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On Waring’s problem with quartic polynomial summands

by

Hong Bing Yu (Hefei)

1. Introduction. Let a quartic integral-valued polynomial be repre-
sented by (cf. [8, Section 1])

(1.1) f(x) = a4F4(x) + a3F3(x) + a2F2(x) + a1F1(x),

where ai (1 ≤ i ≤ 4) are integers with (a1, a2, a3, a4) = 1 and a4 > 0, and

(1.2) Fi(x) =
1
i!
x(x− 1) . . . (x− i+ 1) (1 ≤ i ≤ 4).

Let G(f(x)) be the least s such that the equation

(1.3) f(x1) + . . .+ f(xs) = n, xi ≥ 0,

is solvable for all sufficiently large integers n, and let S∗(f(x)) be the least
number such that if s ≥ S∗(f(x)), then Ss(n) the singular series correspond-
ing to the equation (1.3) (see [2]) satisfies Ss(n) ≥ c > 0 for some c, inde-
pendent of n. In [8] we have proved, among other things, that S∗(f(x)) ≤ 16
and G(f(x)) ≤ 16, and both equalities hold whenever f(x) satisfies that

(1.4) 2 - f(1) and f(x) ≡ f(1)x4 (mod 25) for all x.

In this paper we prove the following more precise result.

Theorem 1. If f(x) does not satisfy (1.4), then maxf S∗(f(x)) = 11.

Moreover, we define G∗(f(x)) to be the least number such that if s ≥
G∗(f(x)) and if Ss(n) ≥ c > 0, then the equation (1.3) has solutions for all
sufficiently large integers n.

Theorem 2. We have G∗(f(x)) ≤ 13.

Combining this with Theorem 1 and (2.3) below we have

Corollary 1. If f(x) does not satisfy (1.4), then

G(f(x)) ≤ 13 and max
f

G(f(x)) ≥ 11.
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The proof of Theorem 1 (see Sections 2 and 3) will present a new diffi-
culty, which does not arise in [4, 8]. Hence our argument has certain features
of interest. Theorem 2 is a generalization of Theorem 2 of Vaughan [6]. This
may be compared with the upper bound G∗(f(x)) ≤ 14 of Theorem 1A of
[8], which follows from Davenport’s iteration method. The proof of Theo-
rem 2 can be completed by following the lines of Vaughan’s argument in [6]
with some modifications; the details will be omitted.

It would be more interesting, as the referee comments, if Theorem 1.2 of
Vaughan [7] were generalized to the case of quartic polynomials.

2. Preliminaries to the proof of Theorem 1. Let d be the least
common denominator of the coefficients of f(x). Then d | 4! (see (1.1) and
(1.2)). For each prime p, we define t = t(p) by pt ‖ d, and write ϕ(x) =
ptf(x). Let θ(i) be the greatest integer such that the ith derivative of ϕ(x)
satisfies ϕ(i)(x) ≡ 0 (mod pθ

(i)
) for all x, and let f∗(x) = p−θ

′
ϕ(x). Let

δ = max1≤i≤3(θ(i) − θ(i+1)), and let

γ =
{
θ′ − t+ δ + 2 for p = 2,
θ′ − t+ δ + 1 for p > 2.

Further, let Ms(pl, n) denote the number of solutions of

(2.1) f(x1) + . . .+ f(xs) ≡ n (mod pl), 0 ≤ xi < pl+t,

and let Γ (f(x), pl) be the least value of s for which the congruence (2.1)
has a solution for every n. From Hua [2, Section 7] we see that in order to
establish Theorem 1, it will suffice to prove the following results:

If f(x) does not satisfy (1.4), then

(2.2) M11(pl, n) ≥ p10(l−8) for all n and l ≥ 8,

and

(2.3) max
f

Γ (f(x), 2γ) = 11.

Since a direct treatment of Ms(pl, n) presents certain technical difficulties,
we define Ns(pl, n) as the number of solutions of the congruence (2.1) with
not all f∗(xi)’s divisible by p. Then we have (see [2, 3, 5])

(2.4) Ns(pl, n) = p(l−γ)(s−1)Ns(pγ , n) for l ≥ γ,
which is a version of Hensel’s Lemma (cf. Theorem 3 of Borevich and
Shafarevich [1, Chapter 1, §5.2]). Moreover, for each given n we define
Γ ∗n(f(x), pγ) to be the least s such that Ns(pγ , n) ≥ 1. Let Γ ∗(f(x), pγ) =
maxn Γ ∗n(f(x), pγ). It is easily seen from the definition that

(2.5) Γ (f(x), pγ) ≤ Γ ∗(f(x), pγ) ≤ Γ (f(x), pγ) + 1.
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Lemma 2.1. The inequality (2.2) holds in the following cases:
(i) p ≥ 3;

(ii) p = 2, when t > 0 or t = 0, 0 ≤ θ′ ≤ 2 and f(x) does not satisfy
(1.4).

P r o o f. When p ≥ 5 we have γ ≤ 1 and Γ ∗(f(x), pγ) ≤ 8 (see Hua
[3, Lemma 2.3]). Moreover, by the arguments similar to that used in [8,
Sections 4 and 5], we have Γ ∗(f(x), 3γ) ≤ 11 with γ ≤ 3; and, under the
hypothesis of (ii), γ ≤ 5 and Γ ∗(f(x), 2γ) ≤ 9. The lemma now follows at
once from (2.4) and the obvious inequality Ms(pl, n) ≥ Ns(pl, n).

We note that if p = 2 and t = 0 then 0 ≤ θ′ ≤ 3 by Lemma 2.4 of [8].
Therefore, in view of Lemma 2.1, to complete the proof of Theorem 1 it
suffices to prove (2.2) and (2.3) in the case

(2.6) p = 2, t = 0 and θ′ = 3.

Here, however, one is faced with a difficulty that there exist some classes of
f(x) such that Γ ∗n(f(x), 2γ) = 12 for some n (see the proof of Lemma 3.2
below), and thus in these situations the above argument (using (2.4)) fails
to provide a proof of (2.2) for p = 2. In order to overcome this difficulty the
crucial step is to establish Lemma 3.1 below, which is in fact a new version
of (2.4).

3. The proof of Theorem 1. In this section we will assume (2.6) and
use the notation introduced in Sections 1 and 2 without further reference.

As in [8], we write

(3.1)
ai
i!
≡ bi (mod 2γ), i = 2, 3, 4.

Now a1 must be odd; and we may assume that a1 = 1 (see the beginning of
[8, Section 3]). From (2.6), (3.1) and [8, (2.5)] we deduce that

(3.2) 2 - b4, b2 ≡ −1 (mod 22) and b3 ≡ 2 (mod 23),

which, together with Lemma 2.4 of [8], gives

(3.3) θ′′ = 2, θ′′′ = 3 and γ = 6.

Furthermore, by (3.2), (3.3), Taylor’s expansion and Lemma 2.4 of [8], we
have, for any integers x, y and m ≥ 1,

(3.4) f ′(x+ 2my)− f ′(x) ≡ 2m+1(2x− b4 + 1)y (mod 2m+3).

Lemma 3.1. Suppose l ≥ 8 (= γ + 2). Let M ′s(2
l, n) denote the number

of solutions of the congruence

(3.5) f(x1) + . . .+ f(xs) ≡ n (mod 2l)

with 0 ≤ xi < 2l−θ
′−1, 2 | f∗(xi) (1 ≤ i ≤ s) and 2 ‖ f∗(x1). Then

(3.6) M ′s(2
l, n) ≥ 2(l−8)(s−1)M ′s(2

8, n).
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P r o o f. The truth of (3.6) is obvious when l = 8. We proceed by induc-
tion on l and, accordingly, assume that l > 8 and that (3.6) is true with l
replaced by l − 1. We first observe that each xi with 0 ≤ xi < 2l−θ

′−1 (1 ≤
i ≤ s) can be uniquely written in the form

(3.7) xi = yi + 2l−θ
′−2zi with 0 ≤ yi < 2l−θ

′−2 and 0 ≤ zi < 2.

Then, by using Taylor’s expansion, (3.3) and l ≥ 9, (3.5) becomes

(3.8)
s∑

i=1

f(yi) +
s∑

i=1

f∗(yi)2l−2zi ≡ n (mod 2l).

Moreover, there are M ′s(2
l−1, n) s-tuples (y1, . . . , ys) satisfying f∗(yi) = 2ti

with integral ti (1 ≤ i ≤ s) and 2 - t1, such that
∑s
i=1 f(yi)− n = 2l−1A for

some integral A. Hence (3.8) reduces to

(3.9)
s∑

i=1

tizi +A ≡ 0 (mod 2).

Then, since 2 - t1, zi = 0 or 1 (i = 2, . . . , s) may be chosen arbitrarily in
(3.9) and z1 = 0 or 1 is uniquely determined. Also, by (3.4), (3.7) and l ≥ 9,
f ′(xi) ≡ f ′(yi) (mod 25). Therefore, by the induction hypothesis, we have
2 | f∗(xi) (1 ≤ i ≤ s) and 2 ‖ f∗(x1), and so

M ′s(2
l, n) ≥ 2(s−1)M ′s(2

l−1, n) ≥ 2(l−8)(s−1)M ′s(2
8, n).

This completes the proof of the lemma.

We are now in a position to prove the following result, and thus complete
the proof of Theorem 1 (cf. the remark at the end of Section 2).

Lemma 3.2. Subject to (2.6), (2.2) and (2.3) hold.

P r o o f. We proceed by considering separately the cases b4 ≡ −1 (mod 4)
and b4 ≡ 1 (mod 4).

(I) b4 ≡ −1 (mod 4). Then, by (3.1), (3.2) and [8, (2.5)], b2 ≡ 3 (mod 23).
Thus

(3.10) f(2) ≡ 23, f(3) ≡ 1 (mod 24)

and (by using [8, (2.6)])

(3.11) f ′′(0) ≡ 22, f ′′(2) ≡ 22 (mod 23).

(i) Suppose first 2 | f∗(0). Then 2 - f∗(2) by (3.4), and f(4) ≡ 25 (mod 26)
by (3.11)1 and Taylor’s expansion. Recall that γ = 6 and f(1) = a1 = 1. It
can be verified that if either n 6≡ 23 − 1 (mod 26) or 2 - f∗(1) or f(3) 6≡ 1
(mod 26) then Γ ∗n(f(x), 2γ) ≤ 11, and so (2.2) holds in all these cases (cf. the
proof of Lemma 2.1); otherwise Γ ∗n(f(x), 2γ) = 12 and Γn(f(x), 2γ) = 23−1.
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Therefore, in particular, if f(x) satisfies further

(3.12) 2 | f∗(1) and f(3) ≡ 1 (mod 26),

then Γ ∗(f(x), 2γ) = 12 and Γ (f(x), 2γ) ≤ 11. This, together with (2.5),
gives (2.3). Now, in view of Lemma 3.1, to prove the lemma in case (i) it
will suffice to verify that M ′11(28, n) > 0 for n ≡ 23 − 1 (mod 26), subject
to the additional condition (3.12).

For this purpose, we first note that, by (3.3), (3.12) and Taylor’s expan-
sion, f ′′(1) ≡ 23 (mod 24). Thus

(3.13)
{
f(5) ≡ 1 + 26 (mod 27) if 22 | f∗(1),
f(9) ≡ 1 + 27 (mod 28) if 2 ‖ f∗(1).

Moreover, from 2 | f∗(1) and 2 | f∗(0) we deduce

(3.14) 2 - f∗(x) if x ≡ 2 (mod 4) and 2 | f∗(x) if x 6≡ 2 (mod 4)

by (3.4) and

(3.15) b2 ≡ −5 (mod 24), i.e. f(2) ≡ 23 + 24 (mod 25)

by using [8, (2.5)]. Similar to the above, we conclude from (3.15) that
f ′′(0) ≡ 22 (mod 24). This, together with (3.4), gives

(3.16)
{

2 ‖ f∗(4) and f(4) ≡ 25 (mod 27) if 22 | f∗(0),
f(4) ≡ 25 + 26 (mod 27) if 2 ‖ f∗(0).

By (3.13), (3.14) and (3.16), it can now be verified that M ′11(28, n) > 0 for
n ≡ 23 − 1 (mod 26).

(ii) Suppose next 2 - f∗(0). Similar to case (i), we have 2 | f∗(2) and so
f(6) ≡ f(2) + 25 (mod 26) by (3.11)2. Combining this with (3.10) it can be
verified that Γ ∗n(f(x), 2γ) ≤ 11 unless n ≡ 25 + 23 − 1 (mod 26) and (3.12)
holds, in which case Γ ∗n(f(x), 2γ) = 12. In the latter case, we will verify that
M ′11(28, n) > 0, and the lemma thus follows.

In fact, from 2 | f∗(1) and 2 - f∗(0) we have

(3.17) 2 - f∗(x) if x ≡ 0 (mod 4) and 2 | f∗(x) if x 6≡ 0 (mod 4)

and

(3.18) f(2) ≡ 23 (mod 25).

From (3.18) we have f ′′(2) ≡ 22 (mod 24). Hence, in analogy to (3.16),

(3.19)
{

2 ‖ f∗(6) and f(6) ≡ f(2) + 25 (mod 27) if 22 | f∗(2),
f(6) ≡ f(2) + 25 + 26 (mod 27) if 2 ‖ f∗(2).

By (3.13), (3.17)–(3.19), the desired result can be verified directly.
(II) b4 ≡ 1 (mod 4). In this case we proceed similarly, so that we give a

brief sketch only. First we have

(3.20) f(2) ≡ 0, f(3) ≡ 1 + 23 (mod 24)
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and

(3.21) f ′′(1) ≡ 22, f ′′(3) ≡ 22 (mod 23).

If 2 | f∗(1), then 2 - f∗(3) and f(5) ≡ 1 + 25 (mod 26). From this and
(3.20) it can be seen that if either n 6≡ 22 (mod 26) or f(x) does not satisfy

(3.22) 2 | f∗(0) and f(2) ≡ 0 (mod 26)

then Γ ∗n(f(x), 2γ) ≤ 11; otherwise Γ ∗n(f(x), 2γ) = 12 and M ′11(28, n) > 0.
Thus the lemma follows.

If 2 - f∗(1), then 2 | f∗(3) and f(7) ≡ f(3) + 25 (mod 26). Similarly, we
have that if either n 6≡ 25 +22 (mod 26) or f(x) does not satisfy (3.22) then
Γ ∗n(f(x), 2γ) ≤ 11; otherwise Γ ∗n(f(x), 2γ) = 12 and M ′11(28, n) > 0. The
lemma also follows.

The proof of Lemma 3.2, and of Theorem 1 is now complete.
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