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0. Introduction. In the following the symbol p always denotes an odd
prime number and n a natural number.

In the representation theory of the symmetric groups Sn there is some
interest in the question of determining the n ∈ N for which Sn has a p-block
of defect zero, since the existence of such a block means the existence of an
irreducible, projective module in characteristic p. The question turns out
to be not quite trivial and equivalent to the question of determining those
n ∈ N which have a so-called “p-core partition” (for a definition, see [3]).
The work [3] turned the question into an arithmetical one, and using this it
was recently proved (cf. [13, 4]), that if p ≥ 5 then every n ∈ N has a “p-core
partition” (see also [6] for an alternative proof). This result is optimal in
the sense that the statement is false for p = 3.

On the other hand, if one wishes to study projective representations
of the symmetric group Sn, then by Schur’s theory [15], this is equivalent
to the study of ordinary representations of any “representation group” Ŝn
of Sn. Here, “representation group” is to be understood in the sense of Schur,
i.e. Ŝn is a central extension of Sn with the property that any projective
representation of Sn lifts to an ordinary representation of Ŝn, and such that
Ŝn has order equal to n! = |Sn| times the order of the Schur multiplier of
Sn, which is 1 for n = 1, 2, 3 and 2 for n ≥ 4. All possibilities for Ŝn have
been determined by Schur in [15]. For n ≥ 4, Ŝn is isomorphic to one of the
groups Rn or Tn given generators a1, . . . , an−1, z and defining relations

z2 = 1, a2
i = (aiai+1)3 = z, and [ai, aj ] = z for |i− j| ≥ 2,

for Rn, and

z2 = a2
i = (aiai+1)3 = [ai, z] = 1 and [ai, aj ] = z for |i− j| ≥ 2,

for Tn. For n ≥ 4, n 6= 6, Rn and Tn are non-isomorphic, whereas R6 is
isomorphic to T6 (cf. [15], pp. 355–357).

[127]
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Thus we denote in the following for n ≥ 4 by Ŝn anyone of the groups Rn
or Tn above. If n ∈ {1, 2, 3}, the following theory is not very interesting, but
for practical reasons we shall redefine Ŝn in these cases to be also anyone of
Rn or Tn.

So, Ŝn is a double covering group of Sn. The representation theory of
these double covers has been studied intensively (cf. [8, 10–12]). In the gen-
eral modular representation theory of finite groups the question of existence
of a character of p-defect zero is a fundamental and difficult problem. Thus,
for Ŝn, one of the natural problems is to determine those n ∈ N for which Ŝn
has a spin character, i.e. a faithful, irreducible character, of p-defect zero.
This question turns out to be equivalent to the determination of those n ∈ N
which have a so-called “p-core partition” (cf. [12, 11]); see below in Section 1
for the definition of a p-core partition of n. In fact, the number of p-core
partitions of n is closely related to the number of spin characters of p-defect
zero of Ŝn; more precisely, the p-core partitions of n can be used as labels for
such spin characters. A p-core partition λ labels either 1 or 2 spin characters
of p-defect zero depending on a certain sign attached to λ (cf. [12]).

In [7] we proved that every n ∈ N has a p-core partition if p ≥ 7; see
also [2] for the case p = 7. This is also an optimal result. It has some strong
consequences for the representation theory of Ŝn, for example the following
(see [12]): If p ≥ 7, and m,n ∈ N with pm ≤ n, then Ŝn has a spin block
whose defect group is isomorphic to a p-Sylow subgroup of Spm.

Thus, p-core partitions seem to be fundamental combinatorial objects,
and in this article we study them for their own sake. We shall focus on a
connection to modular forms and use this in Section 2 below to give for
p > 5, p ≡ 1 (mod 4) asymptotic formulae for the number sp(n) of p-core
partitions of n. The reason for our restriction to the cases p ≡ 1 (mod 4)
is that we relate sp(n) to the Fourier coefficients of a certain modular form
of weight (p − 1)/4; for p ≡ 3 (mod 4) we would thus have to deal with
modular forms of half-integral weight, and this would in fact complicate the
discussion considerably.

In order to find an asymptotic formula for the numbers sp(n) (p fixed) we
proceed as follows. Based on the reinterpretation in the next section of sp(n)
as the number of solutions to a certain quadratic diophantine equation, we
construct in Section 2 a modular form

fp(z) =
∞∑
m=0

b(m, fp) · e2πimz for Im(z) > 0,

on a certain congruence subgroup of SL2(Z), with the property that the
numbers sp(n) occur among the Fourier coefficients b(·, fp) of fp; for exam-
ple, one will have
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sp(n) = b
(
n+ 1

48 (p− 1)(p− 2), fp
)

if p ≡ 1 (mod 16).

An asymptotic formula for sp(n) is then obtained by using the following
principle first made explicit by Hecke (see [5]): First we split off an Eisenstein
part ep of fp, i.e. we determine a linear combination ep of standard Eisenstein
series with the property that fp − ep is a cusp form. The determination of
ep requires the knowledge of the constant terms in the Fourier expansions
of fp and standard Eisenstein series around various cusps. Our situation is
complicated by the fact that the level of fp is not square free for all p, so that
these constant terms can not in all cases be computed by using Atkin–Lehner
involutions. In the proof of the theorem below we describe the principles used
in computing the constant terms, but we shall leave most of the explicit
computations to the reader. The proof of the asymptotic formulae for sp(n)
is then finished by computing explicitly the Fourier coefficients of the form
ep and then employing known estimates on the Fourier coefficients of cusp
forms on congruence subgroups of SL2(Z).

1. Now we recall from [11], pp. 233–237, the definition of a p-core parti-
tion of n, and derive from this an interpretation of the number sp(n) of such
partitions as the number of solutions to a certain Diophantine equation.

A bar partition of n is a partition λ = (λ1, . . . , λm) of n with λ1 >
. . . > λm > 0. The parts λ1, . . . , λm of λ are represented as beads on the
“p-abacus”, which is an abacus with p runners going from north to south
and numbered 0, 1, . . . , p−1. The rows are numbered 0, 1, 2, . . . The part λs
is represented by a bead in the jth row of the ith runner where i and j are
determined by

0 ≤ i ≤ p− 1 and λs = pj + i.

Thus, there is at most one bead in each position of the p-abacus. The bar
partition λ is then called a p-core if and only if the following conditions are
satisfied:

(i) The 0th runner contains no beads.
(ii) No bead can be pushed up its runner, i.e. for any i, if the ith runner

contains li beads then these are positioned in the first li rows.
(iii) For each i ∈ {1, . . . , p− 1}, at least one of the ith and the (p− i)th

runner is empty.

From this we easily deduce that the number sp(n) is equal to the number
of (p− 1)-tuples (l1, . . . , lp−1) of non-negative integers with

n =
p−1∑

i=1

(
p · 1

2 li(li − 1) + ili
)

and lilp−i = 0 for all i.

Putting t := (p − 1)/2, this means that sp(n) is the number of t-tuples
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(y1, . . . , yt) ∈ Zt with

n =
t∑

i=1

(
p · 1

2yi(yi − 1) + iyi
)

(consider yi ↔ li − lp−i). Diagonalizing this last expression, we then finally
conclude that sp(n) is the number of integral solutions to




n =

1
8p

t∑

i=1

x2
i −

(p− 1)(p− 2)
48

,

xi ≡ 2i− p (mod 2p), ∀i.
(Use the fact that

∑t
i=1(2i− p)2 = 1

6p(p− 1)(p− 2).)
This is the interpretation of the numbers sp(n) that we shall now use to

find an asymptotic formula for them.

2. We fix the following notation: p is a prime number > 5 and
≡ 1 (mod 4), t := (p − 1)/2 as above, and k := (p − 1)/4, so that k is an
integer ≥ 3.

The symbol χ denotes the Dirichlet character belonging to the field
Q(
√−1), so that

χ(x) = (−1)(x−1)/2 for odd x ∈ Z.
Further, if n ∈ N we denote by N = N(n) the integer

N := 4n+
(p− 1)(p− 2)

12
.

If K ∈ N and ε is a Dirichlet character mod K, we denote as usual by
Mk(K, ε) the space of holomorphic modular forms of weight k on Γ0(K)
with nebentypus ε. Also, Sk(K, ε) denotes the corresponding subspace of
cusp forms. If f ∈Mk(K, ε), we denote by b(n, f) the nth Fourier coefficient
of f at ∞.

For h ∈ Z we consider the following classical theta series:

θ3,0(z, h, 2p) :=
∑

x∈Z
x≡h ( mod 2p)

e2πizx2/(4p),

for z in the upper halfplane, and define

fp(z) :=





∏t
i=1 θ3,0(z/2, 2i− p, 2p) if p ≡ 1 (mod 16),∏t
i=1 θ3,0(z, 2i− p, 2p) if p ≡ 9 (mod 16),∏t
i=1 θ3,0(2z, 2i− p, 2p) if p ≡ 5 (mod 8),

for Im(z) > 0.
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We shall also need the following Hecke–Eisenstein series:

Gk(z; a, b;M) :=
∑

(m,n)≡(a,b) ( mod M)
(m,n) 6=(0,0)

(mz + n)−k for Im(z) > 0,

where M ∈ N, a, b ∈ Z. We define

Gk(z) := (2ζ(k))−1Gk(z; 0, 1; 1) for p ≡ 1 (mod 8),

where ζ is Riemann’s zeta function, and further

Ek(z) := L(k, χ)−1Gk(z; 0, 1; 4) for p ≡ 5 (mod 8),

Fk(z) := −2 · i−k · L(k, χ)−1Gk(4z; 1, 0; 4) for p ≡ 5 (mod 8),

where L(s, χ) is the L-series of χ. Finally, if l ∈ N we denote by G(l)
k , E(l)

k ,
F

(l)
k the functions Gk(lz), Ek(lz), Fk(lz) respectively.

Theorem. For n ∈ N let

N := 4n+
(p− 1)(p− 2)

12
.

I. Suppose that p ≡ 1 (mod 16). Then fp ∈Mk(2p, 1) and

fp − 2k

(2k − 1)(pk − 1)
(G(2p)

k −G(p)
k −G(2)

k +G
(1)
k ) ∈ Sk(2p, 1).

For n ∈ N we have N/4 ∈ N and

sp(n) = b(N/4, fp);

if N/4 = 2rpsm with (m, 2p) = 1, then

sp(n) = − 2k
Bk
· 2k

(2k − 1)(pk − 1)
·Nk−1

∑

d|m
d1−k +O(n(k−1)/2+ε)

for all ε > 0. Here Bk is the kth Bernoulli number.
II. Suppose that p ≡ 9 (mod 16). Then fp ∈Mk(4p, 1) and

fp − 2k

(2k − 1)(pk − 1)
(G(4p)

k − (21−k + 1)G(2p)
k + 21−kG(p)

k

−G(4)
k + (21−k + 1)G(2)

k − 21−kG(1)
k ) ∈ Sk(4p, 1).

For n ∈ N we have that N/2 is an odd integer and

sp(n) = b(N/2, fp);

if N/2 = psm with (m, p) = 1, then

sp(n) =
2k
Bk
· 2

(2k − 1)(pk − 1)
·Nk−1

∑

d|m
d1−k +O(n(k−1)/2+ε)

for all ε > 0.
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III. Suppose that p ≡ 5 (mod 8). Then fp ∈Mk(8p, χ) and

fp − 1
pk − 1

(E(2p)
k − E(p)

k − E(2)
k + E

(1)
k

+ 2k−1F
(2p)
k − F (p)

k − 2k−1F
(2)
k + F

(1)
k ) ∈ Sk(8p, χ).

For n ∈ N we have that N is an odd integer and

sp(n) = b(N, fp);

if N = psm with (m, p) = 1, then

sp(n) = (−1)(k+1)/2 · 2k
Bk,χ

· 2
pk − 1

·Nk−1
∑

d|m
χ(d)d1−k +O(n(k−1)/2+ε)

for all ε > 0. Here Bk,χ is the kth Bernoulli number belonging to the char-
acter χ.

P r o o f. We prove only part III. The proofs of parts I and II are similar
but simpler. So, suppose that p ≡ 5 (mod 8).

(a) First we use the transformation formula for the theta series θ3,0:
Suppose that h ∈ Z, use the notation ζm := e2πi/m, and let

L =
(
α β
γ δ

)
∈ Γ0(4p).

Then the transformation formula on p. 223 in [14] states that

θ3,0(z, h, 2p) |1/2 L = σγ,δ ·
(

2pγ
|δ|
)
· ζδ−1

8 ζαβh
2

4p · θ3,0(z, αh, 2p),

where σγ,δ is −1 if both γ and δ are negative and is 1 otherwise, and where
we used the usual notation

f(z) |s L := (γz + δ)−sf
(
αz + β

γz + δ

)

for holomorphic functions f on the upper halfplane and s ∈ 1
2Z (with the

standard branch of the holomorphic square root if s is half-integral). Now,
from the definitions of θ3,0(z, h, 2p) and fp we see that if I is a set of t
integers such that the numbers ±i, i ∈ I, form a system of representatives
of the invertible residues modulo 2p, then the product

∏

i∈I
θ3,0(z, i, 2p)

is independent of I and equals fp(z/2). Since α is prime to 2p, we can then
conclude that

(1) fp(z/2) |k L = (−1)k(δ−1)/2 · (−1)αβ(p−1)(p−2)/12fp(z/2),
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where we used the fact that t is even, k = t/2 and that
∑t
i=1(2i − p)2 =

p(p− 1)(p− 2)/6.
Since k is odd, (1) implies

fp(z/2) |k L = χ(δ)fp(z/2),

if

L =
(
α β
γ δ

)
∈ Γ (4p, 2)

:=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod 4p), b ≡ 0 (mod 2)

}
.

Since (
2 0
0 1

)−1

Γ (4p, 2)
(

2 0
0 1

)
= Γ0(8p),

we then deduce fp ∈Mk(8p, χ).
(b) We have the following Fourier expansion of the Hecke–Eisenstein

series Gk(z; a, b;M) (cf. [5]):

Gk(z; a, b;M)

= δ

(
a

M

) ∑

l≡b ( mod M)
l 6=0

l−k+
(−2πi)k

Mk(k − 1)!

∑
mn>0

n≡a ( mod M)

mk−1sgn(m)e
2πi
M ·bme

2πi
M ·mnz,

where δ(x) is 1 or 0 according to whether x is an integer or not. Using the
fact that k is odd and that

L(k, χ) = (−1)(k+1)/2
(
π

2

)k
Bk,χ
k!

,

one then finds the following Fourier expansion of the function Ek:

Ek(z) = 1 + L(k, χ)−1 (−2πi)k

4k(k − 1)!

∞∑
n=1

(∑

d|n
dk−1(id − i−d)

)
e2πinz

= 1 +
k

Bk,χ
(−1)(k+1)/2(−1)kik(2i)

∞∑
n=1

(∑

d|n
χ(d)dk−1

)
e2πinz

= 1− 2k
Bk,χ

∞∑
n=1

(∑

d|n
χ(d)dk−1

)
e2πinz.

Similarly, one finds

Fk(z) = (−1)(k+1)/2 2k
Bk,χ

∞∑
n=1

(∑

d|n
χ

(
n

d

)
dk−1

)
e2πinz.
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So, we conclude (cf. for example [9], Theorem 4.7.1, p. 177) that Ek, Fk ∈
Mk(4, χ). It follows that

E
(l)
k , F

(l)
k ∈Mk(8p, χ) for l = 1, 2, p, 2p.

We define the element Up ∈Mk(8p, χ):

Up :=
1

pk − 1
(E(2p)

k −E(p)
k −E(2)

k +E(1)
k +2k−1F

(2p)
k −F (p)

k −2k−1F
(2)
k +F (1)

k ).

In order to show that fp − Up is a cusp form, it suffices to show that
V (c, fp) = V (c, Up) for c ∈ N, c | 8p, where for f ∈ Mk(8p, χ) and c ∈ Z we
define

V (c, f) := lim
z→i∞

(
f |k

(
1 0
c 1

))
(z);

this follows because the numbers c−1 for c ∈ N, c | 8p form a system of
representatives of the cusps with respect to Γ0(8p). In order to compute
the numbers V (c, fp) and V (c, Up) we first recall the following trick (cf. for
example [14], p. 248):

Suppose that f, g ∈ Mk(K, ε), that c, l ∈ N and that g(z) = f(lz).
Choose x, y ∈ Z such that

(2) xc− yl = −(c, l),

and put

A =
(
l/(c, l) x
c/(c, l) y

)
,

so that A ∈ SL2(Z). Then

(3) V (c, g) =
(

l

(c, l)

)−k
lim
z→i∞

(f |k A)(z),

which we see as follows:

V (c, g) = lim
z→i∞

(
l−k/2f |k

(
l 0
0 1

))
|k
(

1 0
c 1

)
(z)

= l−k/2 lim
z→i∞

(
f |k A

(
(c, l) −x

0 l/(c, l)

))
(z)

= l−k/2 lim
z→i∞

lk/2 ·
(

l

(c, l)

)−k
(f |k A)

(
(c, l)2

l
z − x(c, l)

l

)

=
(

l

(c, l)

)−k
lim
z→i∞

(f |k A)(z).

Recall also (cf. [5]) the following two facts: If(
α β
γ δ

)
∈ SL2(Z)
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then

Gk(z; a, b;M) |k
(
α β
γ δ

)
= Gk(z;αa+ γb, βa+ δb;M);

moreover, we have

lim
z→i∞

Gk(z; a, b;M) = δ

(
a

M

) ∑

m≡b ( mod M)
m 6=0

m−k,

where as above δ(x) is 1 or 0 according to whether x is an integer or not.
Using these facts and (3) above, one then computes for c, l ∈ N with

l | 2p, c | 8p,

V (c, E(l)
k ) =

(
l

(c, l)

)−k
L(k, χ)−1δ

(
c

4(c, l)

) ∑

m≡y ( mod 4)
m6=0

m−k,

if (x, y) ∈ Z2 is chosen such that (2) above holds. Then, if c/(c, l) is divisible
by 4 we see that both y and l/(c, l) are odd, and so

L(k, χ)−1
∑

m≡y ( mod 4)
m 6=0

m−k = χ(y) = χ

(
l

(c, l)

)
= 1,

where the last equality follows because l/(c, l) is a divisor of p (since l | 2p
and l/(c, l) is odd), and because χ(p) = 1 since p ≡ 1 (mod 4).

Hence,

(4) V (c, E(l)
k ) = δ

(
c

4(c, l)

)
·
(

l

(c, l)

)−k
.

Similarly, by choosing x, y according to (2) above with l replaced by 4l,
we find

V (c, F (l)
k ) = −2 · (4i)−k

(
l

(c, 4l)

)−k
L(k, χ)−1δ

(
l

(c, 4l)

) ∑

m≡x ( mod 4)
m 6=0

m−k.

If (c, 4l) divides l then x and c/(c, 4l) are both odd, and so

−L(k, χ)−1
∑

m≡x ( mod 4)
m6=0

m−k = −χ(x) = χ

(
c

(c, 4l)

)
= 1,

where the last equality follows because c/(c, 4l) is a divisor of p (since c | 8p
and c/(c, 4l) is odd).
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Hence,

(5) V (c, F (l)
k ) = δ

(
l

(c, 4l)

)
· 2 · (4i)−k

(
l

(c, 4l)

)−k
.

Now we compute the numbers V (c, fp) for c ∈ N, c | 8p. Using as above
the notation ζm := e2πi/m for m ∈ N, and

W (h, 2p, a, c) :=
∑

j mod 2pc
j≡h ( mod 2p)

ζaj
2

4pc

for integers h, a, c with c > 0 and (a, c) = 1, we find according to (A.14) on
p. 220 in [14] that

θ3,0(z, h, 2p) |1/2 S
= (ζ8

√
2pc)−1

∑

j mod 2p

ζ
−bj(2h+dj)
4p W (h+ dj, 2p, a, c)θ3,0(z, j, 2p),

if

S =
(
a b
c d

)
∈ SL2(Z) with c > 0.

Using this and the fact that

lim
z→i∞

θ3,0(z, h, 2p) =
{

0 if h 6≡ 0 (mod 2p),
1 if h ≡ 0 (mod 2p),

we find

lim
z→i∞

θ3,0(z, h, 2p) |1/2 S = (ζ8
√

2pc)−1W (h, 2p, a, c),

and so

lim
z→i∞

t∏

j=1

θ3,0(z, 2j − p, 2p) |k S = (2pic)−k
t∏

j=1

W (2j − p, 2p, a, c).

With this, we deduce from the definition of fp and from (3) above that

V (c, fp) =
(

4pic
(c, 2)2

)−k t∏

j=1

W

(
2j − p, 2p, 2

(c, 2)
,

c

(c, 2)

)

for c ∈ N. From this, one easily computes the following explicit values:

V (1, fp) = (4pi)−k, V (2, fp) = −(2pi)−k, V (4, fp) = p−k,

V (c, fp) = 0 for c = 8, p, 2p, 4p, 8p

(here V (8p, fp) = 0 also follows directly from the definition of fp because
fp ∈ Mk(8p, χ)). Let us for example consider the computation of V (4, fp).
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We have

t∏

j=1

W (2j − p, 2p, 1, 2)

=
t∏

j=1

∑

r mod 4p
r≡2j−p ( mod 2p)

ζr
2

8p =
t∏

j=1

(ζ4j2+p2−4pj
8p + ζ4j2+p2+4pj

8p )

=
t∏

j=1

2 · ζp8 · ζj
2+pj

2p = 2tζpt8 · ζp(p−1)(p+1)/6
2p = 4k · ipk = (4i)k,

where we used the fact that p ≡ 1 (mod 4); hence, V (4, fp) = p−k.
Using (4) and (5) above one then verifies that

V (c, Up) = V (c, fp) for c = 1, 2, 4, 8, p, 2p, 4p, 8p.

Hence, fp − Up ∈ Sk(8p, χ).
(c) The relation sp(n) = b(N, fp), where N = 4n + (p − 1)(p − 2)/12,

follows directly from the definition of fp and the fact discussed in Section 1
above that sp(n) is the number of integral solutions (x1, . . . , xt) to

n =
1
8p

t∑

i=1

x2
i −

(p− 1)(p− 2)
48

with xi ≡ 2i− p (mod 2p) for i = 1, . . . , t.
Now, from (b) above and from the Ramanujan–Petersson conjecture for

elements in Sk(8p, χ), which is proved by Deligne (cf. [1], Th. (8.2), p. 302)
it follows that

b(r, fp) = b(r, Up) +O(r(k−1)/2+ε)

for all ε > 0. Hence we can finish the proof by showing that

(6) b(N,Up) = (−1)(k+1)/2 · 2k
Bk,χ

· 2
pk − 1

·Nk−1
∑

d|m
χ(d)d1−k,

if N = psm with (m, 2p) = 1. If we use the notations

ϕ(M) :=
∑

d|M
χ(d)dk−1, ψ(M) :=

∑

d|M
χ(M/d)dk−1

for M ∈ N and ϕ(x) = ψ(x) = 0 for x 6∈ N, we obtain from the definition of
Up together with the Fourier expansions of Ek and Fk,
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b(N,Up)

=
1

pk − 1

[
− 2k
Bk,χ

(ϕ(N)− ϕ(N/p)) + (−1)(k+1)/2 · 2k
Bk,χ

(ψ(N)− ψ(N/p))
]

= (−1)(k+1)/2· 2k
Bk,χ

· 1
pk − 1

·((−1)(k−1)/2χ(p)sps(k−1)ϕ(m)+ ps(k−1)ψ(m))

= (−1)(k+1)/2 · 2k
Bk,χ

· 1
pk − 1

· ps(k−1) · (χ(k)ϕ(m) + ψ(m)),

where we used the fact that k and N are odd, and that χ(p) = 1. Now, if
we notice that

χ(M)ϕ(M) = ψ(M) for odd M ∈ N,
and that

χ(m) = χ(psm) = χ(N) = χ

(
(p− 1)(p− 2)

12

)
= χ(k),

because p− 2 ≡ 3 (mod 4), the equality (6) then follows immediately.

R e m a r k s. The formulae for sp(n) in the above theorem are really
asymptotic formulae, i.e., in each of the cases I, II, III, the main term of
the formula grows faster with n as does the O-term. This is clear in cases
I and II, and in case III it follows if we note that for odd m, the number∑
d|m χ(d)d1−k is bounded below by ζ(k − 1)−1, as is easily seen.
We also see that we obtain asymptotic formulae even if we use weaker es-

timates for the Fourier coefficients of cusp forms than the theorem of Deligne
on the Ramanujan–Petersson conjecture. For example, if one replaces the
O-terms in the theorem above with O(nk/2), then this weaker theorem is
proved by the above and with reference to Hecke’s result in [5]. This result,
which can be proved by elementary means, states precisely that the Fourier
coefficients of cusp forms of weight k on any congruence subgroup Γ0(M)
can be estimated by O(nk/2).
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