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1. Introduction. Let r, k, h be positive integers. For any Dirichlet char-
acter χ modulo k write

Wr(χ) =
k∑
x=1

∣∣∣
h∑

m=1

χ(x+m)
∣∣∣
2r
.

In [2] it was shown that, if χ is a primitive character, then

(1) W2(χ)� kh2 + k1/2+εh4,

which implies that

(2) W2(χ)� k1+εh2

for h ≤ k1/4. In [6] it was shown that

(3)
∑

primitiveχ (mod k)

W2(χ)� k2+εh2,

so that (2) holds for all h, on average for all primitive characters modulo k.
Thus it is reasonable to conjecture that (2) might hold for some h > k1/4,
on average for the primitive characters of a large subgroup of the characters
modulo k. In [8] such a result was obtained, it being shown that, for any
prime p,

(4)
∑

χmod p3

χp
2
=χ0

W2(χ)� p5h2 + p3h4,

where χ0 is the principal character, and thus (2) holds for h ≤ k1/3, on
average for the characters modulo k = p3 in the group of order p2.
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In this paper the argument is strengthened to show in the following
theorem that, for the non-principal characters of this group, (2) remains
true for h ≤ k1/2, on average.

Theorem 1. Let p be an odd prime number. Let

S =
∑

χmod p3

χp
2
=χ0

χ6=χ0

p3∑
x=1

∣∣∣
h∑

m=1

χ(x+m)
∣∣∣
2r
.

Then in the case r = 2 we have

S � p2h4 + p5h2.

From [1] it follows that if k is prime then

(5) W3(χ)� kh3 + k1/2h6

for all positive h. By the methods of this paper it is shown that (5) can be
improved for h > p3/4, on average for the non-principal characters modulo
k = p3 in the group of order p2.

Theorem 2. Let p be an odd prime number. Let

S =
∑

χmod p3

χp
2
=χ0

χ6=χ0

p3∑
x=1

∣∣∣
h∑

m=1

χ(x+m)
∣∣∣
2r
.

Then in the case r = 3 we have

S � p2h6 + min(h, p)3p5h+ min(h, p)2p6.

In Section 8 we shall describe some corollaries of these theorems.

2. Preliminary transformation of the problem. For S as in the
statement of both theorems, we have

(6) S =
∑

χmod p3

χp
2
=χ0

p3∑
x=1

∣∣∣
h∑

m=1

χ(x+m)
∣∣∣
2r
−

p3∑
x=1

( h∑
m=1

χ0(x+m)
)2r

= S1−S2,

say.
Now

S2 =
∑
m

p3∑
x=1

χ0(f1(x))χ0(f2(x)),

where m ∈ Z2r satisfies 0 < mi ≤ h for 1 ≤ i ≤ 2r, and



Average of character sums 315

f1(x) = (x+m1) . . . (x+mr), f2(x) = (x+mr+1) . . . (x+m2r).

Thus

(7) S2 =
∑
m

p3∑
x=1

x 6≡−mi (mod p)

1 =
∑
m

p2#{x : 1 ≤ x ≤ p, p - f1(x)f2(x)}.

We also have

S1 =
∑
m

p3∑
x=1

∑

χp2=χ0

χ(f1(x))χ(f2(x)) =
∑
m

p3∑
x=1

p - f1(x)f2(x)

∑

χp2=χ0

χ

(
f1(x)
f2(x)

)

= p2
∑
m

#{1 ≤ x ≤ p3, 1 ≤ z < p : p - f1(x)f2(x),

f1(x)− zp2
f2(x) ≡ 0 (mod p3)}.

Thus, writing

(8) f(z)(x) = f1(x)− zp2
f2(x),

we have

(9) S1 = S3 + S4,

where

(10) S3 = p2
∑
m

p−1∑
z=1

#{1 ≤ x ≤ p3 : x 6≡ −mi (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) 6≡ 0 (mod p)}
and

(11) S4 = p2
∑
m

p−1∑
z=1

#{1 ≤ x ≤ p3 : x 6≡ −mi (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p)}.
We consider the non-singular roots of f(z). Since the numbers of non-

singular roots modulo p3 and p are the same we have from (10) that

S3 ≤ p2
∑
m

p−1∑
z=1

#{1 ≤ x ≤ p : p - f1(x)f2(x), f(z)(x) ≡ 0 (mod p)}

= p2
∑
m

p∑
x=1

p - f1(x)f2(x)

#{1 ≤ z < p : f1(x)− zf2(x) ≡ 0 (mod p)}

= p2
∑
m

#{1 ≤ x ≤ p : p - f1(x)f2(x)} = S2
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from (7). Now from (6) and (9) we have

(12) S ≤ S4.

3. Estimates for solution sets of polynomials. In the proof of our
theorems we shall require some lemmas concerning the number of solutions
of congruences to a prime power modulus. We shall use the following gen-
eralisation of the well known estimate for the number of non-singular roots
of a congruence.

Lemma 1. Let F be a polynomial of degree n having integer coefficients.
Let p be a prime, d a positive integer , and α, β and γ be non-negative integers
satisfying γ = dα/de. Then

#{1 ≤ x ≤ pγ : pα+β |F (x), pβ ‖F (d)(x)} ≤ n.
P r o o f. This is Proposition 1 of [7].

We shall require an estimate for the number of solutions of a congruence
in many variables to a prime modulus. The following will suffice.

Lemma 2. Let G be a polynomial in x1, . . . , xt which is not identically
zero modulo the prime p. Let 0 < hi ≤ p for all i. Then the number
of x, satisfying 0 < xi ≤ hi for all i, for which G(x) ≡ 0 (mod p) is
O((
∏
hi)/minhi).

P r o o f. This is an easy modification of Lemma 5 of [4].

We shall also use the following estimate which, under favourable condi-
tions, can provide an optimal estimate for the average number of singular
roots of a set of polynomials.

Lemma 3. Let Fi(y) (0 < i ≤ n) be polynomials in ν variables yk (0 <
k ≤ ν). Let p be a prime and 2β ≥ α1 ≥ . . . ≥ αm > β ≥ αm+1 ≥ . . . ≥ αn
be positive integers. Let H ∈ Nν . Write

N = #{y : ∀k ≤ ν 0 < yk ≤ Hk, ∀i Fi(y) ≡ 0 (mod pαi)}.
Put λk = dHk/p

βe for all k ≤ ν. Then

N �
∑

B
∀k≤ν |Bk|<λk

#
{
y : ∀k ≤ ν 0 < yk ≤ pβ , ∀i ≤ m Fi(y) ≡ 0 (mod pβ),

∀i > m Fi(y) ≡ 0 (mod pαi), ∀i ≤ m
ν∑

k=1

Bk
∂Fi
∂yk

(y) ≡ 0 (mod pαi−β)
}
.

P r o o f. Clearly

N ≤ #{y : ∀k ≤ ν 0 < yk ≤ λkpβ , ∀i Fi(y) ≡ 0 (mod pαi)}.
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For 1 ≤ k ≤ ν write yk = ak + pβbk, where 0 < ak ≤ pβ , 0 ≤ bk < λk.
Then, for m < i ≤ n, Fi(y) ≡ 0 (mod pαi) becomes

Fi(a) ≡ 0 (mod pαi),

while for i ≤ m, Fi(y) ≡ 0 (mod pαi) becomes

Fi(a) +
ν∑

k=1

∂Fi
∂yk

(a)bkpβ ≡ 0 (mod pαi).

The latter congruences imply, for i ≤ m,

Fi(a) ≡ 0 (mod pβ)

so that, say,
∀i ≤ m Fi(a) = ci(a)pβ .

Thus we have

N ≤
∑
a

∀i≤mFi(a)≡0 (mod pβ)
∀i>mFi(a)≡0 (mod pαi )

#
{
b : ∀k ≤ ν 0 ≤ bk < λk,

∀i ≤ m
ν∑

k=1

∂Fi
∂yk

(a)bk ≡ −ck(a) (mod pαi−β)
}
.

Now the number of solutions of the inhomogeneous congruences

∀i ≤ m
ν∑

k=1

∂Fi
∂yk

(a)bk ≡ −ck(a) (mod pαi−β)

in the variables b satisfying 0 ≤ bk < λk for all k ≤ ν is at most the number
of solutions of the homogeneous congruences

∀i ≤ m
ν∑

k=1

∂Fi
∂yk

(a)Bk ≡ 0 (mod pαi−β)

in the variables B satisfying |Bk| < λk for all k ≤ ν. Thus we have

N ≤
∑
a

∀i≤mFi(a)≡0 (mod pβ)
∀i>mFi(a)≡0 (mod pαi )

#
{
B : ∀k ≤ ν |Bk| < λk,

∀i ≤ m
ν∑

k=1

∂Fi
∂yk

(a)Bk ≡ 0 (mod pαi−β)
}

≤
∑

B
∀k≤ν |Bk|<λk

#
{
a : ∀k ≤ ν 0 < ak ≤ pβ , ∀i ≤ m Fi(a) ≡ 0 (mod pβ),

∀i > m Fi(a) ≡ 0 (mod pαi), ∀i ≤ m
ν∑

k=1

Bk
∂Fi
∂yk

(a) ≡ 0 (mod pαi−β)
}
.
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4. Proof of Theorem 1. Clearly in proving the theorem we may sup-
pose that p > 2. We consider here the case r = 2.

It remains to consider the singular roots. Noting (11) we write

(13) S4 = S5 + S6,

where

S5 = p2
∑
m

#{1 ≤ x ≤ p3, 1 ≤ z < p : x 6≡ −mi (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p), f ′′(z)(x) ≡ 0 (mod p)},
and

S6 = p2
∑
m

p−1∑
z=2

#{1 ≤ x ≤ p3 : x 6≡ −mi (mod p), f(z)(x) ≡ 0 (mod p3),

f ′(z)(x) ≡ 0 (mod p), f ′′(z)(x) 6≡ 0 (mod p)}.
Clearly we have

S5 ≤ p2
∑
m

#{1 ≤ x ≤ p3 :

(m1 +m2 −m3 −m4)x+ (m1m2 −m3m4) ≡ 0 (mod p3),

(m1 +m2 −m3 −m4) ≡ 0 (mod p)}.
Write

(14) pδ = highest common factor(p3,m1 +m2 −m3 −m4),

where 1 ≤ δ ≤ 3. For solubility of the congruence

(m1 +m2 −m3 −m4)x+ (m1m2 −m3m4) ≡ 0 (mod p3)

we require also

(15) pδ | (m1m2 −m3m4).

The congruence then has at most pδ solutions satisfying 1 ≤ x ≤ p3. (14)
and (15) imply

(m1 −m3)(m2 −m3) ≡ 0 (mod pδ).

Suppose that pε | (m1−m3) and pδ−ε | (m2−m3). Then the number of such
m is

O

(
h

(
1 +

h

pε

)(
1 +

h

pδ−ε

)(
1 +

h

pδ

))
= O

(
h4

p2δ + h2
)
.

Thus

(16) S5 � p2
∑

δ,ε

pδ
(
h4

p2δ + h2
)
� ph4 + p5h2.
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On the other hand, we have

S6 � p2
∑
m

p−1∑
z=2

#{1 ≤ x ≤ p3 : f(z)(x) ≡ 0 (mod p3),

f ′(z)(x) ≡ 0 (mod p), f ′′(z)(x) 6≡ 0 (mod p)}.
Thus, by Lemma 1,

S6 � p3#{m, 1 < z < p : ∃x f(z)(x) ≡ 0 (mod p2), f ′(z)(x) ≡ 0 (mod p)}.
Thus

(17) S6 � p3#{m, z, x : ∀i 0 < mi ≤ h, 0 < x ≤ p, 0 < z < p,

f(z)(x) ≡ 0 (mod p2), f ′(z)(x) ≡ 0 (mod p)}.
Put

(18) λ =
⌈
h

p

⌉
, µ =

{
p if λ > 1,
h if λ = 1.

Now we apply Lemma 3, treating x, z as constants and the mi as our vari-
ables, to obtain

(19) S6 � p3
∑

B
∀k≤4 |Bk|<λ

#
{
a, x, z : ∀k ≤ 4 0 < ak ≤ µ, 0 < x ≤ p,

0 < z < p, f(z)(x) ≡ 0 (mod p),

f ′(z)(x) ≡ 0 (mod p),
4∑

k=1

Bk
∂f(z)

∂mk
(x) ≡ 0 (mod p)

}

if λ > 1, while if λ = 1 this follows immediately from (17).
Given B, x, z, a3, a4 we have, from (19),

f ′(z)(x) ≡ 2(1− z)x+ (a1 + a2 − za3 − za4) ≡ 0 (mod p),

from which a1 + a2 is determined modulo p. Then also from (19) we have

f(z)(x) ≡ (1− z)x2 + (a1 + a2 − za3 − za4)x+ (a1a2 − za3a4) ≡ 0 (mod p),

and so a1a2 is also determined modulo p. Thus there are at most two choices
for a1, a2. Use these congruences to eliminate a1, a2. We have on writing

π1 = a1 + a2, π2 = a1a2, %1 = a3 + a4, %2 = a3a4,

the identity

(π2
1 − 4π2)(B1 −B2)2 − (2B2a1 + 2B1a2 − π1(B1 +B2))2 = 0.
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Now from (19) we have

4∑

k=1

Bk
∂f(z)(x)
∂mk

≡ (B1 +B2 − zB3 − zB4)x

+ (a1B2 + a2B1 − za3B4 − za4B3)

≡ 0 (mod p).

Thus eliminating a1, a2 we have

(20) (z2%2
1 − 4z%1(1− z)x− 4x2z(1− z)− 4z%2)(B1 −B2)2

−z2(2(B3a4 +B4a3) + 2x(B3 +B4)− (%1 + 2x)(B1 +B2))2 ≡ 0 (mod p).

Thus from (19),

(21) S6 � p3
∑

B

#{x, z, a3, a4 :

(z2%2
1 − 4z%1(1− z)x− 4x2z(1− z)− 4z%2)(B1 −B2)2

−z2(2(B3a4 +B4a3) + 2x(B3 +B4)− (%1 + 2x)(B1 +B2))2 ≡ 0 (mod p)}.
By Lemma 2, for a given choice of B, (20) has at most O(p2µ) solutions

in x, z, a3, a4, unless this polynomial is identically zero modulo p. If the
coefficient of za3a4 is zero we have

−4(B1 −B2)2 ≡ 0 (mod p),

and thus B1 ≡ B2 (mod p). Under this condition if the coefficient of z2a2
3 is

zero we have
−(2B4 −B1 −B2)2 ≡ 0 (mod p),

and if the coefficient of z2a2
4 is zero we have

−(2B3 −B1 −B2)2 ≡ 0 (mod p).

Thus if the polynomial is identically zero modulo p we have

B1 ≡ B2 ≡ B3 ≡ B4 (mod p).

Hence the number of such cases is O(λ(1 + λ/p)3).
Consequently, from (21) we have

S6 � p3
(
λ4p2µ+

(
λ+

λ4

p3

)
p2µ2

)
� p2h4 + p5h2.

The theorem follows from (12), (13) and (16).

5. Introduction to proof of Theorem 2. We may suppose that p > 2.
We consider here the case r = 3. Noting (11) we write
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(22) S7 =
∑
m

#{x, z : 0 < x ≤ p3, 0 < z < p, f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p),

either f ′(z) 6≡ 0 (mod p2) or f ′′(z)(x) 6≡ 0 (mod p)}
and

(23) S8 =
∑
m

#{x, z : 0 < x ≤ p3, 0 < z < p, f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p2), f ′′(z)(x) ≡ 0 (mod p)}
so that

(24) S4 = p2S7 + p2S8.

We estimate S7 and S8 in Section 7.
We shall use also the polynomials gi(x) given by

∀i ≤ 3 gi(x) = f1(x)/(x+mi), ∀i ≥ 4 gi(x) = f2(x)/(x+mi).

Thus we have, from (8),

f(z)(x) = g1(x)(x+m1)− zp2
g4(x)(x+m4)

and

f ′(z)(x) = g1(x) + g2(x) + g3(x)− zp2
g4(x)− zp2

g5(x)− zp2
g6(x).

Write

C1(m) = g1(x)(x+m1)− zg4(x)(x+m4),

C2(m) = (2x+m2 +m3)(x+m1)− z(2x+m5 +m6)(x+m4)

+ (g1(x)− zg4(x)),

C3(m) = 2(x+m1)− 2z(x+m4)

+ ((4x+ 2m2 + 2m3)− z(4x+ 2m5 + 2m6)),

C4(m) = b1g1(x) + b2g2(x) + b3g3(x)− b4zg4(x)− b5zg5(x)− b6zg6(x)

= (b2(x+m3) + b3(x+m2))(x+m1)

− z(b5(x+m6) + b6(x+m5))(x+m4) + (b1g1(x)− b4zg4(x))
and
C5(m) = b1(2x+m2 +m3) + b2(2x+m1 +m3) + b3(2x+m1 +m2)

− b4z(2x+m5 +m6)− b5z(2x+m4 +m6)

− b6z(2x+m4 +m5)

= (b2 + b3)(x+m1)− z(b5 + b6)(x+m4)

+ (b1(2x+m2 +m3) + b2(x+m3) + b3(x+m2)

− zb4(2x+m5 +m6)− zb5(x+m6)− zb6(x+m5)).

We define λ and µ by (18).
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6. Minor lemmas

Lemma 4. Write

(25) D1 =
∣∣∣∣

g1(x) −zg4(x)
2x+m2 +m3 −z(2x+m5 +m6)

∣∣∣∣ .

Then∑

b
∀i |bi|<λ

#{m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p), C1(m) ≡ C2(m) ≡ 0 (mod p), D1 ≡ 0 (mod p)}
� pµ4λ6.

P r o o f. From C1(m) ≡ C2(m) ≡ D1 ≡ 0 (mod p) it follows that

g1(x) ≡ zg4(x) (mod p),

from which z is uniquely determined. Then from C1(m) ≡ 0 (mod p) it
follows that m1 = m4. Finally,

D1 = z((m5 +m6 −m2 −m3)x2 + 2(m5m6 −m2m3)x

+m5m6(m2 +m3)−m2m3(m5 +m6)),

so that, by Lemma 2, D1/z ≡ 0 (mod p) has O(pµ3) solutions as a function
of m2,m3,m5,m6, x. Thus the required estimate follows trivially.

Lemma 5. Write

D2 =

∣∣∣∣∣∣

m2m3 −zm5m6 0
m2 +m3 −z(m5 +m6) m2m3 − zm5m6

b2m3 + b3m2 −zb5m6 − zb6m5 b1m2m3 − b4zm5m6

∣∣∣∣∣∣
.

Then ∑

b
∀i |bi|<λ

D2 identically 0 (mod p)

#{m2,m3,m5,m6, x, z :

0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p}

� p2µ4λ

(
λ

p
+ 1
)5

.

P r o o f. We have
D2 = (b6 − b1)zm2

2m
2
3m5 + (b5 − b1)zm2

2m
2
3m6 + (b1 − b3)zm2

2m3m5m6

+ (b1 − b2)zm2m
2
3m5m6 + (b4 − b6)z2m2m3m

2
5m6

+ (b4 − b5)z2m2m3m5m
2
6 + (b3 − b4)z2m2m

2
5m

2
6

+ (b2 − b4)z2m3m
2
5m

2
6.

This is identically 0 (mod p) only if

b1 ≡ b2 ≡ b3 ≡ b4 ≡ b5 ≡ b6 (mod p).

The required estimate follows trivially.
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Lemma 6. We have∑

b
∀i |bi|<λ

#{m, x, z : 0 < mi ≤ µ, 0 < x ≤ p,
0 < z < p, f1(x)f2(x) 6≡ 0 (mod p),

C1(m) ≡ C2(m) ≡ C3(m) ≡ 0 (mod p), D1 ≡ 0 (mod p)}
� pµ3λ6,

where D1 is defined by (25).

P r o o f. From C1(m) ≡ C2(m) ≡ D1 ≡ 0 (mod p) it follows that

g1(x) ≡ zg4(x) (mod p),

from which z is uniquely determined. Then from C1(m) ≡ 0 (mod p) it
follows that m1 = m4 and, since f1(x)f2(x) 6≡ 0 (mod p), from C2(m) ≡ 0
(mod p) that

(2x+m2 +m3)− z(2x+m5 +m6) ≡ 0 (mod p).

Now substituting into C3(m) ≡ 0 (mod p) we obtain z = 1 and so also
m2 +m3 ≡ m5 +m6 (mod p). But also we have g1(x) ≡ g4(x) (mod p) and
so m2m3 ≡ m5m6 (mod p). Thus m2,m3 is a permutation of m5,m6. The
required estimate follows trivially.

Lemma 7. Write

D3 =

∣∣∣∣∣∣

g1(x) g4(x) 0
2x+m2 +m3 2x+m5 +m6 g1(x)

1 1 2x+m2 +m3

∣∣∣∣∣∣
and

D4 =

∣∣∣∣∣∣

g1(x) g4(x) 0
2x+m2 +m3 2x+m5 +m6 g4(x)

1 1 2x+m5 +m6

∣∣∣∣∣∣
.

Then ∑

b
∀i |bi|<λ

#{m2,m3,m5,m6, x :

0 < mi ≤ µ, 0 < x ≤ p, D3 ≡ D4 ≡ 0 (mod p)}
� pµ2λ6.

P r o o f. The conditions D3 ≡ D4 ≡ 0 (mod p) expand to give

(g1(x)− g4(x))((2x+m5 +m6)(2x+m2 +m3)− g1(x))

−g4(x)(m2 +m3 −m5 −m6)(2x+m2 +m3)

≡ (g1(x)− g4(x))((2x+m5 +m6)2 − g4(x))

− g4(x)(m2 +m3 −m5 −m6)(2x+m5 +m6) ≡ 0 (mod p).
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These will have only O(1) solutions x unless both polynomials are identically
0 (mod p). But in the first of these the coefficient of x3 is m2 +m3−m5−m6,
and if this is 0 (mod p) then the coefficient of x2 is 3(m2m3 −m5m6). Thus
if both polynomials in x are identically 0 (mod p) then the pair m2,m3 is a
permutation of m5,m6. This contributes

(26) � λ6pµ2

to our estimate.
Now consider the other case in which at least one of D3 and D4 is

not identically 0 (mod p). Then there are only O(1) values for x. The two
polynomial congruences D3 ≡ D4 ≡ 0 (mod p) are cubics. The difference
between these polynomials is

∣∣∣∣∣∣

g1(x) g4(x) 0
2x+m2 +m3 2x+m5 +m6 g1(x)− g4(x)

1 1 m2 +m3 −m5 −m6

∣∣∣∣∣∣
.

By row and column operations this simplifies to
∣∣∣∣∣∣

m2m3 m5m6 0
m2 +m3 m5 +m6 m2m3 −m5m6

1 1 m2 +m3 −m5 −m6

∣∣∣∣∣∣
,

which is a polynomial in m2,m3,m5,m6. This polynomial is −1 when m2 =
m3 = 1, m5 = m6 = 0. Thus it is not identically 0 (mod p) and so has O(µ3)
solutions in m2,m3,m5,m6. Thus this contributes

(27) � λ6µ3

to our estimate. The lemma follows from (26) and (27).

Lemma 8. Write

D5 =

∣∣∣∣∣∣

m2m3 −m5m6 0
m2 +m3 −(m5 +m6) m2m3

b2m3 + b3m2 −b5m6 − b6m5 b1m2m3

∣∣∣∣∣∣

×
∣∣∣∣∣∣

m2m3 −m5m6 m5m6 0
m2 +m3 −m5 −m6 m5 +m6 m5m6

0 1 m5 +m6

∣∣∣∣∣∣

−
∣∣∣∣∣∣

m2m3 −m5m6 0
m2 +m3 −(m5 +m6) m5m6

b2m3 + b3m2 −b5m6 − b6m5 b4m5m6

∣∣∣∣∣∣

×
∣∣∣∣∣∣

m2m3 −m5m6 m5m6 0
m2 +m3 −m5 −m6 m5 +m6 m2m3

0 1 m2 +m3

∣∣∣∣∣∣
.
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Then
∑

b
∀i |bi|<λ

D5 identically 0 (mod p)

#{m2,m3,m5,m6 : 0 < mi ≤ µ} � µ4λ

(
λ

p
+ 1
)5

.

P r o o f. Substitute m6 = 0 in D5 to obtain (b6 − b1)m3
2m

3
3m

3
5. Thus if

D5 is identically 0 (mod p) then b6 ≡ b1 (mod p). Similar arguments give

b1 ≡ b5 ≡ b6, b2 ≡ b3 ≡ b4 (mod p).

Substituting this in D5, and putting m2 = m3 = m5 = 1 we obtain

−(b4 − b1)(1−m6)2m6

also. The required estimate follows trivially.

7. Proof of Theorem 2

Lemma 9. We have
S7 � h6 + p3hµ3,

where µ is defined by (18).

P r o o f. From Lemma 1 applied to (22) it follows that

S7 � p
∑
m

#{z : 0 < z < p, ∃x f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p2), f ′(z)(x) ≡ 0 (mod p)}.
We can rewrite this as

(28) S7 � p

p∑
x=1

p−1∑
z=1

#{m : f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p2), f ′(z)(x) ≡ 0 (mod p)},
say. Write

(29) N = #{m : f1(x)f2(x) 6≡ 0 (mod p), f(z)(x) ≡ 0 (mod p2),

f ′(z)(x) ≡ 0 (mod p)}.
Thus by Lemma 3,

(30) N �
∑

b
∀i |bi|<λ

#{m : ∀i 0 < mi ≤ µ, f1(x)f2(x) 6≡ 0 (mod p),

0 ≡ C1(m) ≡ C2(m) ≡ C4(m) (mod p)}
if λ > 1, and follows immediately from (29) if λ = 1. Thus from (28) we
have

S7 � p
∑

b
∀i |bi|<λ

#{m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p), 0 ≡ C1(m) ≡ C2(m) ≡ C4(m) (mod p)}.
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But by Lemma 4,∑

b
∀i |bi|<λ

#{m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p), 0 ≡ C1(m) ≡ C2(m) ≡ D1 (mod p)}

� pµ4λ6 � h6

p
+ ph4.

Thus

(31) S7 �
(
p

∑

b
∀i |bi|<λ

#W1

)
+ h6 + p2h4,

where

W1 = {m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p), 0 ≡ C1(m) ≡ C2(m) ≡ C4(m) 6≡ D1 (mod p)}.
Consider (m, x, z) ∈ W1. Given m2,m3,m5,m6, z, x, the values of m1,

m4 are uniquely determined by C1(m) ≡ C2(m) ≡ 0 (mod p) since D1 6≡ 0
(mod p). Eliminating m1,m4 from C1(m) ≡ C2(m) ≡ C4(m) ≡ 0 (mod p)
we obtain

D(x)=

∣∣∣∣∣
g1(x) −zg4(x) 0

2x+m2 +m3 −z(2x+m5 +m6) g1(x)− zg4(x)
b2(x+m3) + b3(x+m2) −zb5(x+m6)− zb6(x+m5) b1g1(x)− b4zg4(x)

∣∣∣∣∣
≡ 0 (mod p).

By Lemma 2 this has O(p2µ3) solutions in m2,m3,m5,m6, z, x unless it is
identically 0 (mod p) as a polynomial in these variables. In the latter case
D(0) will also be identically 0 (mod p). However, we have

D(0) =

∣∣∣∣∣∣

m2m3 −zm5m6 0
m2 +m3 −z(m5 +m6) m2m3 − zm5m6

b2m3 + b3m2 −zb5m6 − zb6m5 b1m2m3 − b4zm5m6

∣∣∣∣∣∣
,

and by Lemma 5,∑

b
∀i |bi|<λ

D(0) identically 0 (mod p)

#{m2,m3,m5,m6, x, z :

0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p}

� p2µ4λ

(
λ

p
+ 1
)5

.

Thus, by (31),

S7 � p

(
λ6p2µ3 + λ

(
λ

p
+ 1
)5

p2µ4
)

+ h6 + p2h4 � h6 + p3hµ3,

which completes the proof of the lemma.
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Lemma 10. We have

S8 � h6 + p3hµ3 + p4µ2.

P r o o f. We have, from (23),

S8 = p2
∑
m

#{x, z : 0 < x ≤ p, 0 < z < p, f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p2), f ′′(z)(x) ≡ 0 (mod p)}.
Rewrite this as

(32) S8 � p2
p∑
x=1

p−1∑
z=1

#{m : f1(x)f2(x) 6≡ 0 (mod p),

f(z)(x) ≡ 0 (mod p3), f ′(z)(x) ≡ 0 (mod p2), f ′′(z)(x) ≡ 0 (mod p)}.
Write

N = #{m : f1(x)f2(x) 6≡ 0 (mod p), f(z)(x) ≡ 0 (mod p2),

f ′(z)(x) ≡ 0 (mod p2), f ′′(z)(x) ≡ 0 (mod p)}.
Define λ and µ by (18). Thus by Lemma 3 we have

N �
∑

b
∀i |bi|<λ

#{m : ∀i 0 < mi ≤ µ, f1(x)f2(x) 6≡ 0 (mod p),

0 ≡ C1(m) ≡ C2(m) ≡ C3(m) ≡ C4(m) ≡ C5(m) (mod p)}.
By Lemma 6,
∑

b
∀i |bi|<λ

#{m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p), C1(m) ≡ C2(m) ≡ C3(m) ≡ D1 ≡ 0 (mod p)}

� pµ3λ6 � h6

p2 + ph3.

Thus by (32) we have

(33) S8 �
(
p2

∑

b
∀i |bi|<λ

#W2

)
+ h6 + p3µ3,

where

W2 = {m, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

f1(x)f2(x) 6≡ 0 (mod p),

0 ≡ C1(m) ≡ C2(m) ≡ C3(m) ≡ C4(m) ≡ C5(m) 6≡ D1 (mod p)}.
Consider (m, x, z) ∈ W2. Given m2,m3,m5,m6, z, x, the values of m1,

m4 are uniquely determined by C1(m) ≡ C2(m) ≡ 0 (mod p) since D1 6≡ 0
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(mod p). Eliminating m1,m4 from C1(m) ≡ C2(m) ≡ C4(m) ≡ 0 (mod p)
we obtain

(34)

E1 =

∣∣∣∣∣
g1(x) −g4(x) 0

2x+m2 +m3 −(2x+m5 +m6) g1(x)− zg4(x)
b2(x+m3) + b3(x+m2) −b5(x+m6)− b6(x+m5) b1g1(x)− b4zg4(x)

∣∣∣∣∣
≡ 0 (mod p).

Also eliminating m1,m4 from C1(m) ≡ C2(m) ≡ C3(m) ≡ 0 (mod p) we
obtain

(35)

E2 =

∣∣∣∣∣
g1(x) −g4(x) 0

2x+m2 +m3 −(2x+m5 +m6) g1(x)− zg4(x)
2 −2 2((2x+m2 +m3)− z(2x+m5 +m6))

∣∣∣∣∣
≡ 0 (mod p),

which can be rewritten as

(36) D3 ≡ zD4 (mod p).

But by Lemma 7,
∑

b
∀i |bi|<λ

#{m2,m3,m5,m6, x : 0 < mi ≤ µ, 0 < x ≤ p,
D3 ≡ D4 ≡ 0 (mod p)}

� pµ2λ6 � h6

p3 + pµ2.

Thus, by (33),

(37) S8 � p2
( ∑

b
∀i |bi|<λ

#W3

)
+ h6 + p4µ2,

where

W3 = {m2,m3,m5,m6, x, z : 0 < mi ≤ µ, 0 < x ≤ p, 0 < z < p,

E1 ≡ 0 (mod p), D3 ≡ zD4 (mod p), D3, D4 not both 0 (mod p)}.
Now, for (m2,m3,m5,m6, x, z) ∈ W3, z is uniquely determined by (36).

Also (34) can be rewritten as

D6 ≡ zD7 (mod p)

where

D6 =

∣∣∣∣∣∣

g1(x) −g4(x) 0
2x+m2 +m3 −(2x+m5 +m6) g1(x)

b2(x+m3) + b3(x+m2) −b5(x+m6)− b6(x+m5) b1g1(x)

∣∣∣∣∣∣
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and

D7 =

∣∣∣∣∣∣

g1(x) −g4(x) 0
2x+m2 +m3 −(2x+m5 +m6) g4(x)

b2(x+m3) + b3(x+m2) −b5(x+m6)− b6(x+m5) b4g4(x)

∣∣∣∣∣∣
.

Thus, by (37), we have

(38) S8 � p2
( ∑

b
∀i |bi|<λ

#W4

)
+ h6 + p4µ2,

where

W4 = {m2,m3,m5,m6, x : 0 < mi ≤ µ, 0 < x ≤ p,
D3D7 ≡ D4D6 (mod p)}.

Write
H(x) = D3D7 −D4D6.

Then H(0) = D5 and so H(x) can be identically 0 (mod p) only if D5 is.
But by Lemma 8,∑

b
∀i |bi|<λ

#{m2,m3,m5,m6 : 0 < mi ≤ µ, H(x) is identically 0 (mod p)}

� µ4λ

(
λ

p
+ 1
)5

� h6

p7 + hµ3.

Thus by (38)

(39) S8 � p2
( ∑

b
∀i |bi|<λ

H(x) not identically 0 (mod p)

#W5

)
+ h6 + p3hµ3 + p4µ2,

where

W5 = {m2,m3,m5,m6, x : 0 < mi ≤ µ, 0 < x ≤ p, H(x) ≡ 0 (mod p)}.
By Lemma 2,

#W5 � pµ3,

and thus by (39),

S8 � p3µ3λ6 + p4µ2 + h6 + p3hµ3 � h6 + p3hµ3 + p4µ2,

which completes the proof of the lemma.

P r o o f o f T h e o r e m 2. Follows from Lemmas 9 and 10.

8. Corollaries. In [3] it was shown that from (1) it follows that
∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� H1/2k3/16+ε.
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More generally, in [3] it was shown that if k is cubefree and r ≥ 2 then

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� H1−1/rk(r+1)/(4r2)+ε.

It would follow from (3) that

∑

primitiveχ

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� kk1/4+εH1/4.

Similarly from (4) it would follow that

∑

χmod p3

χp
2
=χ0

χ 6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣ � p2p1/2+εH1/2.

This estimate is improved by the following corollaries.

Corollary 1. If H ≤ p3/2 then

∑

χmod p3

χp
2
=χ0

χ 6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣ � p2p3/4H1/4.

P r o o f. From the proof of Lemma 2 of [5] we see that if 2ν < p3 then

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣ ≤ 2 +H3/42−ν

( p3∑
m=1

∣∣∣
x+2ν∑
x=m+1

χ(x)
∣∣∣
4)1/4

+
ν−1∑
µ=0

2−µ/4
( p3∑
m=1

∣∣∣
x+2µ∑
x=m+1

χ(x)
∣∣∣
4)1/4

.

Choose H/2 < 2ν < H. Then we have

∑

χmod p3

χp
2
=χ0

χ 6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� p2 +H3/42−ν

∑
χ

( p3∑
m=1

∣∣∣
x+2ν∑
x=m+1

χ(x)
∣∣∣
4)1/4

+
ν−1∑
µ=0

2−µ/4
∑
χ

( p3∑
m=1

∣∣∣
x+2µ∑
x=m+1

χ(x)
∣∣∣
4)1/4
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� p2 +H3/42−νp3/2
(∑

χ

p3∑
m=1

∣∣∣
x+2ν∑
x=m+1

χ(x)
∣∣∣
4)1/4

+
ν−1∑
µ=0

2−µ/4p3/2
(∑

χ

p3∑
m=1

∣∣∣
x+2µ∑
x=m+1

χ(x)
∣∣∣
4)1/4

� p2 +H3/42−νp3/2(p224ν + p522ν)1/4

+
ν−1∑
µ=0

2−µ/4p3/2(p224µ + p522µ)1/4

� H1/4p11/4.

Corollary 2. If H ≥ p3/2 then

∑

χmod p3

χp
2
=χ0

χ6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� p2p3/8+δH1/2.

P r o o f. From Lemma 6 of [3], with p3/2 < 2ν ≤ 2p3/2, it follows that
for p3/2+δ ≤ H ≤ p9/4−δ there is an h satisfying 1 ≤ h ≤ 2ν for which
∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣

� max
(
H1/2p−3/4h−1/4(log p)

( p3∑
x=1

∣∣∣
h∑

m=1

χ(x+m)
∣∣∣
4)1/4

, Hp−3/2
)
.

From this it follows that
∑

χmod p3

χp
2
=χ0

χ6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣

�
ν∑
µ=0

H1/2p−3/42−µ/4(log p)p3/2(p224µ + p522µ)1/4 +Hp1/2

� p2p3/8H1/2 log p.

Corollary 3. If p < H < p6/5 then

∑

χmod p3

χp
2
=χ0

χ 6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� p2p1+ε.
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P r o o f. Choose H/2 < 2ν ≤ H and apply Theorem 2 in the proof of
Corollary 1.

Corollary 4. If H ≥ p6/5 then

∑

χmod p3

χp
2
=χ0

χ 6=χ0

∣∣∣
N+H∑

x=N+1

χ(x)
∣∣∣� p2H2/3p1/5+ε.

P r o o f. Choose p6/5 < 2ν ≤ 2p6/5 and apply Theorem 2 in the proof of
Corollary 2.
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