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On Waring’s problem with quartic polynomial summands
by
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1. Introduction. Let a quartic integral-valued polynomial be repre-
sented by (cf. [8, Section 1])

(1.1) f(z) = asFy(z) + a3 F3(v) + agFa(x) + a1 Fi(x),

where a; (1 <1i < 4) are integers with (a1, a9,as,a4) =1 and a4 > 0, and

(1.2) Fi(m):%x(x—l)...(az—i+1) (1<i<4).

Let G(f(x)) be the least s such that the equation
(1.3) fl@)+.. .+ flas) =n, 20,

is solvable for all sufficiently large integers n, and let &*(f(x)) be the least
number such that if s > &*(f(x)), then G4(n) the singular series correspond-
ing to the equation (1.3) (see [2]) satisfies S4(n) > ¢ > 0 for some ¢, inde-
pendent of n. In [8] we have proved, among other things, that &*(f(z)) < 16
and G(f(x)) < 16, and both equalities hold whenever f(z) satisfies that

(1.4) 21 f(1) and f(z) = f(1)z* (mod 2°) for all z.
In this paper we prove the following more precise result.
THEOREM 1. If f(x) does not satisfy (1.4), then maxy &*(f(z)) = 11.

Moreover, we define G*(f(z)) to be the least number such that if s >
G*(f(x)) and if S4(n) > ¢ > 0, then the equation (1.3) has solutions for all
sufficiently large integers n.

THEOREM 2. We have G*(f(x)) < 13.

Combining this with Theorem 1 and (2.3) below we have

COROLLARY 1. If f(x) does not satisfy (1.4), then
G(f(z)) <13 and m?XG(f(a:)) > 11.
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The proof of Theorem 1 (see Sections 2 and 3) will present a new diffi-
culty, which does not arise in [4, 8]. Hence our argument has certain features
of interest. Theorem 2 is a generalization of Theorem 2 of Vaughan [6]. This
may be compared with the upper bound G*(f(z)) < 14 of Theorem 1A of
[8], which follows from Davenport’s iteration method. The proof of Theo-
rem 2 can be completed by following the lines of Vaughan’s argument in [6]
with some modifications; the details will be omitted.

It would be more interesting, as the referee comments, if Theorem 1.2 of
Vaughan [7] were generalized to the case of quartic polynomials.

2. Preliminaries to the proof of Theorem 1. Let d be the least
common denominator of the coefficients of f(z). Then d|4! (see (1.1) and
(1.2)). For each prime p, we define t = t(p) by p'||d, and write p(z) =
p'f(x). Let 8 be the greatest integer such that the ith derivative of o(x)
satisfies () = 0 (mod pe(l)) for all z, and let f*(x) = p~ % o(z). Let
6= maxlgigg(Q(i) — 9(i+1)), and let

_JO —t+6+2 forp=2,
TTV0 —t+6+1 forp>2.
Further, let M(p',n) denote the number of solutions of
(2.1) f@)+...+ flzs) =n (mod p'), 0<a; <p™,

and let I'(f(x),p') be the least value of s for which the congruence (2.1)
has a solution for every n. From Hua [2, Section 7] we see that in order to
establish Theorem 1, it will suffice to prove the following results:

If f(z) does not satisfy (1.4), then

(2.2) My (p',n) > pt°U=®  for all n and [ > 8,
and
(2.3) m}axf(f(x), 27) =11.

Since a direct treatment of M, (p',n) presents certain technical difficulties,
we define N, (p!,n) as the number of solutions of the congruence (2.1) with
not all f*(z;)’s divisible by p. Then we have (see [2, 3, 5])

(2.4) Ny(p',n) = pt=IE=DN (pY ) for 1 > 7,
which is a version of Hensel’s Lemma (cf. Theorem 3 of Borevich and
Shafarevich [1, Chapter 1, §5.2]). Moreover, for each given n we define

I(f(x),pY) to be the least s such that Ns(p”¥,n) > 1. Let I'*(f(z),p?) =
maxy,, I5(f(x),p"). It is easily seen from the definition that

(2.5) L(f(x),p?) < I (f(2),p") < T(f(2),p") + 1.
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LEMMA 2.1. The inequality (2.2) holds in the following cases:
i) p=>3;
(i) p=2, whent > 0 ort =0, 0 < 0" <2 and f(x) does not satisfy
(1.4).

Proof. When p > 5 we have v < 1 and I'*(f(x),p”) < 8 (see Hua
[3, Lemma 2.3]). Moreover, by the arguments similar to that used in [8,
Sections 4 and 5|, we have I'*(f(z),3") < 11 with v < 3; and, under the
hypothesis of (i), v < 5 and I'*(f(x),27) < 9. The lemma now follows at
once from (2.4) and the obvious inequality M,(p!,n) > N,(p', n).

We note that if p = 2 and ¢t = 0 then 0 < ¢’ < 3 by Lemma 2.4 of [§].
Therefore, in view of Lemma 2.1, to complete the proof of Theorem 1 it
suffices to prove (2.2) and (2.3) in the case

(2.6) p=2, t=0 and 6 =3.

Here, however, one is faced with a difficulty that there exist some classes of
f(z) such that I}(f(x),27) = 12 for some n (see the proof of Lemma 3.2
below), and thus in these situations the above argument (using (2.4)) fails
to provide a proof of (2.2) for p = 2. In order to overcome this difficulty the
crucial step is to establish Lemma 3.1 below, which is in fact a new version
of (2.4).

3. The proof of Theorem 1. In this section we will assume (2.6) and
use the notation introduced in Sections 1 and 2 without further reference.
As in [8], we write
(3.1) L= b (mod27), i=2,3,4.
7!
Now a; must be odd; and we may assume that a; = 1 (see the beginning of
[8, Section 3]). From (2.6), (3.1) and [8, (2.5)] we deduce that

(3.2) 21by, by =—1 (mod 2?) and bz =2 (mod 2?),
which, together with Lemma 2.4 of [8], gives
(3.3) 0"=2, 0" =3 and ~=6.

Furthermore, by (3.2), (3.3), Taylor’s expansion and Lemma 2.4 of [§8], we
have, for any integers z,y and m > 1,

(3.4) f(x+2my) — f/(x) = 2" (22 — by + 1)y (mod 2™T3).

LEMMA 3.1. Suppose | > 8 (= v +2). Let M.(2',n) denote the number
of solutions of the congruence

(3.5) f(z1)+ ...+ f(zs) =n (mod 2%
with 0 < x; < 2701 2| f*(x;) (1 <i < s) and 2| f*(z1). Then
(3.6) M2 n) > 2U=8=Dpr (28 ).
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Proof. The truth of (3.6) is obvious when [ = 8. We proceed by induc-
tion on [ and, accordingly, assume that [ > 8 and that (3.6) is true with [
replaced by [ — 1. We first observe that each x; with 0 < x; < Ql—0"—1 (1<
i < s) can be uniquely written in the form
(3.7) =y +277 22 with0<y <272 and0< z < 2.

Then, by using Taylor’s expansion, (3.3) and [ > 9, (3.5) becomes
(3-8) S Fw)+ > F )22z =n (mod 2).
=1 =1

Moreover, there are M/ (2!=1 n) s-tuples (y1,...,ys) satisfying f*(y;) = 2t;
with integral ¢; (1 <1i < s) and 2{¢1, such that >;_, f(y;) —n =2""1A for
some integral A. Hence (3.8) reduces to

S
(3.9) Ztizi +A=0 (mod 2).
i=1
Then, since 2{t;,2; = 0 or 1 (i = 2,...,s) may be chosen arbitrarily in

(3.9) and z; = 0 or 1 is uniquely determined. Also, by (3.4), (3.7) and | > 9,
f'(x;) = f'(y;) (mod 2°). Therefore, by the induction hypothesis, we have
2] f*(z;) (1 <i<s)and 2| f*(z1), and so

M! (2!, n) > 267Dl (2071 n) > 209D (28 ).
This completes the proof of the lemma.

We are now in a position to prove the following result, and thus complete
the proof of Theorem 1 (cf. the remark at the end of Section 2).

LEMMA 3.2. Subject to (2.6), (2.2) and (2.3) hold.
Proof. We proceed by considering separately the cases by = —1 (mod 4)
and by =1 (mod 4).

(I) b4 = —1 (mod 4). Then, by (3.1), (3.2) and [8, (2.5)], b2 = 3 (mod 23).
Thus

(3.10) f2)=2% f(3)=1 (mod 2%)
and (by using [8, (2.6)])
(3.11) f7(0)=2% f"(2) =2? (mod 2%).

(i) Suppose first 2| £*(0). Then 21 f*(2) by (3.4), and f(4) = 25 (mod 2°)
by (3.11); and Taylor’s expansion. Recall that v =6 and f(1) = a; = 1. It
can be verified that if either n # 23 — 1 (mod 2°) or 24 f*(1) or f(3) # 1
(mod 26) then I'*(f(x),27) < 11, and so (2.2) holds in all these cases (cf. the
proof of Lemma 2.1); otherwise I'* (f(z),27) = 12 and I, (f(z),27) = 23— 1.
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Therefore, in particular, if f(x) satisfies further
(3.12) 2/ f*(1) and f(3)=1 (mod 2%),
then I'*(f(z),27) = 12 and I'(f(x),27) < 11. This, together with (2.5),
gives (2.3). Now, in view of Lemma 3.1, to prove the lemma in case (i) it
will suffice to verify that M/, (2%,n) > 0 for n = 23 — 1 (mod 2°), subject
to the additional condition (3.12).

For this purpose, we first note that, by (3.3), (3.12) and Taylor’s expan-
sion, (1) =23 (mod 2%). Thus
(3.13) f(5) =1+25 (mod 27) if 22| f*(1),

’ f(9)=1+2" (mod 2%) if 2 f*(1).

Moreover, from 2| f*(1) and 2| f*(0) we deduce
(3.14) 24 f*(z)if x =2 (mod 4) and 2| f*(x) if 2 Z2 (mod 4)
by (3.4) and
(3.15) by = =5 (mod 2%), ie. f(2)=2%+2* (mod 2°)

by using [8, (2.5)]. Similar to the above, we conclude from (3.15) that
f"(0) = 22 (mod 2%). This, together with (3.4), gives

(3.16) {2 | £*(4) and f(4) = 2° (mod 27) if 22| f*(0),

‘ f(4) =25 +25 (mod 27) if 2 f*(0).
By (3.13), (3.14) and (3.16), it can now be verified that M{;(2%,n) > 0 for
n=2%-1 (mod 2°).

(ii) Suppose next 2t f*(0). Similar to case (i), we have 2| f*(2) and so
f(6) = f(2) +2° (mod 25) by (3.11)5. Combining this with (3.10) it can be
verified that I7*(f(x),27) < 11 unless n = 25 + 23 — 1 (mod 2%) and (3.12)
holds, in which case I (f(z),27) = 12. In the latter case, we will verify that
Mj,(28,n) > 0, and the lemma thus follows.

In fact, from 2| f*(1) and 21 f*(0) we have

(3.17) 21 f*(z)if =0 (mod 4) and 2|f*(z)if z #0 (mod 4)

and

(3.18) f(2) =2° (mod 2°).
From (3.18) we have f”(2) =22 (mod 2%). Hence, in analogy to (3.16),
5.19) 2| £(6) and £(6) = £(2)+2° (mod 2T) if 22| f*(2),

‘ f(6) = f(2)+2°+2° (mod 27) if 2 f*(2).

By (3.13), (3.17)—(3.19), the desired result can be verified directly.
(IT) by =1 (mod 4). In this case we proceed similarly, so that we give a
brief sketch only. First we have

(3.20) f2)=0, f(3)=1+2% (mod 2%)



82 H. B. Yu

and
(3.21) /(=22 f"(3) =2% (mod 2.

If 2| £*(1), then 21 f*(3) and f(5) = 1 + 2° (mod 2°). From this and
(3.20) it can be seen that if either n # 22 (mod 2°) or f(z) does not satisfy

(3.22) 2| f*(0) and f(2) =0 (mod 2°)

then I'*(f(z),27) < 11; otherwise I*(f(z),2?) = 12 and Mj,(2%,n) > 0.
Thus the lemma follows.

If 24 f*(1), then 2| f*(3) and f(7) = f(3) +2° (mod 2°). Similarly, we
have that if either n # 2°+ 2% (mod 2°) or f(x) does not satisfy (3.22) then
I (f(x),27) < 11; otherwise I'*(f(x),27) = 12 and Mj,(2%,n) > 0. The
lemma also follows.

The proof of Lemma 3.2, and of Theorem 1 is now complete.
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