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1. Introduction. Let Bs denote a compact convex subset of Rs, s ≥ 2,
which contains the origin as an inner point. Suppose that the boundary ∂Bs
of Bs is an (s − 1)-dimensional surface of class C6s+13 with finite nonzero
Gaussian curvature throughout. For x > 0 define ABs(x) as the number
of points of the lattice Zs in the “blown up” domain xBs, i.e. ABs(x) =
# (xBs ∩ Zs), and PBs(x) as the “lattice rest” (1)

PBs(x) = ABs(x)− vol(Bs)xs.
For such a general convex body Bs E. Hlawka [3] proved that

(1) PBs(x) = O(xs(s−1)/(s+1))

and

PBs(x) = Ω(x(s−1)/2).

In the last years both estimates have been improved (see [11, 12, 16–18] and
for planar domains [5, 15]).

In the present article we study the mean square of PBs(x). For planar
domains this problem has been attacked by W. G. Nowak [14] who proved

(2)
X\
0

|PB2(x)|2 dx = O(X2).

This bound is best possible since in the special case of a cirlce S2, say, it
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(1) Note that many authors use t = x2 as parameter. This means that the domain Bs

is “blown up” by the factor x =
√
t.

[89]



90 W. Müller

can be replaced by the asymptotic formula (see I. Kátai [10] (2))
X\
0

|PS2(x)|2 dx = c2X
2 +O(X(logX)2) (c2 > 0).

For s ≥ 3 Nowak’s approach does not give satisfactory bounds. To see
what one should expect in higher dimensions let us consider the case of
the s-dimensional unit ball Ss. This case (together with the case of rational
ellipsoids) is particularly well understood. For s ≥ 4, A. Walfisz [20] proved

(3)
X\
0

|PSs(x)|2 dx = csX
2s−3 +O(Rs) (cs > 0),

where Rs = X2s−5 if s > 5, R5 = X5(logX)2 and R4 = X4 logX. In the
case s = 3, V. Jarńık [9] obtained the asymptotic formula

(4)
X\
0

|PS3(x)|2 dx = c3X
3 logX +O(X3(logX)1/2) (c3 > 0).

The proof of both results uses the fact that the generating function of the
number of lattice points on the sphere is a theta function. It therefore cannot
be carried over to our general situation. Using a different method we prove
the following higher dimensional analogue to (2).

Theorem. Let Bs denote a compact convex subset of Rs, s ≥ 4, which
contains the origin as an inner point. Suppose that the boundary ∂Bs of Bs is
an (s−1)-dimensional surface of class C6s+13 with finite nonzero curvature
throughout. Then for every fixed ε > 0,

(5)
X\
0

|PBs(x)|2 dx� X2s−3+ε.

The theorem shows that spherical balls belong to those smooth convex
bodies with nonzero curvature which have (on average) large lattice rest.
In general the lattice rest can be much smaller. For instance, V. Jarńık [8]
proved that for s ≥ 4 almost all ellipsoids

Es(a) =
{

(x1, . . . , xs) ∈ Rs :
s∑

i=1

aix
2
i ≤ 1

}
(a = (a1, . . . , as) ∈ Rs+)

(in the sense of Lebesgue) satisfy PEs(a)(x) = O(xs/2+ε) for every ε > 0.
The method used to prove (5) seems to be new. Starting from a trivial

bound for the mean square of PB∗s (x), where B∗s denotes the polar body of

(2) Actually Kátai considers the mean square of PS2 (
√
t). Using integration by parts

it is easy to see that his formulation is equivalent to ours. The same remark applies to (3)
and (4).



Average order of the lattice rest 91

Bs, it produces a nontrivial bound for the mean square of PBs(x). Since
B∗∗s = Bs the same method applied to B∗s gives a better bound for the
mean square of PB∗s (x). Iterating this process yields (5). Unfortunately, the
iteration process produces better bounds only if s ≥ 4. The interesting case
s = 3 remains open.

2. Geometrical preliminaries. Let Bs denote a compact convex subset
of Rs, s ≥ 2, which contains the origin as an inner point. The polar body B∗s
of Bs is defined by

B∗s = {x ∈ Rs : sup
y∈Bs
〈x, y〉 ≤ 1} ,

where 〈·, ·〉 denotes the standard scalar product in Rs. The polar body of a
compact convex body which contains the origin as an inner point is again a
compact convex body which contains the origin as an inner point. Further-
more, B∗∗s = Bs (cf. [13], p. 65 ff). In order to apply the iterative process
simultaneously to Bs and B∗s we have to check that, if ∂Bs is smooth with
nonzero curvature throughout, then the same is true for ∂B∗s . The following
lemma is a multi-dimensional analogue of Huxley [6], Lemma 4, where only
planar domains are considered.

Lemma 1. Let x = x(t), t = (t1, . . . , ts−1), be a regular (local) para-
metrization of ∂Bs of class Ck, k ≥ 2, and u = u(t) the unit outward
normal vector of the tangent hyperplane at x(t). Suppose that the Gaussian
curvature κ(x) of ∂Bs at x is nonzero. Then

x∗(t) = 〈x(t), u(t)〉−1u(t)

is a regular (local) parametrization of ∂B∗s of class Ck−1 and

(6) |κ∗(x∗)κ(x)| = (‖x‖ · ‖x∗‖)−s−1,

where κ∗(x∗) denotes the Gaussian curvature of ∂B∗s at x∗. Furthermore,
the spherical map of ∂Bs (e.g. the map which sends a point x of ∂Bs to the
endpoint of the outward normal vector u on the unit sphere ∂Ss) and the
spherical map of ∂B∗s are one-to-one and of class Ck−1.

P r o o f. Here regular means that the vectors vi = ∂x/∂ti, 1 ≤ i ≤ s− 1,
form a basis of the (s− 1)-dimensional tangent space Tx at x. Then u is (as
a function of vi, 1 ≤ i ≤ s − 1) of class Ck−1. From the fact that the pole
of every tangent hyperplane (with respect to the unit sphere) is a point on
∂B∗s (cf. [13], p. 67) we obtain

x∗ = x∗(t) = 〈x, u〉−1u ∈ ∂B∗s .
This shows that x∗ is of class Ck−1. Note that 〈x, u〉 > 0 since the origin is
an inner point of Bs.
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The Gaussian curvature κ(x) of ∂Bs at x is defined as the determinant of
the linear map Lx : Tx → Tx which maps v ∈ Tx to Lx(v) = ∇vu, where ∇vu
denotes the derivative of the normal vector u with respect to the direction
v. Its sign depends on the orientation of the surface ∂Bs. The linear map is
determined by Lx(vi) = ∂u/∂ti ∈ Tx. It can be extended linearly from Tx to
the entire s-dimensional space by setting Lx(u) = u. This does not change
the absolute value of the determinant. Hence, if the matrix B ∈ Rs×s is
defined by

(7)
(
∂u

∂t1
, . . . ,

∂u

∂ts−1
, u

)
= B (v1, . . . , vs−1, u),

then |detB| = |κ(x)| > 0. It follows that ∂u/∂t1, . . . , ∂u/∂ts−1, u are linearly
independent. This implies that the tangent vectors

(8) v∗i =
∂x∗

∂ti
= 〈x, u〉−1 ∂u

∂ti
− 〈x, u〉−2〈x, ∂u/∂ti〉u (1 ≤ i ≤ s− 1)

are linearly independent, proving that the parametrization x∗(t) of ∂B∗s is
regular. Since 〈v∗i , x〉 = 0 for 1 ≤ i ≤ s − 1, we find that u∗ = ‖x‖−1x is
normal to the tangent space T ∗x of ∂B∗s at x∗. Representing u∗ as

u∗ = ‖x‖−1x =
s−1∑

i=1

αi
〈x, u〉 ·

∂u

∂ti
+
〈x, u〉
‖x‖ u

with some αi ∈ R we conclude that

u∗ =
s−1∑

i=1

αiv
∗
i + 〈x, u〉−1

( s−1∑

i=1

αi
〈x, ∂u/∂ti〉
〈x, u〉 +

〈x, u〉2
‖x‖

)
u

=
s−1∑

i=1

αiv
∗
i +

‖x‖
〈x, u〉 u.

Together with (7) and (8) this yields

det(v∗1 , . . . , v
∗
s−1, u

∗) = det
(
v∗1 , . . . , v

∗
s−1,

‖x‖
〈x, u〉u

)

=
‖x‖
〈x, u〉 det

(
〈x, u〉−1 ∂u

∂t1
, . . . , 〈x, u〉−1 ∂u

∂ts−1
, u

)

=
‖x‖
〈x, u〉s (detB) det(v1, . . . , vs−1, u).

If B∗ ∈ Rs×s denotes the matrix defined by
(
∂u∗

∂t1
, . . . ,

∂u∗

∂ts−1
, u∗
)

= B∗(v∗1 , . . . , v
∗
s−1, u

∗),
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then |detB∗| = |κ∗(x∗)|. Moreover, since

∂u∗

∂ti
=

∂

∂ti
(‖x‖−1x) = ‖x‖−1vi − ‖x‖−2〈x, vi〉u∗

we obtain

det
(
∂u∗

∂t1
, . . . ,

∂u∗

∂ts−1
, u∗
)

= ‖x‖−s det(v1, . . . , vs−1, x)

= ‖x‖−s det(v1, . . . , vs−1, 〈x, u〉u)

and

|κ∗(x∗)| =
∣∣∣∣det

(
∂u∗

∂t1
, . . . ,

∂u∗

∂ts−1
, u∗
)∣∣∣∣ · |det(v∗1 , . . . , v

∗
s−1, u

∗)|−1

=
( 〈x, u〉
‖x‖

)s+1

|κ(x)|−1.

This proves (6). Finally, we note that the spherical map of the boundary of
a compact convex domain with nonvanishing Gaussian curvature is always
one-to-one (cf. [19], p. 105). It follows from the above discussion that the
maps x 7→ u and x∗ 7→ u∗ are of class Ck−1.

Lemma 2. Let Bs be a compact convex subset of Rs, s ≥ 2, which
contains the origin as an inner point. Assume that the spherical map of ∂Bs
is one-to-one and of class C2s+12, and that the Gaussian curvature of ∂Bs
is nonzero throughout. Then the Fourier transform of the indicator function
IxBs ,

ÎxBs(k) =
\
xBs

e2πi〈k,u〉 du (k ∈ Rs),

satisfies, for k 6= 0,

ÎxBs(k) = (2π)−1x(s−1)/2‖k‖−(s+1)/2(αke2πixH(k)−γi+α−ke−2πixH(−k)+γi)

+O(x(s−3)/2‖k‖−(s+3)/2),

where γ = (s+1)π/4, αk =
√
κk (κk denotes the Gaussian curvature of ∂Bs

at the point where the outward normal has direction k) and H denotes the
distance function of the polar body B∗s .

P r o o f. This is a special case of Hlawka’s Satz 2 in [4] (see also Satz 5
in [3]). Note that the distance function of B∗s agrees with the “tag”-function
of Bs (cf. [13], p. 127) and that αk � 1.

3. The basic estimate of PBs(x). As usual it is easier to estimate a
smoothed version of PBs rather than PBs itself. To this purpose we introduce
a weight function δ1 : Rs → [0,∞) which has the following properties (see
[1], p. 88, or [7] for the existence of such a function):
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(i) the support of δ1 lies inside the unit ball Ss ,
(ii)

T
Rs δ1(y) dy = 1,

(iii) the Fourier transform δ̂1(k) =
T
Rs δ1(y)e2πi〈k,y〉 dy, k ∈ Rs, satisfies

δ̂1(k)� exp(−‖k‖1/2).

For 0 < ε < 1 set δε(y) = ε−sδ1(ε−1y), y ∈ Rs, then

(9) supp(δε) ⊆ εSs, δ̂ε(0) = 1, δ̂ε(k) = δ̂1(εk)� exp(−(ε‖k‖)1/2).

We use convolution with δε to smooth the indicator function IxBs :

IxBs ∗ δε (z) =
\
Rs
IxBs(y)δε(z − y) dy (z ∈ Rs).

Lemma 3. Let Bs be a compact convex subset of Rs which contains the
origin as an inner point. Denote by % > 0 the radius of any inscribed ball
%Ss ⊆ Bs and set x± = x± ε/% > 0. Then for all z ∈ Rs,

Ix−Bs ∗ δε (z) ≤ IxBs(z) ≤ Ix+Bs ∗ δε (z).

P r o o f. We first claim that for d ≥ 0,

(10) y ∈ Bs, z 6∈ (1 + d)Bs ⇒ ‖z − y‖ > %d.

To prove this (geometrically evident) fact consider the distance function
F (u) = inf{λ : u ∈ λBs} of Bs. Then y ∈ Bs if and only if F (y) ≤ 1, and
z 6∈ (1 + d)Bs if and only if F (z) > 1 + d. Since the distance function of a
convex body is convex we conclude F (z) = F (z− y+ y) ≤ F (z− y) +F (y).
This implies F (z − y) > d. Hence z − y 6∈ dBs ⊇ %dSs, and this proves (10).
Since 0 ≤ Ix±Bs ∗ δε(x) ≤ 1 the lemma follows if we can show that

(i) z 6∈ xBs ⇒ Ix−Bs ∗ δε(z) = 0,
(ii) z ∈ xBs ⇒ Ix+Bs ∗ δε(z) = 1.

To prove (i) assume that z 6∈ xBs and y ∈ x−Bs; then z = xz0 with z0 6∈ Bs,
y = x−y0 with y0 ∈ Bs and by (10)

‖z − y‖ = x−

∥∥∥∥
(

1 +
ε

%x−

)
z0 − y0

∥∥∥∥ > ε.

Hence, for every y ∈ Rs , Ix−Bs(y)δε(z−y) = 0. This implies Ix−Bs ∗ δε(z) =
0. The proof of (ii) is similar. Note that the right hand side in (ii) is equiv-
alent to I(x+Bs)C ∗ δε(z) = 0.

We are now in a position to derive the basic estimate of PBs(x). By
Lemma 3,

∑

k∈Zs
Ix−Bs ∗ δε(k) ≤ ABs(x) ≤

∑

k∈Zs
Ix+Bs ∗ δε(k).
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The multi-dimensional Poisson summation formula (see [2]) yields
∑

k∈Zs
Îx−Bs(k)δ̂ε(k) ≤ ABs(x) ≤

∑

k∈Zs
Îx+Bs(k)δ̂ε(k).

Since δ̂ε(0) = 1 and

Îx±Bs(0) = vol(Bs)xs± = vol(Bs)xs +O(xs−1ε)

we obtain

PBs(x)�
∣∣∣
∑

k∈Zs∗
Îx−Bs(k)δ̂ε(k)

∣∣∣+
∣∣∣
∑

k∈Zs∗
Îx+Bs(k)δ̂ε(k)

∣∣∣+ xs−1ε,

where Zs∗ = Zs \ {0} for short. In the right hand side we insert the asymp-
totic expansion of Lemma 2. For s ≥ 4, X ≤ x ≤ 2X and ε ≥ X−1 the
contribution of the error term is at most

X(s−3)/2
∑

k∈Zs∗
‖k‖−(s+3)/2|δ̂ε(k)| � (Xε−1)(s−3)/2 � Xs−1ε.

Here we used the estimate
∑

k∈Zs∗
‖k‖−α exp(−(ε‖k‖)1/2) =

∞\
1/2

u−α exp(−(εu)1/2) dASs(u)(11)

� εα−s,

which is valid for α < s and 0 < ε < 1. It can be proved by using integration
by parts and ASs(u)� us. Thus, for s ≥ 4, X ≤ x ≤ 2X and X−1 ≤ ε < 1,

(12) PBs(x)� X(s−1)/2(|S+(x)|+ |S−(x)|) +Xs−1ε,

where
S±(x) =

∑

k∈Zs∗
α±k‖k‖−(s+1)/2δ̂ε(k)e2πix±H(k).

This is the basic estimate of PBs(x). We remark that (12) remains true if
s = 3 (in this case (11) is used with α = s; thus the bound εα−s in (11) has
to be replaced by |log ε|). Moreover, the trivial estimate of S±(x) together
with (11) and the choice ε = X−(s−1)/(s+1) yields (1).

4. The iterative estimation process

Lemma 4. Let B = Bs or B = B∗s . Assume that for some γ > 2s− 3 and
X ≥ 1,

(13)
X\
0

|PB(x)|2 dx� Xγ .

Furthermore, let R ≥ U > 0 and V ≥ R(γ−1)/2 be real parameters and set

M(U, V ) = #{j ∈ Z : 0 ≤ j ≤ R/U, |PB(R+ jU)| ≥ V }.
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Then

M(U, V )� RγV −2(Rs−1V −1 + U−1).

Note that for V ≤ R(γ−1)/2 the trivial bound M(U, V )� R/U is sharper.

P r o o f. Since ABs(u) is increasing it follows that there is a constant
c > 0 such that for R ≤ v ≤ u ≤ 2R,

PB(v)− PB(u) ≤ vol(B)(us − vs) ≤ c

2
(u− v)Rs−1.

Hence, if t ∈ [R, 2R] is a value with |PB(t)| ≥ V , there exists an interval I
of length V (cRs−1)−1, containing t as an endpoint, such that |PB(u)| ≥ V/2
for all u ∈ I. For all j counted in M(U, V ) we choose (disjoint) intervals Jj
of length |Jj | = min(V (cRs−1)−1, U/2) with |PB(u)| ≥ V/2 for all u ∈ Jj .
Then trivially

V 2M(U, V ) min(V R1−s, U)�
3R\
0

|PB(u)|2 du� Rγ

and

M(U, V )� RγV −2 max(V −1Rs−1, U−1)� RγV −2(Rs−1V −1 + U−1).

In the following we assume that (13) is true for PB∗s . The basic estimate
(12) is used to bound the mean square of PBs . Since

2X\
X

e2πiβx dx� min(X, |β|−1) (β ∈ R),

it follows that
2X\
X

|S±(x)|2 dx

�
∑

k,m∈Zs∗
(‖k‖ · ‖m‖)−(s+1)/2|δ̂ε(k)| · |δ̂ε(m)|min(X, |H(k)−H(m)|−1).

Hence by (12),

(14)
2X\
X

|PBs(x)|2 dx� Xs−1(XΣ1 +Σ2) +X2s−1ε2,

where

Σ1 =
∑

k,m∈Zs∗
|H(k)−H(m)|<X−1

(‖k‖ · ‖m‖)−(s+1)/2|δ̂ε(k)| · |δ̂ε(m)|
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and

Σ2 =
∑

k,m∈Zs∗
|H(k)−H(m)|≥X−1

(‖k‖ ·‖m‖)−(s+1)/2|δ̂ε(k)| · |δ̂ε(m)| · |H(k)−H(m)|−1.

To estimate Σ1 and Σ2 we build blocks of the form R < H(k) ≤ 2R, R = 2l,
l ≥ 0, and (in the second sum) U ≤ |H(k) − H(m)| < 2U , U = X−12n,
n ≥ 0. In the first sum the summation condition implies H(k) � H(m) � R.
Since H(k) � ‖k‖ it follows that with some constant c > 0,

(15) Σ1 �
∑

R=2l≥1

R−s−1 exp(−c(εR)1/2)N(R,X−1) + 1,

where

N(R,U)

= #{(k,m) ∈ Zs×s : R < H(k) ≤ 2R,H(k)− U < H(m) ≤ H(k) + U}.
In the second sum we find H(k) � H(m) � R if U ≤ R/4, thus

Σ2 �
∑

R

∑

X−1≤U≤R/4
R−s−1 exp(−c(εR)1/2)U−1N(R, 2U)

+
∑

R

R−(s+3)/2 exp(−c(εR)1/2)AB∗s (2R)
∑

m∈Zs∗
‖m‖−(s+1)/2|δ̂ε(m)|.

By (11) the innermost sum of the second term is O(ε−(s−1)/2). Since
AB∗s (2R)� Rs and

(16)
∑

l≥0,(R=2l)

Rα exp(−c(εR)1/2)�
{
ε−α, α > 0,
|log ε|, α = 0,

the whole second term is O(ε2−s). Hence

Σ2 �
∑

R

∑

X−1≤U≤R
R−s−1 exp(−c(εR)1/2)U−1N(R, 2U) + ε2−s

and by (14) and (15),

(17)
2X\
X

|PBs(x)|2 dx

� Xs−1
∑

R

∑

X−1≤U≤R
R−s−1 exp(−c(εR)1/2)U−1N(R, 2U)

+Xs−1ε2−s +X2s−1ε2.

To estimate N(R,U) we cover the interval (R, 2R] by intervals of the form
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(Rj , Rj+1], Rj = R+ jU , 0 ≤ j < R/U + 1, and define (3)

Kj = #{k ∈ Zs : Rj < H(k) ≤ Rj+1}.
Then by Cauchy’s inequality,

N(R,U)

�
∑

j

#{(k,m) ∈ Zs×s : Rj < H(k) ≤ Rj+1, Rj−1 < H(m) ≤ Rj+2}

�
∑

j

Kj(Kj−1 +Kj +Kj+1)�
∑

j<R/U+1

K2
j .

Since

K2
j = (AB∗s (R+ (j + 1)U)−AB∗s (R+ jU))2

� (Rs−1U + |PB∗s (R+ (j + 1)U)|+ |PB∗s (R+ jU)|)2

� R2s−2U2 + |PB∗s (R+ (j + 1)U)|2 + |PB∗s (R+ jU)|2

we obtain

N(R,U)� R2s−1U +
∑

0≤j�R/U
|PB∗s (R+ jU)|2.

The remaining sum can be estimated by Lemma 4. Set V = R(γ−1)/22r �
Rs, 0 ≤ r � logR. Then

N(R,U)� R2s−1U +RγU−1 +
∑

V≥R(γ−1)/2

V 2M(U, V )

� R2s−1U +Rγ(logR)U−1 +Rs+(γ−1)/2.

Together with (16) and (17) this implies

2X\
X

|PBs(x)| dx� Xs−1
∑

R

∑

X−1≤U≤R
exp(−c(εR)1/2)

× (Rs−2 +Rγ−s−1(logR)U−2 +R(γ−3)/2U−1)

+Xs−1ε2−s +X2s−1ε2

(3) I learned this trick from M. N. Huxley during the conference on Analytic and
Elementary Number Theory in Vienna, July 1996, which has been organized in honour of
E. Hlawka’s 80th birthday. Huxley used it to bound the mean square of the Hlawka zeta
function of a planar convex body on a vertical line.
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� Xs−1
∑

R

exp(−c(εR)1/2)

× (Rs−2(logX + logR) +Rγ−s−1(logR)X2 +R(γ−3)/2X)

+Xs−1ε2−s +X2s−1ε2

� Xs−1(logX)ε2−s +Xs+1(logX)εs+1−γ +Xsε(3−γ)/2 +X2s−1ε2.

Note that γ − s− 1 > 0 and γ − 3 > 0 if s ≥ 4. In the case s = 3 the term
Xs+1 logX is too large to give a nontrivial estimate. Balancing the second
and the last term yields the optimal choice ε = X−(s−2)/(γ−s+1) ≥ X−1.
With this choice it is easy to check that the remaining two terms are of
smaller order (use γ > 2s− 3), hence

2X\
X

|PBs(x)|2 dx� X2s−1−2(s−2)/(γ−s+1) logX.

Summing over X2−j , j ≥ 1, we have proved that for s ≥ 4 the estimate
X\
0

|PB∗s (x)|2 dx� Xγ

with γ > 2s− 3 implies the bound
X\
0

|PBs(x)|2 dx� X2s−1−2(s−2)/(γ−s+1) logX.

Under the assumptions of our Theorem, Lemma 1 shows that we can in-
terchange the rôles of Bs and B∗s . Hence, starting with the trivial bound
γ0 = 2s+ 1 for the mean square of PBs(x) and PB∗s (x), the iteration

γn+1 = 2s− 1− 2(s− 2)
γn − s+ 1

produces better bounds. Since γn+1 < γn for γn > 2s − 3 the iteration
converges to its largest fixpoint. The two fixpoints are 2s − 3 and s + 1.
Hence, for s ≥ 4, limn→∞ γn = 2s− 3. This proves the Theorem.
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