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On the lattice point problem for ellipsoids

by

V. Bentkus and F. Götze (Bielefeld)

1. Introduction and results. Let Rd, 1 ≤ d < ∞, denote the real
d-dimensional Euclidean space with scalar product 〈·, ·〉 and norm

|x|2 = 〈x, x〉 = x2
1 + . . .+ x2

d for x = (x1, . . . , xd) ∈ Rd.
Denote by |x|∞ = max{|xj | : 1 ≤ j ≤ d} the maximum-norm. Let Zd be the
standard lattice of points with integer coordinates in Rd.

For a (measurable) set B ⊂ Rd let volB denote the Lebesgue measure
of B, and let volZB denote the lattice volume of B, that is, the number of
points in B with integer coordinates.

Consider a quadratic form

Q[x] = 〈Qx, x〉 for x ∈ Rd,
where Q : Rd → Rd denotes a symmetric positive linear bounded operator,
that is, Q[x] > 0 for x 6= 0. Define the ellipsoid

Es = {x ∈ Rd : Q[x] ≤ s} for s ≥ 0.

Let

0 < q2
1 ≤ . . . ≤ q2

d = q2

denote the eigenvalues of the operator Q.
We shall prove the following

Theorem 1.1. For d ≥ 9,

∆(s,Q) := sup
a∈Rd

∣∣∣∣
volZ(Es + a)− volEs

volEs

∣∣∣∣ ≤ cq2
1(q/q1)2d+4s−1

for s ≥ q2
1 ,

where the constant c can depend on the dimension d only.
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R e m a r k. For the dimension d = 8 we can prove that

∆(s,Q) ≤ cq20
8 q−18

1 s−1 ln2(s+ 1) for s ≥ q2
1 ,

with an absolute constant c.

For general ellipsoids Landau (1915) obtained the estimate
O(s−1+1/(1+d)). This result has been extended by Hlawka (1950) to con-
vex bodies with smooth boundary and strictly positive Gaussian curvature.
Hlawka’s estimate has been recently improved by Krätzel and Nowak (1991,
1992) to O(s−1+λ), where λ = 5/(6d+ 2), for d ≥ 8, and λ = 12/(14d+ 8),
for 3 ≤ d ≤ 7. An abstract of results of the present paper appeared as
Bentkus and Götze (1995a), based on the preprint by Bentkus and Götze
(1994b).

Since the lower bound ∆(s,Q) = Ω(s−1) holds for spheres (Q = Identity)
(see, e.g. Fricker (1982)), Theorem 1.1 solves the problem of uniform error
bounds for ellipsoids with arbitrary center provided that the dimension d is
sufficiently large, i.e., d ≥ 9.

The bound of Theorem 1.1 shows that the number of lattice points in
an ellipsoid depends asymptotically only on the size of ellipsoid, i.e., only
on radii of the largest inscribed and the smallest circumscribed spheres, and
does not depend on assumptions like “rationality” or “orientation” of the
ellipsoid, that is, on the conjugation class of Q under the action of SL(d,Z).

For special ellipsoids a number of particular results are available. For
example, the error bound O(s−1) holds for d ≥ 5 for a fixed rational form
Q (see Walfisz (1924, 1927), d ≥ 9, and Landau (1924), d ≥ 5). Jarńık
(1928) proved the same bound for diagonal forms Q with arbitrary (nonzero)
real coefficients. Related results are due to Novák (1968), Divǐs and Novák
(1974). For a discussion see the monographs by Walfisz (1957), Landau and
Walfisz (1962), Fricker (1982) and Krätzel (1988).

Our results were obtained by extending the methods for proving optimal
rates of convergence in the Central Limit Theorem (CLT) for ellipsoids (Ben-
tkus and Götze (1994a)). Bounds for rates of convergence in the multivariate
CLT for convex bodies seem to correspond to bounds in the lattice point
problem for these bodies interpreting s as the number, say N , of random
vector summands in the CLT. This fact was mentioned by Esseen (1945),
who proved the rate O(s−1+1/(1+d)) for balls around the origin and random
vectors with identity covariance, a result similar to the result of Landau
(1915). For sums taking values in a lattice and special ellipsoids the relation
of these error bounds for the lattice point problem and the CLT was made
explicit in Yarnold (1972).

The results of Esseen were extended to convex bodies by Matthes (1970),
yielding a result similar to that of Hlawka (1950).
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The bound O(N−1), for d ≥ 5, of Bentkus and Götze (1994a) for ellip-
soids with diagonal Q and random vectors with independent components
(and with arbitrary distribution) is comparable to the results of Jarńık
(1928). The bound O(N−1), for d ≥ 9, for arbitrary ellipsoids and ran-
dom vectors—an analogue of the results of the present paper—is obtained
in Bentkus and Götze (1995b). The proofs of these probabilistic results are
more involved since we have to deal with a general class of distributions
instead of uniform bounded ones in number theory.

The basic steps of the proof consist of:

(1) rewriting in Section 2 the lattice point approximation error as a
difference of measures of the ellipsoid, which are defined as convolutions of
uniform measures on cubes in Zd resp. Rd;

(2) using regularization (see Lemma 8.1) and Fourier transforms to bound
the error by integrals over Fourier transforms of the distributions of Q[x]
under these measures;

(3) using double large sieve bounds to estimate the Fourier transforms;
(4) estimating the size and separating the location of maxima of the

Fourier transforms, for d ≥ 9, by means of inequality (5.3) in Section 5. (See
as well (1.2) below.)

Once the problem has been reformulated in terms of measures with finite
support in step (1), it is sufficient to assume that the quadratic form Q is
nondegenerate (see the Remark in Section 2).

The inequality (5.3) in step (4) represents the essential tool of our proof.
For trigonometric sums defined as

(1.1) S(t) =
∑

x∈Zd
pxe{tQ[x]}

with
px = (2A+ 1)−2d

∑

|m|∞≤A

∑

|n|∞≤A
I{m+ n = x},

where the sums are taken over m,n ∈ Zd, and e{x} := exp{ix}, it yields
the bound

(1.2) |S(t)S(t+ ε)| ≤ c(q/q1)dM(ε) for all t ∈ R and ε ≥ 0,

where

(1.3) M(t) :=
{

(|t|A2)−d/2 for |t| ≤ A−1,
|t|d/2 for |t| ≥ A−1.

Taking t = 0 the inequality (1.2) yields a “double large sieve” estimate
for distributions on the lattice (see Bombieri and Iwaniec (1986)). In the
present paper we derive (1.2) from the double large sieve bound—an al-
ternative proof to the original proof in Bentkus and Götze (1994b), which
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depended on symmetrization arguments like Weyl’s inequality and its gener-
alizations (see Lemma 7.1), which had been quite useful in the investigation
of the convergence rates and Edgeworth expansions in the CLT in Hilbert
and Banach spaces (see Bentkus and Götze (1994a, 1995b)). Using this sym-
metrization method a refined version of (1.2) is proved in (5.13) for weights
px which are convolutions of more than two uniform distributions.

We shall use the following notation. By c with or without indices we
shall denote generic constants which may depend on the dimension d only.
We shall write B � D instead of B ≤ cD. By [B] we denote the integer
part of a real number B. We shall write r =

√
s and A = [r]. If r ≥ 1 then

the natural number A is at least 1 and A ≤ r ≤ 2A.

2. A reduction to the Fourier transforms. Assuming that

(2.1) |a|∞ ≤ 1/2 and q1 = 1,

we shall prove the following bound for the error ∆(s,Q) in Theorem 1.1:

(2.2) ∆(s,Q)� q2d+4s−1 for s ≥ 1.

This result implies Theorem 1.1. Indeed, the assumption |a|∞ ≤ 1/2 does
not restrict the generality since

volZ (Es + a) = volZ(Es + a−m) for any m ∈ Zd,
and we can replace a in (2.2) by a − m, with some m ∈ Zd such that
|a−m|∞ ≤ 1/2. The condition q1 = 1 does not restrict the generality either
since we can derive Theorem 1.1 from (2.2) replacing Q in (2.2) by Q/q2

1
and s by s/q2

1 .
Let us recall some definition and properties related to (Borel) measures.

Let Bd denote the class of Borel subsets of Rd. In this paper we shall consider
only nonnegative normalized measures, that is, σ-additive set functions µ :
Bd → R such that µ(Rd) = 1 and µ(C) ≥ 0 for any C ∈ Bd. We shall
write

T
f(x)µ(dx) for the (Lebesgue) integral of a measurable function f :

Rd → C with respect to the measure µ, and denote as usual by µ ∗ ν(C) =T
µ(C − x) ν(dx), for C ∈ Bd, the convolution of the measures µ and ν.

Equivalently, µ ∗ ν is defined as the measure such that
T
f(x)µ ∗ ν(dx) =T

f(x+ y)µ(dx) ν(dy), for any integrable function f .
For r ≥ 0 consider the cube B(r) = {x ∈ Rd : |x|∞ ≤ r}. The uniform

lattice measure µr concentrated on the lattice points in B(r) is defined by

µr(C) =
volZ C ∩B(r)

volZB(r)
for C ∈ Bd.

We define the uniform measure νr in B(r) ⊂ Rd by

νr(C) =
volC ∩B(r)

volB(r)
for C ∈ Bd.
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Introduce the measures

µ = µ6r = µ[6r]+1/2, ν = ν[6r]+1/2

and
χ = µr = µ[r]+1/2, ω = χ ∗ χ ∗ χ ∗ χ.

Notice that for C ⊂ Er, µ(C) and χ(C) are proportional to the number of
lattice points in C. Similarly, ν(C) is proportional to the volume of C ⊂ Er.

The use of measures will simplify the notation. For example, we can
rewrite the trigonometric sum (1.1) as

S(t) =
\
e{tQ[x]}χ ∗ χ(dx).

The following Lemma 2.1 reduces the proof of (2.2) to an estimation of
the Fourier transforms.

Lemma 2.1. Write

f(t) =
\
e{tQ[x− a]}µ ∗ ω(dx), g(t) =

\
e{tQ[x− a]} ν ∗ ω(dx).

We have
∆(s,Q)� qd (I1 + I2 + I3 + I4),

where

I1 =
\

|t|≤s−1+2/d

(|f(t)|+ |g(t)|) dt, I2 =
\

|t|≤s−1+2/d

|f(t)− g(t)| dt|t| ,

and

I3 =
\

s−1+2/d≤|t|≤s−2/d

(|f(t)|+|g(t)|) dt|t| , I4 =
\

s−2/d≤|t|≤1

(|f(t)|+|g(t)|) dt|t| .

Using Lemma 2.1 we reduce the proof of (2.2) to the proof that Ij �
qd+4s−1, for 1 ≤ j ≤ 4. That is done in Sections 3 and 4.

P r o o f o f L e m m a 2.1. Let us start with the proof of

(2.3) ∆(s,Q)� qd |µ ∗ ω(Es + a)− ν ∗ ω(Es + a)|.
Recall that

1 = q2
1 ≤ . . . ≤ q2

d = q2

denote the eigenvalues of the operator Q, or in other words,

1 = 1/q1 ≥ . . . ≥ 1/qd = 1/q > 0

denote the lengths of half-axes of the ellipsoid E1. Due to the assumption
q1 = 1 the longest half-axis of E1 has length 1. Therefore E1 ⊂ B(1) and
Es ⊂ B(r). Consequently, Es + a ⊂ B(r + 1/2) since |a|∞ ≤ 1/2.

Observe that, for any set C ⊂ B(r + 1/2),

(2.4) µ(C) = µ ∗ ω(C), ν(C) = ν ∗ ω(C)
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since the measure µ ∗ω (resp. ν ∗ω) is still a uniform lattice (resp. uniform)
measure on B(r + 1/2). For example, let us verify that µ(C) = µ ∗ ω(C).
The measure ω is concentrated in the cube B(4r), that is, ω(B(4r)) = 1.
Therefore

µ ∗ ω(C) =
\
µ(C − x)ω(dx) =

\
B(4r)

µ(C − x)ω(dx).

For y ∈ C and x ∈ B(4r), the triangle inequality implies

|y − x|∞ ≤ r + 1/2 + 4r ≤ [6r] + 1/2,

which means that both C and the shifted set C − x are subsets of B([6r] +
1/2). The shift x assumes integer values only (with ω-measure 1). Therefore,
due to the invariance of µ under shifts by integer vectors inside the cube
B([6r] + 1/2), \

B(4r)

µ(C − x)ω(dx) =
\

B(4r)

µ(C)ω(dx) = µ(C),

which implies (2.4).
Clearly

V := volZB([6r] + 1/2) = volB([6r] + 1/2).

For C ⊂ B([6r] + 1/2), we have

µ(C) = V −1 volZ C, ν(C) = V −1 volC.

Therefore, in the case of C = Es + a, we obtain

(2.5) |µ(C)− ν(C)| = V −1|volZ C − volC| = ∆(s,Q)V −1 volEs.

Notice that 1 � qd V −1 volEs since the ellipsoid E1 contains the cube
B(1/q) as a subset. Thus (2.4) and (2.5) imply (2.3).

Consider the functions

F (z) = µ ∗ ω({x ∈ Rd : Q[x− a] ≤ z}),
G(z) = ν ∗ ω({x ∈ Rd : Q[x− a] ≤ z})

for z ∈ R. The functions F,G are distribution functions since they are
nondecreasing, F (−∞) = G(−∞) = 0 and F (∞) = G(∞) = 1. We can
write

F (s)−G(s) = µ ∗ ω(Es + a)− ν ∗ ω(Es + a)(2.6)

= µ ∗ ω({x ∈ Rd : Q[x− a] ≤ s})
− ν ∗ ω({x ∈ Rd : Q[x− a] ≤ s}).

Notice that f(t) (resp. g(t)) is equal to the Fourier–Stieltjes transform
F̂ (t) =

T
e{tz} dF (z) of the distribution function F (resp. of G), by a change
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of variable. Applying the smoothing Lemma 8.1, we have

(2.7) |F (s)−G(s)| ≤
1\
−1

|f(t)− g(t)| dt|t| +
1\
−1

|f(t)| dt+
1\
−1

|g(t)| dt.

Splitting the integrals in (2.7) and estimating 1 ≤ 1/|t| for |t| ≤ 1, we obtain

(2.8) |F (s)−G(s)| � I1 + I2 + I3 + I4.

Now the relations (2.3), (2.6) and (2.8) together imply the result of the
lemma.

R e m a r k. Once the problem has been reformulated in (2.3) and (2.6) as
a problem of the estimation of distribution functions, we may consider the
general case of conic sections instead of ellipsoids since from now on only
the assumption that the operator Q is invertible will be used.

3. Bounds for the integrals I1, I3 and I4 of Lemma 2.1. Through-
out we shall write

(3.1) ϕ(t) = ϕb,L(t) :=
∣∣∣
\
e{tQ[x− b] + t〈L, x〉}χ ∗ χ(dx)

∣∣∣, b, L ∈ Rd,
and

ψ(t) = sup
b,L

ϕb,L(t).

Notice that ϕ and ψ are even continuous functions such that ϕ(0) = ψ(0) = 1
and 0 ≤ ϕ,ψ ≤ 1.

Lemma 3.1. We have

(3.2) |f(t)| ≤ ψ(t), |g(t)| ≤ ψ(t),

and

(3.3)
\
C

|f(t)| dt|t| ≤ sup
b,L

\
C

ϕ(t)
dt

|t| ,
\
C

|g(t)|dt|t| ≤ sup
b,L

\
C

ϕ(t)
dt

|t| ,

for t ∈ R and C ∈ B.

P r o o f. For example, let us verify the first inequality in (3.2). Using
Fubini’s Theorem, and the definition of ψ, we have

|f(t)| =
∣∣∣
\
e{tQ[x− a]}µ ∗ ω(dx)

∣∣∣

≤
\∣∣∣\ e{tQ[x+ y − a]}χ ∗ χ(dx)

∣∣∣µ ∗ χ ∗ χ(dy)

≤
\

sup
z∈Rd

∣∣∣
\
e{tQ[x+ z]}χ ∗ χ(dx)

∣∣∣µ ∗ χ ∗ χ(dy)

= sup
z∈Rd

∣∣∣
\
e{tQ[x+ z]}χ ∗ χ(dx)

∣∣∣ ≤ ψ(t).
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The proof of (3.3) is similar to the proof of (3.2). For example, let us
prove the second inequality in (3.3). We have\

C

|g(t)|dt|t| =
\
C

∣∣∣
\
e{tQ[x− a]} ν ∗ ω(dx)

∣∣∣dt|t|

≤
\ \
C

∣∣∣
\
e{tQ[x+ y − a]}χ ∗ χ(dx)

∣∣∣ dt|t| µ ∗ χ ∗ χ(dy)

≤ sup
z∈Rd

\
C

∣∣∣
\
e{tQ[x+ z]}χ ∗ χ(dx)

∣∣∣ dt|t|

≤ sup
b,L∈Rd

\
C

ϕ(t)
dt

|t| .

Recall that A = [r] and s = r2. Since we assume that r ≥ 1, the inequal-
ities A2 � r2 � s� A2 hold, and the function

N (t) :=
{

(|t|s)−d/2 for |t| ≤ s−1/2,
|t|d/2 for |t| ≥ s−1/2

is equivalent to the function M defined by (1.3), that is,

N (t)�M(t)� N (t) and M(t)� (|t|s)−d/2 + |t|d/2 �M(t).

Estimation of I1 and I3. Let us prove that I1 � qd/s. Using (3.2) of
Lemma 3.1, we have

I1 �
\

|t|≤s−1+2/d

ψ(t) dt.

By (5.4) of Theorem 5.1, ψ(t)� qdM(t)� qdN (t). Therefore, using ψ(t) ≤
1, as well as s−1+2/d ≤ s−1/2 for d ≥ 4, we obtain

I1 � qd
s−1+2/d\

0

min{1; N (t)} dt� qd
1/s\
0

dt+ qd
s−1/2\
1/s

dt

(ts)d/2

=
qd

s
+
qd

s

∞\
1

dt

td/2
� qd

s
.

Let us prove that I3 � qd/s. Using (3.2) of Lemma 3.1 and the inequality
ψ(t)� qdM(t)� qdN (t), we get

I3 �
\

s−1+2/d≤|t|≤s−2/d

ψ(t)
dt

|t| � qd
s−2/d\
s−1+2/d

N (t)
dt

t

= qd
s−1/2\
s−1+2/d

1
(ts)d/2

dt

t
+ qd

s−2/d\
s−1/2

td/2
dt

t
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� qd
∞\
s2/d

1
td/2

dt

t
+ qd

s−2/d\
0

td/2
dt

t
� qd

s

for s ≥ 4.

Estimation of I4. Using (3.3) of Lemma 3.1, we have

I4 � sup
b,L∈Rd

1\
s−2/d

ϕ(t)
dt

t
.

We show in Section 5 that ϕ(t)ϕ(t+ ε)� qdM(ε) for all t, ε ∈ R, with M
defined in (1.3). In Section 6 we show that this inequality implies that

1\
s−2/d

ϕ(t)
dt

t
� qd

s

for d ≥ 9, and the desired estimate of I4 follows.

4. An estimate of the integral I2 of Lemma 2.1. In this section we
shall show that

(4.1) I2 =
\

|t|≤s−1+2/d

|f(t)− g(t)| dt|t| �
qd+4

s
for d ≥ 5.

We shall use Taylor expansions in order to reduce the problem to the esti-
mation of integrals like those in Section 3.

We shall show that

(4.2) |f(t)− g(t)| � q4 (|t|+ st2)ψ(t).

Using the estimate ψ(t)� qd min{1; M(t)} of Theorem 5.1 and integrating
in t, we easily derive (4.1). Thus it remains to prove (4.2).

Recall that

f(t) =
\
e{tQ[x− a]}µ ∗ ω(dx), g(t) =

\
e{tQ[x− a]} ν ∗ ω(dx).

Let τ(dx) = I{|x|∞ ≤ 1/2} dx denote the uniform measure concentrated
on the cube |x|∞ ≤ 1/2. Recall that µ is the uniform lattice measure in the
cube |x|∞ ≤ [6r] + 1, and that ν is the uniform measure in the same cube.
Therefore, for any function u we can write the identity\

u(x) ν(dx) =
\
u(x+ y)µ(dx) τ(dx).

Thus we have

g(t) =
\ \

e{tQ[x+ y − a]}µ ∗ ω(dx) τ(dy).
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We shall expand the function e{tQ[x+y−a]} into a Taylor series in powers
of y. Notice that

e{tQ[x+ y − a]} = e{tQ[x− a]} e{2t〈Q(x− a), y〉} e{tQ[y]}
and introduce the function

h(t) =
\ \

e{tQ[x− a]} e{2t〈Q(x− a), y〉}µ ∗ ω(dx) τ(dy).

Then

|f(t)− g(t)| ≤ |f(t)− h(t)|+ |h(t)− g(t)|,
and the proof of (4.2) reduces to the verification of

(4.3) |f(t)− h(t)| � q4st2ψ(t)

and

(4.4) |h(t)− g(t)| � q2|t|ψ(t).

Let us prove (4.4). Expanding e{z} = 1 +
T1
0 ize{vz} dv with z = tQ[y],

we obtain

|h(t)− g(t)| ≤
1\
0

\
|tQ[y]|J τ(dy) dv,

where

J =
∣∣∣
\
e{tQ[x− a] + 2t〈Q(x− a), y〉}µ ∗ ω(dx)

∣∣∣.
Using the definition of ψ, we have

J ≤
\∣∣∣\ \ e{tQ[x+w−a]+2t〈Q(x+w−a), y〉}χ∗χ(dx)

∣∣∣µ∗χ∗χ(dw) ≤ ψ(t).

Consequently, using |Q[y]| ≤ q2|y|2 � q2|y|2∞, we derive

|h(t)− g(t)| ≤ ψ(t)
1\
0

\
|tQ[y]| τ(dy) dv ≤ q2|t|ψ(t)

\
|y|2∞ τ(dy)� q2|t|ψ(t),

thus proving (4.4).
Let us prove (4.3). Expanding

(4.5) e{z} = 1 + iz +
1\
0

(1− v)(iz)2e{vz} dv with z = 2t〈Q(x− a), y〉,

we obtain

(4.6) |f(t)− h(t)| � t2
1\
0

\
J0 τ(dy) dv,

where

J0 =
∣∣∣
\
〈Q(x− a), y〉2e{tQ[x− a] + 2vt〈Q(x− a), y〉}µ ∗ ω(dx)

∣∣∣.
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Notice that the term corresponding to iz in (4.5) is equal to zero since the
measure τ is symmetric and therefore

T〈L, y〉 τ(dy) = 0 for any L ∈ Rd. Set
x0 = −a and write

x = x1 + x2 + x3 + x4 + x5,

µ ∗ ω(dx) = χ(dx1)χ(dx2)χ(dx3)χ(dx4)µ(dx5).

Then Q(x− a) =
∑5
j=0Qxj and we have

J0 =
∣∣∣
\〈 5∑

j=0

Qxj , y
〉2

e{tQ[x− a] + 2vt〈Q(x− a), y〉}µ ∗ ω(dx)
∣∣∣

�
5∑

j=0

5∑

k=0

Jjk

with

Jjk =
∣∣∣
\
〈Qxj , y〉 〈Qxk, y〉 e{tQ[x− a] + 2vt〈Q(x− a), y〉}µ ∗ ω(dx)

∣∣∣.
Given the variables xj and xk, we may choose out of x1, x2, x3, x4 at least
two further variables, say xl and xm with l 6= m, such that both l and m
are different from j and k. Using Fubini’s Theorem, we have

Jjk ≤
\ \ \
|〈Qxj , y〉 〈Qxk, y〉| J1 µ(dx5)

∏

1≤p≤4,p 6=l,p 6=m
χ(dxp),

where

J1 =
∣∣∣
\ \

e{tQ[x− a] + 2vt〈Q(x− a), y〉}χ(dxl)χ(dxm)
∣∣∣.

Splitting x − a = xl + xm + w with some w independent of xl and xm we
see that J1 ≤ ψ(t). Therefore

Jjk � ψ(t)
\ \ \
|〈Qxj , y〉 〈Qxk, y〉|µ(dx5)

∏

1≤p≤4,p 6=l,p 6=m
χ(dxp)

= ψ(t)
\
. . .

\
|〈Qxj , y〉 〈Qxk, y〉|µ(dx5)

∏

1≤p≤4

χ(dxp).

Using |〈Qxj , y〉| � q2 |xj | |y| and summing the bounds for Jjk, we obtain

J0 � q4|y|2ψ(t)
\
. . .

\(
|a|+

5∑

j=1

|xj |
)2
µ(dx5)

∏

1≤p≤4

χ(dxp)

� q4|y|2ψ(t)
(
|a|2 +

\
|x|2 µ(dx) +

\
|x|2 χ(dx)

)
.

The measures µ and χ are concentrated in cubes of size [6r] + 1/2 � √s
and [r] + 1/2 � √

s respectively. Thus, we have
T |x|2 µ(dx) � s and
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T |x|2 χ(dx) � s. Using |a| � |a|∞ ≤ 1/2, we obtain J0 � q4|y|2ψ(t)s.
This estimate together with (4.6) implies (4.3).

5. An inequality for trigonometric sums. Let a, L ∈ Rd. Define the
trigonometric sum

ϕ(t) = ϕa,L(t) =
∣∣∣
\ \

e{tQ[x+ y − a] + t〈x+ y, L〉}χ(dx)χ(dy)
∣∣∣, t ∈ R,

and
ψ(t) = sup

a,L
ϕa,L(t).

In order to illustrate the basic argument in the following inequalities, let

Φ(t, p) =
∣∣∣
∑

x∈X
pxe{tQ[x]}

∣∣∣

denote a trigonometric sum with weights px, x ∈ X ⊂ Rd. Then, for any
ε > 0, we have

(5.1) Φ(t− ε)Φ(t+ ε) ≤
∑

u∈X−X
Φ(ε, q(u))

with
Φ(ε, q(u)) =

∣∣∣
∑

x∈X
qx(u)e{−2εQ[x] + 2(t+ ε)〈x,Qu〉}

∣∣∣

and
qx(u) = px

∑

y∈X
py I{x− y = u}.

To obtain (5.1) it suffices to reorder the summation over x and y as sum-
mation over x− y and x+ y, and use the identities

(5.2) Q[x]−Q[y] = 〈Q(x+y), x−y〉, 2(Q[x]+Q[y]) = Q[x+y]+Q[x−y]

together with the triangle inequality or, e.g., Hölder’s inequality as below.
The further bounds of Φ(ε, q(u)) using the double large sieve will depend
only on the coefficients of the quadratic part of the exponent in Φ(ε, q(u)),
which are proportional to ε and independent of t. In this section we shall
prove the following inequality for ϕ(t) defined above.

Theorem 5.1. We have

(5.3) ϕ(t)ϕ(t+ ε)� qdM(ε) for t, ε ∈ R.
In particular ,

(5.4) ψ(ε)� qdM(ε).

Notice that the right hand side of (5.3) is independent of t, a, L. Re-
call that the function M is defined by (1.3), and that we assume that the
eigenvalues of Q satisfy 1 ≤ q2

1 ≤ . . . ≤ q2
d = q2.
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The following double large sieve bound is a consequence of Lemma 2.4
in Bombieri and Iwaniec (1986). For a vector T = (T1, . . . , Td) with positive
coordinates, introduce the cube

B(T ) = B(T1, . . . , Td)

= {x = (x1, . . . , xd) ∈ Rd : |xj | ≤ Tj for 1 ≤ j ≤ d}.
Write T −1 = (T−1

1 , . . . , T−1
d ).

Lemma 5.2. Let µ, ν denote arbitrary measures on Rd and let S, T be
vectors with positive coordinates. Write

J =
∣∣∣
\

B(S)

( \
B(T )

g(x)h(y)e{〈x, y〉}µ(dx)
)
ν(dy)

∣∣∣
2
,

where g, h : Rd → C denote arbitrary (measurable) functions. Then

J � Q(2S−1, g, µ)Q(2T −1, h, ν)
d∏

j=1

(1 + SjTj),

where

Q(S, g, µ) =
\( \
y∈x+B(S)

|g(y)|µ(dy)
)
|g(x)|µ(dx).

In particular , if |g(x)| ≤ 1 and |h(x)| ≤ 1, then

(5.5) J � sup
x∈Rd

µ(x+B(2S−1)) sup
x∈Rd

ν(x+B(2T −1))
d∏

j=1

(1 + SjTj).

P r o o f. We shall call a measure µ discrete if there is a countable set,
say Cµ ⊂ Rd, such that µ(Cµ) = 1. Bombieri and Iwaniec formulated this
lemma for discrete measures µ and ν such that µ({x}) = 1 and ν({y}) = 1
for x ∈ Cµ and y ∈ Cν . Obviously, the lemma extends to the case of discrete
µ and ν since the functions g and h are arbitrary. To extend the lemma
to arbitrary µ and ν, one uses the fact that any measure can be weakly
approximated by discrete measures, as well as the well-known properties of
integrals.

R e m a r k. Lemma 5.2 can be easily extended to the case of σ-finite
complex-valued measures replacing Q(·, ·, µ) and Q(·, ·, ν) by Q(·, ·, varµ)
and Q(·, ·, var ν), where varµ is the total variation measure of µ. We shall
use Lemma 5.2 only for uniform lattice measures.

Corollary 5.3. Assume that |g(x)| ≤ 1 and |h(x)| ≤ 1. Let

(5.6) µ({x ∈ Rd : |x|∞ ≤ T}) = 1 and ν({x ∈ Rd : |x|∞ ≤ S}) = 1,
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for some T > 0 and S > 0. Write

Jt =
∣∣∣
\(\

g(x)h(y)e{t〈Qx, y〉}µ(dx)
)
ν(dy)

∣∣∣
2
, t ∈ R.

Then there exists a positive constant cd depending on the dimension d only
such that

Jt � q2d(1 + (|t|ST )d)(5.7)

× sup
x∈Rd

µ(x+ cd(|t|S)−1B) sup
x∈Rd

ν(x+ cd(|t|T )−1B),

where B = {x ∈ Rd : |x|∞ ≤ 1}.
P r o o f. The operator Q is positive and Q has eigenvalues 1 ≤ q2

1 ≤
. . . ≤ q2

d = q2. Therefore we can decompose Q =
√
Q
√
Q. If Q is symmetric

and invertible, we can use the decomposition Q =
√
|Q|J

√
|Q|, where J

is a symmetric isometric operator and the symmetric operator
√
|Q| has

eigenvalues q1, . . . , qd. Consider the mappings x→ sign(t)
√
|t|Qx and x→√

|t|Qx, which map Rd into Rd. Let µt and νt denote the induced measures
of µ and ν under these mappings, that is,

µt(C) = µ(sign(t)(|t|Q)−1/2C) and νt(C) = ν((|t|Q)−1/2C)

for C ∈ Bd.
Then we have

(5.8) Jt =
∣∣∣
\(\

g0(x)h0(y)e{〈x, y〉}µt(dx)
)
νt(dy)

∣∣∣
2
,

for some functions g0 and h0 such that |g0| ≤ 1 and |h0| ≤ 1. The obvious
inequalities |√Qx|∞ � |

√
Qx| � q|x| � q|x|∞ and (5.6) imply that the

integrals with respect to µt and νt in (5.8) have to be taken over the cubes

{x ∈ Rd : |x|∞ ≤ cdq
√
|t|T} and {x ∈ Rd : |x|∞ ≤ cdq

√
|t|S}

respectively. Thus, we can apply the double large sieve bound (5.5) and get

Jt � (1 + q2|t|ST )d sup
x∈Rd

µ(x+ cd(q|t|S)−1B) sup
x∈Rd

ν(x+ cd(q|t|T )−1B).

Using 1 ≤ q we obtain (5.7).

P r o o f o f T h e o r e m 5.1. The estimate (5.3) implies (5.4) in the
case t = 0 since ϕ(0) = 1.

Let us prove (5.3). We shall assume that L = 0. This will not restrict the
generality since the operator Q is invertible, and therefore we can replace
a by a− 2−1Q−1L. Without loss of generality we shall assume as well that
ε > 0. Notice that in order to prove (5.3) it suffices to show that

(5.9) ϕ2(t− ε)ϕ2(t+ ε)� q2dM2(ε) for ε > 0.
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We have

(5.10) ϕ2(t− ε)ϕ2(t+ ε) =
∣∣∣
\ \ \ \

e{I}χ(dx)χ(dy)χ(dx)χ(dy)
∣∣∣
2

with

I := (t+ ε)Q[x+ y + a]− (t− ε)Q[x+ y + a]

= t(Q[x+ y + a]−Q[x+ y + a]) + ε(Q[x+ y + a] +Q[x+ y + a]).

Using (5.2), we can write

I = t〈Q(x− x+ y − y), x+ x+ y + y + 2a〉
+ 2−1ε(Q[x+ x+ y + y + 2a] +Q[x− x+ y − y]).

The measure χ assigns equal weights to integer points in the cube B(r).
Thus \

h(u)χ(du) = (2A+ 1)−d
∑

u∈Zd, |u|∞≤A
h(u),

for arbitrary functions h, and we can rewrite the 4-fold integral in (5.10) as
a 4-fold sum. We are going to reorder summands in this sum. We shall use
coordinatewise the following obvious formula:

(5.11)
∑

|n|≤A

∑

|m|≤A
h(n−m,n+m)

=
∑

j:|j|≤2A

∑

k: |k|≤2A−|j|, j−k∈2Z
h(j, k), n,m, j, k ∈ Z.

Introduce the measure θx on R which assigns equal weights to even integer
points in the interval [−2A+|x|−1, 2A−|x|+1], if x is even, and respectively
to odd points, if x is odd, for x ∈ Z such that |x| ≤ 2A. For z ∈ Zd ∩
B(2A+ 1), define the product measure

ηz(dx) =
d∏

j=1

θzj (dxj).

Introduce as well the uniform lattice measure µ2A in the cube B(2A+ 1/2).
Using (5.11) and changing variables

x− x = u, y − y = v, x+ x = u, y + y = v,

we can rewrite (5.10) as

ϕ2(t− ε)ϕ2(t+ ε) =
∣∣∣
\ \
p
(\ \

e{I} ηū(du) ηv̄(dv)
)
µ2A(du)µ2A(dv)

∣∣∣
2

with

I = t〈Q(u+ v), u+ v + 2a〉+ 2−1ε(Q[u+ v + 2a] +Q[u+ v])
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and
p = (2A+ 1)−4d (4A+ 1)2dP (u)P (v)� A−2d P (u)P (v),

where P (z) =
∏d
j=1(2A− |zj |+ 1). By Hölder’s inequality we have

(5.12) ϕ2(t− ε)ϕ2(t+ ε) ≤
\ \
p2J µ2A(du)µ2A(dv)

with

J =
∣∣∣
\ \

e{I0} ηū(du) ηv̄(dv)
∣∣∣
2

and
I0 = t〈Q(u+ v), u+ v〉+ 2−1εQ[u+ v + 2a].

We can write
e{I0} = g(u)h(v) e{ε〈Qu, v〉}

with some functions g and h depending on u, v, t, ε, a,Q such that |g| ≤ 1
and |h| ≤ 1. Hence

J =
∣∣∣
\ \
g(u)h(v) e{ε〈Qu, v〉}ηū(du) ηv̄(dv)

∣∣∣
2
.

In order to estimate J we shall apply the double large sieve bound of Corol-
lary 5.3. Choose

T =
d∑

j=1

(2A− |uj |+ 1), S =
d∑

j=1

(2A− |vj |+ 1).

Then

J � q2d(1 + (εST )d) sup
x∈Rd

ηū(x+ cd(εS)−1B) sup
x∈Rd

ηv̄(x+ cd(εT )−1B).

The measures ηū and ηv̄ are both concentrated on a sublattice of Zd. More-
over, ηū({x}) ≤ 1/P (u) and ηv̄({x}) ≤ 1/P (v), for x ∈ Zd. Therefore

sup
x∈Rd

ηū(x+ cd(εS)−1B)� P−1(u) max{1; (εS)−d},

and a similar inequality holds with u resp. S replaced by v resp. T . Collecting
these estimates and using P (u) ≤ T d and P (v) ≤ Sd, we get

p2J � q2dS
dT d

A4d (1 + εdSdT d) max
{

1;
1

εdSd

}
max

{
1;

1
εdT d

}
.

Since 1 + εdSdT d � (1 + εd/2Sd) (1 + εd/2T d), we get

p2J � q2dF (S)F (T ),

F (S) := A−2dSd(1 + εd/2Sd) max{1; ε−dS−d}.
Elementary estimates for the cases εS ≤ 1 resp. εS > 1 show that F (S)�
M(ε) and similarly F (T ) � M(ε), which together with (5.12) implies
(5.3).
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We close this section with a refinement of inequality (5.3). Let χ∗m de-
note the m-fold convolution of χ. Recall that µ% is the uniform lattice mea-
sure in the cube B(%) and χ = µr. Fix a natural number m. Notice that
we can bound ∆(s,Q) by Fourier integrals with respect to the measure
µ3mr+2r ∗ χ∗3m+2 instead of µ ∗ χ∗4. This will lead to bounds of Fourier
transforms replacing throughout the function ϕ by

ϕm(t) =
∣∣∣
\ \

e{tQ[x− a] + t〈x, L〉}χ∗3m(dx)
∣∣∣.

The function ϕm satisfies the following inequality of type (5.3):

(5.13) ϕm(t)ϕm(t+ ε)�M0(ε),

where

M2
0(ε) =

\ \
e{ε〈Qx, y〉}µ∗2m2A (dx)µ∗2m2A (dy).

The constant in (5.13) can depend on m as well. Using a modification of the
double large sieve bound, we shall show that

(5.14) M0(ε)� qdM(ε).

Thus, (5.13) implies an inequality of type (5.3) for ϕm. The inequality is in-
teresting since the boundM2

0(ε) is again a trigonometric sum, which satisfies
as well an inequality of type (5.3). The proof of this fact is more involved
than the proof of (5.3), and can be found in Bentkus and Götze (1994b).

P r o o f o f (5.13). The proof is similar to the proof of Theorem 5.1,
but instead of the double large sieve bound we shall apply a symmetrization
inequality.

In order to simplify the notation we shall assume that m = 1. Without
loss of generality, we shall assume that L = 0 and ε > 0.

Similarly to the proof of (5.10)–(5.12) we obtain

(5.15) ϕ2
1(t− ε)ϕ2

1(t+ ε) ≤
\ \ \

p2J µ2A(du)µ2A(dv)µ2A(dw)

with p� A−3dP (u)P (v)P (w),

J =
∣∣∣
\ \ \

e{I0} ηū(du) ηv̄(dv) ηw̄(dw)
∣∣∣
2

and

I0 = t〈Q(u+ v + w), u+ v + w〉+ 2−1εQ[u+ v + w + 2a].

In order to estimate J let us apply the symmetrization Lemma 7.1 with
measures µ1 = ηū, µ2 = ηv̄, µ3 = ηw̄. Notice that µ̃ = µ ∗ µ for symmetric
µ. Thus, we get

(5.16) J ≤
\ \

e{ε〈Qx, y〉} η∗2ū (dx) η∗2v̄ (dy) +
\ \

e{ε〈Qx, y〉} η∗2ū (dx) η∗2w̄ (dy).
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The bounds P (w) � Ad for the first integral in (5.16), and P (v) � Ad

for the second integral, together with (5.15) imply

(5.17) ϕ2
1(t− ε)ϕ2

1(t+ ε) ≤
\ \
p2

0J0 µ2A(du)µ2A(dv)

with

J0 =
\ \

e{ε〈x, y〉} η∗2ū (dx) η∗2v̄ (dy),

where p0 = A−2dP (u)P (v).
The estimate (5.17) implies (5.13) provided that we show that

(5.18) J0 � p−2
0

\ \
e{ε〈Qx, y〉}µ∗22A(dx)µ∗22A(dy).

In order to prove (5.18) write

J0 =
\ \
f(x1 + x2) ηū(dx1) ηū(dx2),

where

f(x) =
\
e{ε〈x, y〉} η∗2v̄ (dy) =

∣∣∣
\
e{ε〈x, y〉} ηv̄(dy)

∣∣∣
2
≥ 0

due to the symmetry of the measure ηv̄. The measure ηū is defined on a
sublattice of Zd in the cube

d∏

j=1

[−2A+ |uj |, 2A− |uj |] ⊂ [−2A, 2A]d,

and for x ∈ Zd we have ηū({x}) ≤ 1/P (u). Therefore, using the positivity of
f , we obtain

J0 ≤ P−2(u)
∑

x1,x2∈Zd, |x1|∞≤2A, |x2|∞≤2A

f(x1 + x2)

� P−2(u)A2d
\ \
f(x1 + x2)µ2A(dx1)µ2A(dx2),

thus replacing ηū by µ2A. Similar arguments show that we can replace ηv̄
by µ2A, thus proving (5.18).

P r o o f o f (5.14). Let µ̂(x) =
T

e{〈x, y〉}µ(dy) denote the Fourier trans-
form of a measure µ on Rd. Then, for any cube B(S) = {|x|∞ ≤ S}, we
have

(5.19)
\

B(S)

|µ̂(y)|2 dy � Sd sup
x∈Rd

µ(x+B(S−1)).

The estimate (5.19) follows from Lemma 2.3 in Bombieri and Iwaniec (1986).
Let µ̃ = µ ∗ µ, where µ(C) = µ(−C), denote the symmetrization of a

measure µ. Let us prove that
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(5.20) J :=
\ \

e{〈x, y〉} µ̃(dy) ν(dx)

� (1 + T 2d) sup
z
µ(z +B(T−1)) sup

z
ν(z +B(T−1)),

for arbitrary measures µ, ν and T > 0 such that

µ(B(T )) = 1, ν(B(T )) = 1, ν̂(x) ≥ 0 for all x ∈ Rd.
Let

τ(dx) = p(x) dx, where p(x) = 2−d I{|x|∞ ≤ 1},
denote the uniform measure on the cubeB(1). Then τ̂(y) =

∏d
j=1 (sinxj)/xj .

Using 1� τ̂((2T )−1x), for x ∈ B(2T ), and ̂̃µ(x) = |µ̂(x)|2, we have

J =
\
ν̂(x) µ̃(dx)�

\
ν̂(x) τ̂((2T )−1x) µ̃(dx)(5.21)

=
\ \ \

e{〈x, y + (2T )−1z〉} µ̃(dx) p(z) dz ν(dy)

= T d
\ \
|µ̂(u)|2p(2Tu− 2Ty) du ν(dy).

Note that the integral in (5.21) with respect to ν is taken over the cube
B(T ). Therefore

p(2Tu−2Ty)� I{|u−y|∞ ≤ T−1} = I{|u−y|∞ ≤ T−1} I{|u|∞ ≤ T+T−1},
for |y|∞ ≤ T . Hence, (5.21) and (5.19) together imply

J � T d
\
|µ̂(u)|2I{|u| ≤ T + T−1}

(\
I{|u− y| ≤ T−1} ν(dy)

)
du

� T d sup
z
ν(z +B(T−1))

\
|µ̂(u)|2I{|u| ≤ T + T−1} du

� T d(T + T−1)d sup
z
ν(z +B(T−1)) sup

z
µ(z +B(T/(T 2 + 1))),

thus proving (5.20) since T/(T 2 + 1) ≤ 1/T .
Similarly to the proof of Corollary 5.3, the inequality (5.20) yields

(5.22)
\ \

e{ε〈Qx, y〉} µ̃(dy) ν(dx)

� q2d(1 + εdT 2d) sup
z
µ(z +B((εT )−1)) sup

z
ν(z +B((εT )−1)),

for arbitrary measures µ, ν and T > 0, ε > 0 such that

µ(B(T )) = 1, ν(B(T )) = 1, ν̂(x) ≥ 0 for all x ∈ Rd.
The measures µ = µ∗m2A and ν = µ∗2m2A are symmetric and therefore

µ̃ = µ∗2m2A and ν̂(x) ≥ 0. Thus, the estimate (5.22) via simple calculations
implies (5.14).
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6. The integration procedure for A−4/d ≤ |t| ≤ 1

Theorem 6.1. Let ϕ(t), t ≥ 0, denote a continuous nonnegative function
such that ϕ(0) = 1. Let M(ε) be the function defined in (1.3) with some
A ≥ 1. Assume that

(6.1) ϕ(t)ϕ(t+ ε) ≤ ΛM(ε) for all t ≥ 0 and ε ≥ 0,

with some Λ ≥ 1 independent of t and ε. Then
1\
L

ϕ(t)
dt

t
� Λ

A2 for d ≥ 9,

where L = A−4/d.

P r o o f. The inequality (6.1) implies that (put t = 0, use ϕ(0) = 1 and
note that Λ ≥ 1)

(6.2) ϕ(t) ≤ ΛM(t) and ϕ(t)ϕ(t+ ε) ≤ Λ2M(ε).

In order to derive the result starting with (6.2) we may assume that

(6.3) ϕ(t) ≤M(t) and ϕ(t)ϕ(t+ ε) ≤M(ε).

Indeed, we may replace ϕ in (6.2) by ϕ/Λ, and we may integrate over ϕ/Λ
instead of ϕ.

Thus assuming (6.3) we have to prove that
1\
L

ϕ(t)
dt

t
� 1

A2 for d ≥ 9.

For l = 0, 1, 2, . . . introduce the sets

Bl = [L, 1] ∩ {t : 2−l−1 ≤ ϕ2(t) ≤ 2−l},
Dl = [L, 1] ∩ {t : ϕ2(t) ≤ 2−l−1}.

Notice that the sets Bl and Dl are closed and that
⋃m
l=0Bl ∪ Dm = [L, 1]

since (6.3) yields ϕ(t) ≤ 1 for t ∈ [L, 1], provided d ≥ 4. Furthermore, (6.3)
implies that ϕ2(t) ≤ td for t ≥ A−1, and Bl ⊂ [Ll, 1], where Ll = 2−(l+1)/d

for d ≥ 4.
We have

1\
L

ϕ(t)
dt

t
≤

\
Dm

ϕ(t)
dt

t
+

m∑

l=0

\
Bl

ϕ(t)
dt

t

≤ 2−m/2 lnL−1 +
m∑

l=0

2−l/2
\
Bl

dt

t

since ϕ2(t) ≤ 2−l for t ∈ Bl, ϕ2(t) ≤ 2−m for t ∈ Dm, and Dm ⊂ [L, 1].
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We have L = A−4/d and

2−m/2 lnL−1 =
2
d

2−m/2 lnA2 ≤ A−2

provided that we choose

m =
2

ln 2
ln(A2 lnA2).

Therefore it remains to show that

(6.4)
m∑

l=0

Il � 1
A2 , where Il = 2−l/2

\
Bl

dt

t
.

For an estimation of Il we need a description of the structure of the sets
Bl with l ≤ m. Let t, t′ ∈ Bl denote points such that t′ > t. The inequality
(6.3) and the definition of Bl imply

(6.5) 4−l−1 ≤M2(t′ − t).
If t− t′ ≤ A−1 then by (6.5) and the definition of M(ε) we get

(6.6) t′ − t ≤ δ, where δ = A−24(l+1)/d.

If t− t′ ≥ A−1 then by (6.5) and the definition of M(ε) we have as well

t′ − t ≥ %, where % = 4−(l+1)/d.

For d > 8 and sufficiently large A ≥ C note that

(6.7) δ < % provided l ≤ m.
The verification of (6.7) is elementary and is based on the fact that l ≤ m.

The estimate (6.7) implies that either t− t′ ≤ δ or t− t′ ≥ %. Therefore
it follows from (6.6) and (6.7) that

(6.8) t ∈ Bl ⇒ Bl ∩ (t+ δ, t+ %) = ∅.
Assuming that

(6.9) Il � A−2l2−l/2+4l/d for l ≤ m,
we obtain (6.4) since the series

∑∞
l=0 l 2

−l/2+4l/d is convergent for d > 8.
Thus it remains to prove (6.9). If the set Bl is empty then (6.9) is obvi-

ously fulfilled. If Bl is nonempty then define e1 := min{t : t ∈ Bl}. Choosing
t = e1 and using (6.8) we see that the interval (e1 + δ, e1 +%) does not inter-
sect Bl. Similarly, let e2 denote the smallest t ≥ e1+% such that t ∈ Bl. Then
the interval (e2 + δ, e2 + %) does not intersect Bl. Repeating this procedure
we construct a sequence Ll ≤ e1 < e2 < . . . < es ≤ 1 such that
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(6.10) Bl ⊂
s⋃

j=1

[ej , ej + δ] and ej+1 ≥ ej + %.

The sequence e1 < . . . < es cannot be infinite. Indeed, due to (6.10),

1 ≥ es ≥ e1 + (s− 1)% ≥ Ll + (s− 1)% ≥ s%,
and therefore s ≤ %−1.

From (6.10) we can finally prove (6.9). Indeed, using ln(1 + x) ≤ x, for
x ≥ 0, we have

Il ≤ 2−l/2
s∑

j=1

ej+δ\
ej

dt

t
= 2−l/2

s∑

j=1

ln
{

1 +
δ

ej

}

≤ 2−l/2
s∑

j=1

δ

ej
� l2−l/2+4l/dA−2

since e1 ≥ Ll ≥ %, s ≤ 1/%, and
s∑

j=1

1
ej
≤

s∑

j=1

1
e1 + (j − 1)%

≤ 1
%

s∑

j=1

1
j
� ln %

%
� l 4l/d.

7. A symmetrization inequality. The following symmetrization in-
equality slightly improves an inequality due to Götze (1979). This inequality
is a generalization of a classical inequality due to Weyl (1915/16); see, e.g.
Graham and Kolesnik (1991).

Define the symmetrization µ̃ of a measure µ by µ̃(C) =
T
µ(C+x)µ(dx),

for C ∈ Bd.
Lemma 7.1. Let L ∈ Rd and C ∈ R. Let µ1, µ2, µ3, ν denote arbitrary

measures on Rd. Define a real-valued polynomial of second order by

P (x) = 〈Qx, x〉+ 〈L, x〉+ C for x ∈ Rd.
Then the integral

J =
∣∣∣
\
e{tP (x)}µ1 ∗ µ2 ∗ µ3 ∗ ν(dx)

∣∣∣
2

satisfies 2J ≤ J1 + J2, where

J1 =
\ \

e{2t 〈Qx, y〉} µ̃1(dx) µ̃2(dy),

J2 =
\ \

e{2t 〈Qx, z〉} µ̃1(dx) µ̃3(dz).

In particular , if µ2 = µ3 then J ≤ J1.
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P r o o f. Write θ = µ2 ∗ µ3 ∗ ν. Then the definition of the convolution,
Fubini’s Theorem and Hölder’s inequality together imply

J =
∣∣∣
\ \

e{t P (x+ v)}µ1(dx) θ(dv)
∣∣∣
2

≤
\∣∣∣\ e{t P (x+ v)}µ1(dx)

∣∣∣
2
θ(dv)

=
\ \ \

e{t (P (x+ v)− P (u+ v))}µ1(dx)µ1(du) θ(dv).

We have P (x + v) − P (u + v) = Q[x] −Q[u] + 2〈Q(x − u), v〉 + 〈L, x − u〉.
Thus

J ≤
\ \∣∣∣\ e{2t〈Q(x− u), v〉} θ(dv)

∣∣∣µ1(dx)µ1(du)

=
\∣∣∣\ \ \ e{2t〈Qx, y + z + w〉}µ2(dy)µ3(dz) ν(dw)

∣∣∣ µ̃1(dx)

≤
\∣∣∣\ \ e{2t〈Qx, y + z〉}µ2(dy)µ3(dz)

∣∣∣ µ̃1(dx).

Thus, writing

Ij =
∣∣∣
\
e{2t〈Qx, y〉}µj(dy)

∣∣∣ for j = 2, 3,

we have J ≤ T |I2 I3| µ̃1(dx). To conclude the proof it suffices to use the
elementary inequality 2|I2 I3| ≤ |I2|2 + |I3|2 and note that\

|I2|2 µ̃1(dx) = J1 and
\
|I3|2 µ̃1(dx) = J2.

8. A smoothing lemma

Lemma 8.1. Let F and G be arbitrary distribution functions with the
Fourier–Stieltjes transforms F̂ and Ĝ. Then

(8.1) sup
x
|F (x)−G(x)| ≤ 1

2π

H\
−H
|F̂ (t)− Ĝ(t)|dt|t| +R,

for any H > 0, where

|R| ≤ 1
H

H\
−H
|F̂ (t)| dt+

1
H

H\
−H
|Ĝ(t)| dt.

Introduce the function 2K(s) = K1(s) + iK2(s)/(πs), where K1(s) =
K2(s) = 0 for s ≥ 1, and

K1(s) = 1− |s|, K2(s) = πs(1− |s|) cotπs+ |s| for |s| ≤ 1.

It is known (Prawitz (1972)) that for all x ∈ R and any H > 0,

F (x+) ≤ 1
2

+ V.P.
\
R

e{−xt} 1
H
K

(
t

H

)
F̂ (t) dt,(8.2)
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F (x−) ≥ 1
2
−V.P.

\
R

e{−xt} 1
H
K

(
− t

H

)
F̂ (t) dt,(8.3)

where F (x+) = limz↓x F (z), F (x−) = limz↑x F (z), and V.P. denotes
Cauchy’s Principal Value,

V.P.
\
R
. . . dt = lim

h↓0

\
|t|≥h

. . . dt.

Note that all integrals are real and that the integrands vanish unless |t| ≤ H.
The following lemma is elementary.

Lemma 8.2. For 0 ≤ s ≤ 1 we have

K2(0) = 1, K2(1) = 0, K2(1/2) = 1/2,

K ′2(s) ≤ 0, K2(s) +K2(1− s) = 1.

Furthermore,

1− 2 (1− s) sin2 πs

2
≤ K2(s) ≤ 1 for 0 ≤ s ≤ 1/2,

0 ≤ K2(s) ≤ 2 s sin2 π(1− s)
2

for 1/2 ≤ s ≤ 1.

It follows from Lemma 8.2 that |1−K2(s)| ≤ 2|s| for all s ∈ R. Therefore
(8.2), (8.3) and the definition of the function K imply

(8.4) F (x) =
1
2

+
i

2π
V.P.

H\
−H

e{−xt} F̂ (t)
dt

t
+R

for any H > 0, where

|R| ≤ 1
H

H\
−H
|F̂ (t)| dt.

As a consequence of (8.4) we derive Lemma 8.1.
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E. Hlawka (1950), Über Integrale auf konvexen Körpern I , II , Monatsh. Math. 54, 1–36,

81–99.
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E. Kr ä tze l and G. Nowak (1991), Lattice points in large convex bodies, Monatsh. Math.

112, 61–72.
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E. Landau (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21,
126–132.

E. Landau und A. Wal f i sz (1962), Ausgewählte Abhandlungen zur Gitterpunktlehre,
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B. Nov ák (1968), Verallgemeinerung eines Peterssonschen Satzes und Gitterpunkte mit
Gewichten, Acta Arith. 13, 423–454.

H. Prawitz (1972), Limits for a distribution, if the characteristic function is given in a
finite domain, Skand. Aktuarietidskr., 138–154.
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