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1. Introduction. Continued fractions of the form

[Co; C1y---,Cn, Ql(k’)a cee an(k)]iO:o

are called Hurwitzian if cg is an integer, ci,...,c, are positive integers,
Q1,...,Q, are polynomials with rational coefficients which take positive
integral values for £ = 0,1,2,... and at least one of the polynomials is not
constant. Q1,...,Q, are said to form a quasi-period. The expansions

e=1[2,1,2k+2,1]2, and eY71=1[1,(2k+1)qg—1,1]3,

when ¢ is an integer > 2 are well-known examples (see Euler [3], Perron
[7], Davis [2], Matthews and Walters [6]). Other classical examples of Hur-
witzian numbers are th(1/q) or tan(1/q) when ¢ is a nonnegative integer,
€2/ when ¢ is odd and many other real numbers determined by means of
Bessel functions (see Cabannes [1], Lehmer [4] and Stambul [10]). A recogniz-
able Hurwitzian number whose quasi-period is determined by polynomials
of degree > 2 is still unknown.

Let h : © +— (az + b)/(cx + d) be a Mobius transformation where
a,b,c,d are integers. If z is Hurwitzian, it follows from a theorem of O.
Perron ([7], 127-131) that h(z) is also Hurwitzian. Moreover, the noncon-
stant polynomials in the quasi-periods of  and h(z) have the same degrees
(see [10]).

Denote by R the set of all irrational real numbers x whose continued
fraction expansion has the form

x=[co;c1,.. ., Cno1,C1(k),...,Cp(k)]7,

where the NP-valued sequence k — (Ci(k),...,Cy(k)) satisfies a linear ho-
mogeneous recurrence relation with constant coefficients in Z, i.e., there
exists a given p X p matrix M with integer entries such that
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Cp(k +1) Cp (k)
Cp-1(k+1) . Cp—l(k)
Crlk+1) Cu (k)

for all integers k > 0.

The C; are “generalized power sums” (the restriction of exponential poly-
nomials to the nonnegative integers) and (C1, ..., C)p) will be called a quasi-
period of x (it is not unique). Irrational quadratic numbers and Hurwitzian
numbers form subsets of R. This result can be easily derived from the iden-
tity

I e
S (7) e+ =0
i=0
for all real polynomials ) of degree < r — 1. Unfortunately, a recognizable
number in R which is not in these subsets is still unknown.

Perron’s proof is based on congruences and successive derivations of poly-
nomials. In this paper, we generalize the result of Perron by means of a
transducer: for all homographies h with integral coefficients, h(R) C R.

2. Image by a Mobius transformation. Let & be an irrational real
number and A : & — (ax+b)/(cx+d) a Mdbius transformation where a, b, ¢, d
are integers. The continued fraction expansion of h(&) has been studied by
Raney [9], van der Poorten [8], Liardet and Stambul [5].

We recall basic definitions and facts given in [5], following [9]. A matrix
M = (0‘ f@) where «, 3,7, 0 are nonnegative integers and (o —v)(6 — ) <0

v o
is said to be row-balanced. All computations for the continued fraction
expansion of h(§) can be reduced to the case where A = (ZS) is row-

balanced and £ > 1. This computation is given by a finite state transducer
Tp = (C,B, A, ®,¥) where

e The input alphabet is C = N\ {0}.

e The space of states B is the set of all row-balanced matrices M such
that |det(M)| = |det(A)| = D. Clearly, B is a finite set. The initial state of
the transducer is A.

e The output alphabet is A = N and the monoid generated by A is
denoted by A*.

It is well known that every 2 x 2 matrix M of rank 2 with nonnegative
entries that is not row-balanced can be written in a unique way as

") w= (7o) (3 0) (T o)

where M’ is row-balanced, ap € N and ay,...,a, € N\ {0}.
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b ={¢.:ceC}and ¥ = {¢ : c € C} are two families of maps
(¢c : B — B and 9. : B — A*) defined as follows: for all B in B and ¢ in
C,if B(} (1)) = B’ is row-balanced, then ¢.(B) = B’ and ¢.(B) = A (the
empty word). And if B({ (1)) is not row-balanced, then by (F),

c 1 ap 1 a; 1 a, 1 ,
B<1 o>:<10 o><11 0)"'(1 0>B‘
Then ¢.(B) = B’ and ¥.(B) = apay . .. an.

Now, with any input word coc; .. .c; in C¥, we associate a sequence of
states By = ¢¢,(A) and B;y1 = ¢, (B;), i =1,...,k, and we define

[Lpa ¢]0001~--Ck = ¢c.3 (A)¢C1 (Bl) cee djck (Bk)7

which is a word in A*.

Finally, let © be the “contraction map” which transforms a word in A*
into a word where all letters are positive integers (except maybe the first
one), replacing from left to right subwords a0b (a,b # 0) by the letter a +b.
A theorem of [5] shows that if £ = [co;c1,...,¢Ck,...] and po ¥, Pleyey...c, =
apai . ..an—1an, then h(§) = [ap;a1,...,an—1,...] and the partial quotient
following a,_1 is > a,.

THEOREM. Let & be in R and h : x — (ax +b)/(cx + d) be a Mébius
transformation where a, b, c,d are integers. Then h(§) € R.

The proof requires three technical lemmas.

LEMMA 1. Let a,b,c,d be integers such that |ad — bc| = D > 2. Suppose
that & € R and compute (a& + b)/(c€ + d) with the transducer Tp. Then
there exists two integers v and q such that the continued fraction expansion

of & has the form
f = [C(); Cly.e..oyCpr—1, Al(k), Ce ,Aq(k,‘)]zozo
with the following properties:

(i) Aj(k+1) = Aj(k) mod D forj=1,...,q and for all integers k > 0.
(ii) Either Aj(k) > D for every integer k > 0, or the sequence A;(k)gen
18 constant.
(iii) By applying the transducer Tp, the sequence of states (B, )men sat-
isfies By, = By4q.

Proof. It is well known that every sequence of integers given by a linear
recurrence relation with coefficients in Z is ultimately periodic modulo D
for all positive integers D. Hence (i) is obvious. Moreover, by the Skolem—
Mabhler theorem, the set of zeros of a linear recursive sequence (uy, )nen With
integral coeflicients is equal to the union of a finite set and a finite number of
arithmetical progressions. Clearly, the set of all integers n such that u, = ¢
for a given integer ¢ has the same property.
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Thus every number ¢ in R can be defined by a continued fraction
expansion [co;ci,...,¢cn—1,C1(k),...,Cp(k)]32, where all the sequences
(Ci(k))ken are either ultimately periodic or > D for k sufficiently large.
Replacing p by p1 = sp (s is a common multiple of all periods of peri-
odic sequences C;(k)), £ has a continued fraction expansion of the form
[co;cty vy cnry AL (K), ... AL (K)]RZ, with a quasi-period which satisfies (i)
and (ii). Finally, by applying the transducer 7p, let us consider the se-
quence of states (B, +mp, )men. As B is a finite set, there exist two nonneg-
ative integers m; and mg (m1 < mg) such that By ym,p, = Bp/gmap,- Put
q = (m2 —mq)p1; then £ is defined by a quasi-period of length ¢ which has
the three properties. m

LEMMA 2. Let B be a row-balanced matriz such that |det(B)| = D, ¢
be a given integer > D and (fi)r>0 be a sequence of nonnegative integers.
Then, for all integers k > 0, by applying (F),

c+Df 1 _ f, 1 ’
(P g)=e(f o)n

with the following properties:

e C and B’ are independent of fi.
o det(C) = %1, i.e. either C is the identity and has to be cancelled, or
C' can be written in a unique way as

C—(C;O é) (6111 é)...(aln é) with ap € Nyay,...,a, € N\ {0}.

e f. is the image of ¢ + Dfy by a map = — (uzx + v)/w with integral
coefficients which depend on B, D and c.
e B’ is a row-balanced matriz and det(B’) = D.

Proof. We distinguish four cases for the matrix B = (i *g )
1.a=0. Then fy=D, 8> 9§ and

G 0)=(o) (1 0) (6 5)

Ji= i+ [7055] and ¢=vc+6—ﬁ[”;5].

Then 0 < ¢ < 3, which implies that the matrix B’ = (g 2) is row-balanced.
Moreover, det(B’) = D.

2. v =0. Since
a B\ _ (01 0 9
0 6/ \1 0 a B)7

with
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we have
a B\ (c+Dfy 1\ _(fi 1 5§ 0
0 4 1 0)=\1 o)\¢ «a
with
f,’cza2fk+[ac+ﬁ] and ¢’:ac+ﬂ—5[a0;ﬂ].

Then B’ = (‘;,3) is row-balanced and det(B’) = D.

3. (a,y) = 1. It is well known that «/y has two continued fraction
expansions: one ends with a partial quotient a > 2 and the other one is
obtained by replacing a by a—1, 1. Consider the continued fraction expansion
of a/v of even length if ad — 5y = D or of odd length if ad — By = —D.

The product of matrices of the form (‘{’é) corresponding to this continued

fraction expansion is equal to (j ;“,/) Therefore, there exist two positive
integers o’ and 4’ such that

ad — By
—5 =

/

o <a, <y and oy —ady= u = =+1.

Hence
a f c+Dfr 1\ [a o fo+cd 1 D 0
v o0 1 0) \v 1 0 e 1)°
¢ and ¢ are defined as follows: since oy’ — o’y = u, one has

u+ao'y o (ad— By) —uB
a a ’

o6—py =dd-p

which implies that |a'0 — 37| < D < ¢. Then ¢’ and € are given by the
Euclidean division

c—u(a'6—py)=Dc +¢ with0<e<D.

Therefore, the matrix B’ = (? D) is row-balanced and det(B’) = D.

4. Finally, suppose that (a,y) = m > 1. Put @ = may and v = m~y;.

Then
a B\ (o1 B m 0
v 0) \m ¢ 0 1/°
The transformation of
« ,8 C+ka 1
vy 0 1 0

is given by two successive transformations described in 2 and 3.
In all cases f;, is the image of ¢+ D fj, by a map of the form x — (uz+v)/w
with integral coefficients (u,w # 0). =
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LEMMA 3. Let £ = [co;c1,--.,Cno1,C1(k),...,Cp(k)]32, be in R with
the relation
Cp(k+1) Cyp(F)
Cp—l(‘k +1) v Cp-1(k)
Ci(k+1) Ci(k)
for all integers k > 0. Let g1,...,9, be p maps of the form g; : v —
(ujz + vj)/w; with integral coefficients such that Cji(k) = g;(C;(k)) is a
positive integer for all integers j (1 < j < p) and all integers k > 0. Then
& =let;cts- - 1, CLR), - CR(R)RLy € R
Proof. Let P defined by

p'—1
i=0
be the minimal polynomial of M. Then
Cj(k +p) Zaz (k+1i) for all integers j (0 < j <p' —1).

Therefore, there exists an integer 3; such that

Cl(k+p) Zaz (k+1) + 5.

Hence
p'—1
Ci(k+2p") = Ci(k+p) + > ai(Cl(k+p +1i) — Cj(k +1))
1=0
and £ € R. m

Now, we are ready to give the proof of Theorem 2. Let £ be defined as
in Lemma 1 and compute £ = (a§ + b)/(c€ + d) with the transducer 7p.
Denote B = B, = B,14. If A;(0) = A;(1) = ¢, then of course in both cases
we obtain the same results ¢.(B) and ¢.(B). If A1(0) # A1(1), then there
exists an integer ¢ > D and two nonnegative integers fo and f; such that
A1(0) = ¢+ Dfp and A1(1) = ¢+ Dfi. Then by Lemma 2, ¢4, 0\ (B) =
b a,1)(B). Now, ¥4, 0)(B) and ¢4, 1)(B) are composed of two subwords.
The first subwords are the same (and are possibly empty). They correspond
to the matrix C of Lemma 2. The last subwords contain only one letter.
There exists a map g : ¢ — (ux +v)/w (u, w # 0) with integral coefficients
such that the last letter of 14, (0)(B) is g(A1(0)) (respectively 14, 1)(B)

and g(A(1))).
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By iteration, ¢4,(0)(Brti—1) = ¢a,01)(Bryi—1) for i = 1,...,q and
the sequence of states (B,,)men is ultimately periodic. Before cancelling
the “zeros” with the contraction map p, we obtain & = [¢y; ¢, ..., ¢ _q,
AL(k), . AL (R)]7Z: if AL (K) is not a constant sequence, then there ex-
ists an index j and three integers u;,v; and w; (uj,w; # 0) such that
A% (k) = (u; A (k) + vj)/w; for all integers k > 0. By Lemma 3, §’ € R.

Notice that in case £ is Hurwitzian, £ is also Hurwitzian and the noncon-
stant polynomials in the quasi-periods of £ and & have the same degrees. m

3. Example. Let (F),),en be the Fibonacci sequence which can be de-

fined by
Foy1 E, \ (1 1\"
F, F,1) \1 0/) "~

Denote by & the real number & = [F},]%2; which is in R. Now compute the
continued fraction expansion of 2¢, using the transducer of the multiplication
by 2 (see [5]) which contains five states.

The initial state of the transducer is By = A = (g (1]) The continued
fraction expansion of £ can be written

§=1[1;1,2,3, Foprs, Forve, Fort7, Forrs, Forto, Fort10]heo-
A simple computation leads to Byg = By = (g (1]), F, > 2 for n > 3 and
F,, = F,,.¢ mod 2 for all integers n.
Hence, by applying the transducer 75 and the contraction map u, one
has:

PROPOSITION.
26 =13;2,1,1,
F F -1 F F —11=
2F6k+57M72F6k+7a Ok+8 7171a Ok+9 - 171a17% .
2 2 2 2 E—0

It is clear that 26 € R. =
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