeros of the respective groups

O1(l,m, r, s) = (1065, 608, 686, 4433),

O2(l,m, s, t) = (0, 1, 1, 1),

O3(l,m, r, t) = (1, 0, 2, 1),

O4(s,m, r, t) = (16, 1, 7, 4),

O5(l, s, r, t) = (6, 25, 1, 7).

In more traditional form, the Ei have equations

(19)

E1 : y2 = x(x+ 4)(x− 187),

E2 : y2 = x(x+ 1)(x+ 17),

E3 : y2 = x(x+ 4)(x− 11),

E4 : y2 = x(x+ 64)(x− 191),

E5 : y2 = x(x+ 176)(x+ 191).

For interest, we give as illustration in the Appendix explicit maps between
E5 at (18) and E5 at (19). Using a program such as Cremona’s “mwrank” it
is discovered that the rational rank of each Ei is equal to 1 with generators of
infinite orderP1

(−4066304
1134225 ,

20338462144
1207949625

)
,P2(1, 6), P3(16, 40), P4(1024, 30464),

P5
(

16
49 ,

36000
343

)
, respectively. Equivalently, generators of infinite order on the

curves (18) may be taken as (1065,−608, 686, 4433), (3, 4, 13, 5), (15, 8,
14, 17), (16,−1, 7, 4), (6,−25, 1, 7) respectively. The torsion group in each
case is isomorphic to Z/2Z× Z/2Z, of order 4.

Theorem 7. (i) E has points in Qp for all primes p.
(ii) E has no points in Q.

P r o o f. (i) The curve E is singular only at 2, 11, 17 and so the Weil
inequality mandates a point in Qp for all primes p ≥ 101. There is clearly a
solution in R (completion at the infinite prime) with m = 0; and it remains
to find a solution in Qp for primes 2 ≤ p ≤ 97. Now 17 a p-adic square
implies a p-adic point with (l,m) = (1, 0); and −11 a p-adic square implies
a p-adic point with (l,m) = (0, 1). For the remaining primes, p-adic points
are provided by the following table:
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p l m p l m

7
√

15 1 41 3 1
11 2 1 61 8 1
17

√−1 1 73 13 1
29 8 1 79 1 1

(ii) A generator for the Mordell–Weil group E5(Q) of rank 1 is
P5
(

16
49 ,

36000
343

)
, and the torsion group comprises the points{O, (0, 0), (−191, 0),

(−176, 0)}, where of course O denotes the zero of E5 at (19).
Suppose that (l,m, r, s, t) ∈ E(Q); by multiplying by a suitable integer,

we may suppose l,m, r, s, t ∈ Z with (l,m) = 1.

Now P =
(

16r2

t2 , 240lrs
t3

) ∈ E5(Q) so that P = nP5+Q for some n ∈ Z, and
torsion point Q. Let φ : E5(Q) → Q∗/Q∗2 be the standard homomorphism
(see Cassels [3], Lemma 14.2) defined here by φ([x, y]) = x mod Q∗2 for
x 6= 0, φ(O) = 1 mod Q∗2, and φ([0, 0]) = 176 · 191 mod Q∗2. Then

1 = φ(P ) = φ(nP5 +Q) = φ(P5)nφ(Q) = φ(Q) mod Q∗2,

forcing Q = O, and
(

16r2

t2
,

240lrs
t3

)
= n

(
16
49
,

36000
343

)
.

Since E5 is non-singular at 7, it follows that 7 | t. But then, from (17),
l2 +m2 ≡ 0 mod 7, implying 7 | l, 7 |m, a contradiction.

Theorem 8. E has no points in any algebraic number field K of odd
degree over Q.

P r o o f. From the introduction it suffices to show that E possesses no
rational pentuple T of points. We follow the construction of Section 3; it
is straightforward to verify using Section 4 that the following provide coset
representatives for Ej(Q)/2Ej(Q), j = 1, . . . , 5:

C1 = {(1065,±608,±686,±4433)},
C2 = {(0, 1,±1,±1), (3, 4ε1, 13ε2, 5ε1ε2)},
C3 = {(1, 0,±2,±1), (15, 8ε1, 14ε2, 17ε1ε2)},
C4 = {(16,±1,±7,±4)},
C5 = {(6,±25,±1,±7)},

where ε1, ε2 = ±1.
Let A,B,C,D,E, F be as at (11); then from each Ej we obtain eight

possibilities (according to the choice of ν′j(T )) for the ratios A : B : C : D :
E : F , namely as
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(20) A : B : C : D : E : F = P
(k)
j1 : P (k)

j2 : P (k)
j3 : P (k)

j4 : P (k)
j5 : P (k)

j6 ,

j = 1, . . . , 5, k = 1, . . . , 8,

where each P (k)
jn is homogeneous of degree 4 in P4. The elimination procedure

is far too cumbersome to apply, and we resort to local arguments, in fact
exclusively restricted to the prime 7.

A straightforward though tedious machine computation determines the
set R(k)

j comprising all possible values for A : B : C : D : E : F modulo
7, arising from the ratios at (20). Care is needed at this stage because in
some instances the ratios become singular (delivering 0 : 0 : 0 : 0 : 0 : 0) on
a linear subvariety in P4, and it is necessary to apply an appropriate linear
transformation on the underlying variables, followed by a repeat computa-
tion over (Z/7Z)5. The worst case occurred for j = 1 with the need to apply
a linear transformation of determinant 712.

The upshot is the construction of sets R(k)
j , which satisfy the following:

R
(1)
1 = R

(6)
1 , R

(2)
1 = R

(5)
1 , R

(3)
1 = R

(4)
1 = R

(7)
1 = R

(8)
1 ,

R
(1)
2 = R

(2)
2 = R

(3)
2 = R

(4)
2 , R

(5)
2 = R

(6)
2 , R

(7)
2 = R

(8)
2 ,

R
(1)
3 = R

(2)
3 = R

(3)
3 = R

(4)
3 , R

(5)
3 = R

(6)
3 , R

(7)
3 = R

(8)
3 ,

R
(1)
4 = R

(2)
4 = R

(5)
4 = R

(6)
4 , R

(3)
4 = R

(4)
4 = R

(7)
4 = R

(8)
4 ,

R
(1)
5 = R

(2)
5 = R

(5)
5 = R

(6)
5 , R

(3)
5 = R

(4)
5 = R

(7)
5 = R

(8)
5 ,

with orders given by

|R(k)
1 | = 595, k = 1, . . . , 8, |R(k)

2 | = 927, k = 1, . . . , 8,

|R(k)
3 | = 1007, k = 1, . . . , 4, |R(k)

3 | = 645, k = 5, . . . , 8,

|R(k)
4 | = 834, k = 1, . . . , 8, |R(k)

5 | = 595, k = 1, . . . , 8.

And now R
(i1)
1 ∩R(i2)

2 ∩R(i3)
3 ∩R(i4)

4 ∩R(i5)
5 is the empty set for all choices

1 ≤ ik ≤ 8, k = 1, . . . , 5 (though there are only 3× 3× 3× 2× 2 = 108 such
intersections to check). Consequently, there is no common ratio A : B : C :
D : E : F , and the theorem follows.

R e m a r k s. 1. Each polynomial P (k)
jn at (20) covers several computer

screens, and the author appreciates that to check the above computation is
no mean feat for the reader. The above details of the sets R(k)

j are provided
as guideposts.

2. The curve at (17) seems particularly amenable to the above calcula-
tion. A first attempt at construction of an example used the curve

l2 +m2 = 2r2, 3l2 − 2m2 = s2, 3l2 +m2 = 244t2

where again the rational rank of each curve Ei is at least 1. But several
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weeks were spent on the local calculations at p = 2, 3, 5, 7, 11, which proved
inconclusive; many of the R(k)

j intersections remained non-empty. The cal-
culations for the example at (17) were performed on a SUN workstation,
and took several hours.

Acknowledgements. I am grateful to the referee for correcting errors
and suggesting ways in which to improve the presentation of this paper.

Appendix. Maps between the Ei at (18) and Ei at (19) are readily
computed though are rather cumbersome. For example, when i = 5, we
have the inverse maps

(x, y) = ((1146l + r − 275s)(−96l + 25s+ 7t)/(25l − 6s)2,

(−256704l3 − 770224l2r + 64225l2s+ 385350lrs+ 15414ls2

− 48118rs2 − 3850s3 − 100657l2t+ 56058lrt+ 55050lst

− 13450rst− 7414s2t)/(25l − 6s)3),

and
l : r : s : t = 20764401504 + 236160804x+ 619806x2 + 6x3

− 735350y − 3850xy :

86518339600 + 906791600x+ 2583275x2 + 25x3

− 2823744y − 16044xy :

− 3460733584− 75598182x− 308847x2 + x3 + 66181500y :

− 24225135088 + 705936x+ 725781x2 + 7x3 − 4500xy.
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