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Dyadic diaphony

by

Peter Hellekalek and Hannes Leeb (Salzburg)

1. Introduction. Diaphony (see Zinterhof [13] and Kuipers and Nieder-
reiter [6, Exercise 5.27, p. 162]) is a numerical quantity that measures the
irregularity of the distribution of sequences in the s-dimensional unit cube
[0, 1[s, similar to discrepancy. It has two important features. First, in any
dimension, it is computable in O(sN2) steps for every sequence of N points.
Hence, its complexity is linear in the dimension s. Secondly, it allows the-
oretical analysis in terms of Weyl sums, again in similarity to discrepancy
(see Hellekalek and Niederreiter [4]). For the relation to quasi-Monte Carlo
quadrature formulae, see Zinterhof and Stegbuchner [14].

Throughout this paper, ω = (xn)n≥0 will denote a—possibly finite—
sequence in [0, 1[s with at least N elements. For integrable f : [0, 1[s → C,
define

SN (f, ω) :=
1
N

N−1∑
n=0

f(xn)−
\

[0,1[s

f(x) dx.

Let T denote the trigonometric function system {ek : k ∈ Zs} on [0, 1[s,

ek(x) :=
s∏

i=1

e2π
√−1kixi ,

k = (k1, . . . , ks) ∈ Zs, x = (x1, . . . , xs) ∈ [0, 1[s. W(2) = {wk : k =
(k1, . . . , ks) ∈ Zs, ki ≥ 0, 1 ≤ i ≤ s} denotes the system of Walsh functions
to the base 2 on [0, 1[s (see Definition 2.1).

Definition 1.1. The diaphony FN (T , ω) of the first N elements x0, . . .
. . . ,xN−1 of ω is defined as
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(1) FN (T , ω) :=
(∑

k 6=0

1
R(k)2 |SN (ek, ω)|2

)1/2

,

where R(k) :=
∏s
i=1 max{1, |ki|}, k = (k1, . . . , ks) ∈ Zs.

The spectral test of Coveyou and MacPherson [1] is one of the central
theoretical concepts to test uniform pseudorandom number generators. It
defines the figure of merit

(2) σN (ω) :=
1

min{
√
k2

1 + . . .+ k2
s : k 6= 0, ek ∈ T , SN (ek, ω) 6= 0}

relative to the trigonometric function system. If the generator produces lat-
tice structures in [0, 1[s, like the well-known linear congruential generators,
then the spectral test yields readily computable “figures of merit” (see Knuth
[5], Ripley [8], and Tezuka [12]). For other types of generators, the situation
is different. The following statement of Niederreiter [7, p. 168] applies: “The
difficulty here is to find a convincing quantitative formulation of this idea”.

In Hellekalek [3] the first author has presented a solution to this problem.
He has interpreted the diaphony FN (T , ω) as a weighted spectral test. The
weights are given by the coefficients 1/R(k)2.

Tezuka [11] considered a discrete version of (2) for the Walsh system
W(2), namely the behaviour of the Weyl sums

(3) {SN (wk, ω) : k = (k1, . . . , ks) 6= 0, 0 ≤ ki < 2g, 1 ≤ i ≤ s},
g a fixed positive integer, for finite sequences ω produced by generalized
feedback shift register pseudorandom number generators. Neither a quan-
titative formulation of this discrete Walsh spectral test nor something like
Tezuka’s Walsh spectral test for other types of uniform pseudorandom num-
ber generators is known.

Hence, it is an interesting question of metric and computational number
theory to investigate if a dyadic version of diaphony exists and if it has
similar properties and an analogous interpretation as the classical version.
In this paper, we shall answer this question.

Definition 1.2. The dyadic diaphony FN (W(2), ω) of the first N ele-
ments of the sequence ω in [0, 1[s is defined by

(4) FN (W(2), ω) :=
(

1
3s − 1

∑

k 6=0

%(k) |SN (wk, ω)|2
)1/2

,

where, for an integer vector k = (k1, . . . , ks) with nonnegative coordi-
nates ki,
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%(k) :=
s∏

i=1

%(ki),

%(k) :=
{

2−2g if 2g ≤ k < 2g+1 with g ≥ 0, g ∈ Z,
1 if k = 0.

(5)

We shall establish that FN (W(2), ω) is a measure of uniform distribution
(see Theorem 3.1). As corollaries, we shall obtain Weyl’s Criterion relative to
the Walsh function system and the inequality of Erdős–Turán–Koksma for
FN (W(2), ω). In Proposition 3.4 we shall compute the value of the dyadic
diaphony for regular dyadic grids. Then we shall show that the weights
%(k) are the Walsh coefficients of a certain function φ defined on [0, 1[s (see
Corollary 4.4). This property of the dyadic diaphony is essential to allow its
computation in O(sN2) steps (see Theorem 3.5).

In what follows, we shall denote the dyadic diaphony FN (W(2), ω) of the
first N elements of ω by FN (ω).

2. Prerequisites. The comprehensive monograph of Schipp, Wade and
Simon [9] serves as a reference for all the results we shall need from dyadic
Harmonic Analysis.

For a nonnegative integer k, let

k =
∞∑

j=0

kj2j , kj ∈ {0, 1},

be the unique dyadic expansion of k. Every number x ∈ [0, 1[ has a unique
dyadic expansion

x =
∞∑

j=0

xj 2−j−1, xj ∈ {0, 1},

under the condition that xj 6= 1 for infinitely many j. In the following, this
uniqueness condition will be assumed without further notice.

Notation. (i) Let x ∈ [0, 1[, with dyadic expansion x = 0.x0x1 . . . , and
let k be a nonnegative integer, k =

∑∞
j=0 kj 2j . For g ∈ N, we define

x(g) := 0.x0x1 . . . xg−1, k(g) :=
g−1∑

j=0

kj 2j .

Then x(g) ∈ {a · 2−g : a = 0, 1, . . . , 2g − 1} and k(g) ∈ {0, 1, . . . , 2g − 1}.
Further, put x(0) := 0, k(0) := 0.

(ii) An interval of the form

J(g, a) := [a · 2−g, (a+ 1) · 2−g[, 0 ≤ a < 2g, g ≥ 0,

a and g integers, is called an elementary dyadic interval of length 2−g.
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(iii) Let b0, b1, . . . , bg−1 be arbitrary digits in {0, 1}. Let

I(b0, b1, . . . , bg−1) := {x ∈ [0, 1[ : xj = bj , 0 ≤ j ≤ g − 1}
denote the cylinder set of order g defined by b0, b1, . . . , bg−1. Then, for any
elementary dyadic interval J(g, a) of length 2−g, g ∈ N, there is a unique
cylinder set I(b0, b1, . . . , bg−1) such that J(g, a) = I(b0, b1, . . . , bg−1). We
only have to observe that a · 2−g = 0.b0b1 . . . bg−1 with suitable digits bj .

(iv) Let λ denote the Lebesgue measure on [0, 1[.
(v) By a dyadic rational c, we understand an element c = 0.c0c1 . . . ∈

[0, 1[ such that only finitely many digits cj are different from zero.
(vi) The dyadic logarithm of x ∈ [0, 1[ will be denoted by log2 x. If x =

2−g+xg2−g−1+. . . , then the integer part of log2 x is given by blog2 xc = −g.

Definition 2.1. The kth Walsh function wk, k ≥ 0, to the base 2 is
defined as

(6) wk(x) :=
∞∏

j=0

(−1)xjkj ,

where x = 0.x0x1 . . . is the unique dyadic expansion of x ∈ [0, 1[ and k =∑∞
j=0 kj 2j is the unique dyadic expansion of the nonnegative integer k. If

k = (k1, . . . , ks) is an integer vector with nonnegative coordinates, then the
kth Walsh function wk on [0, 1[s is defined as

(7) wk(x) :=
s∏

i=1

wki(xi), x = (x1, . . . , xs) ∈ [0, 1[s.

If φ is an integrable function on [0, 1[s and if k = (k1, . . . , ks) is an
integer vector with nonnegative coordinates, then let φ̂(k) denote the kth
Walsh coefficient of φ,

φ̂(k) :=
\

[0,1[s

φ(x)wk(x) dx,

with respect to the Walsh function wk.

Definition 2.2. For two digits d and d′ in {0, 1}, let

d⊕ d′ := d+ d′ (mod 2).

For two numbers x, y ∈ [0, 1[ with dyadic expansions x =
∑∞
j=0 xj 2−j−1

and y =
∑∞
j=0 yj 2−j−1, let x +̇ y denote the dyadic sum of x and y,

x +̇ y :=
∞∑

j=0

(xj ⊕ yj) 2−j−1 (mod 1).

If x,y ∈ [0, 1[s, x = (x1, . . . , xs), y = (y1, . . . , ys), then

x +̇ y := (x1 +̇ y1, . . . , xs +̇ ys).
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R e m a r k 2.1. (1) The digits (x +̇ y)j of the dyadic expansion of the
number x +̇ y ∈ [0, 1[ need not coincide with xj ⊕ yj . Each of the following
conditions:

(C1) x +̇ y not a dyadic rational,
(C2) x or y dyadic rationals,

implies the equality

(8) (x +̇ y)j = xj ⊕ yj , ∀ j ≥ 0.

(2) If the above identity (8) holds for x, y ∈ [0, 1[, then

(9) wk(x +̇ y) = wk(x)wk(y).

For functions ϕ,ψ ∈ L1([0, 1[) and x ∈ [0, 1[, we define the convolution
ϕ ∗ ψ of ϕ and ψ as

(10) ϕ ∗ ψ(x) :=
\

[0,1[

ϕ(t)ψ(t +̇ x) dt.

As in the case of the trigonometric function system,

ϕ̂ ∗ ψ(k) = ϕ̂(k)ψ̂(k) ∀k ≥ 0.

3. The results. In this section we present the main results of this paper.
For the definition of the Walsh functions and the dyadic sum, we refer to
Section 2.

Theorem 3.1. Let ω = (xn)n≥0 be a sequence in [0, 1[s. Then, for the
dyadic diaphony FN (ω),

0 ≤ FN (ω) ≤ 1,(a)

ω is uniformly distributed mod 1⇔ lim
N→∞

FN (ω) = 0.(b)

P r o o f. Property (a) is trivial. In (b), let limN→∞ FN (ω) = 0. Then
limN→∞ SN (wk, ω) = 0 for every k 6= 0. From Lemma 2 in Hellekalek [2] it
follows that

(11) lim
N→∞

1
N

N−1∑
n=0

f(xn) = 0

for all functions f(x) = 1I(x)−λ(I), where I is a dyadic subinterval of [0, 1[s

and λ(I) is its Lebesgue measure. This implies the uniform distribution
modulo one of ω.

On the other hand, let ω be uniformly distributed in [0, 1[s. For g ∈ N,
define

Cs(2g) := {k = (k1, . . . , ks) : 0 ≤ ki < 2g, 1 ≤ i ≤ s},
and

C∗s (2g) := Cs(2g) \ {0}.
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Then ∑

k 6=0

%(k) = 3s − 1,
∑

k∈C∗s (2g)

%(k) = (3− 2−(g−1))s − 1,

and hence ∑

k 6∈Cs(2g)

%(k) ≤ 3s−1 · s

2g−1 .

This yields the estimate

(12) F 2
N (ω) ≤ 1

3s − 1

∑

k∈C∗s (2g)

%(k)|SN (wk, ω)|2 +
3s−1

3s − 1
· s

2g−1 .

Now, every Walsh function wk is a step function on [0, 1[s. Hence, the uni-
form distribution of ω implies limN→∞ SN (wk, ω) = 0. The result follows.

From Theorem 3.1 and its proof we get

Corollary 3.2 (Weyl’s Criterion relative to W(2)).

ω is uniformly distributed mod1⇔ lim
N→∞

SN (wk, ω) = 0 ∀k 6= 0.

The one-dimensional version of this result has been presented without
proof in Sloss and Blyth [10, Theorem 1].

From inequality (12) we obtain an upper bound for FN (ω) in terms of the
Weyl sums SN (wk, ω) over finite domains C∗s (2g), the so-called inequality of
Erdős–Turán–Koksma:

Corollary 3.3.

(13) F 2
N (ω) ≤ s

2g
· 2

3
· 1

1− 3−s
+

1
3s − 1

∑

k∈C∗s (2g)

%(k)|SN (wk, ω)|2.

The next result shows that the dyadic diaphony of a regular dyadic grid
consisting of N = 2gs points has an order of magnitude of N−1/s.

Proposition 3.4. Let ω be the regular dyadic grid

(14) {(a1/2g, . . . , as/2g) : 0 ≤ ai < 2g, ai ∈ Z, 1 ≤ i ≤ s}.
Then

(15) F 2
2gs(ω) =

1
3s − 1

((1 + 2−2g+1)s − 1).

P r o o f. It is elementary to show that

S2g
(
wk, (a · 2−g)2g−1

a=0

)
=
{

1 if 2g | k,
0 otherwise.

From this identity, the final result follows easily.
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Theorem 3.5. Let

(16) ϕ(x) :=
{

3− 3 · 21+blog2 xc if x ∈ ]0, 1[,
3 if x = 0,

and φ : [0, 1[s→ R,

φ(x) := −1 +
s∏

i=1

ϕ(xi), x = (x1, . . . , xs)

(see Corollary 4.4 for the background). Then, for every sequence ω =
(xn)n≥0 in [0, 1[s such that the coordinates of all points xn fulfill Condi-
tion (C1) or (C2) in Remark 2.1, in particular , if the coordinates of all
points xn are dyadic rationals, we have the identity

(17) F 2
N (ω) =

1
3s − 1

· 1
N2

N−1∑
n=0

N−1∑
m=0

φ(xn +̇ xm).

R e m a r k 3.6. In any practical computation, we are restricted to a given
finite number of binary digits, hence to finite sequences ω of dyadic rational
points. As a consequence, the condition on the points of ω in Theorem 3.5
above is satisfied automatically. As identity (17) shows, it takes O(sN2)
steps to compute FN (ω) for every sequence ω that has been generated by a
digital machine. Examples are the finite sequences that arise in quasi-Monte
Carlo integration or from pseudorandom number generators. For details on
such point sets, the reader is referred to the monograph of Niederreiter [7].

4. The proof of Theorem 3.5

Lemma 4.1. Let c 6= 0 be a dyadic rational , let Tc : [0, 1[ → [0, 1[,
Tc(x) := x +̇ c, denote the translation by c, and define g := −blog2 cc. Then,
for all integers a with 0 ≤ a ≤ 2g−1 − 1,

(18)
Tc(J(g, 2a)) = J(g, 2a+ 1),

Tc(J(g, 2a+ 1)) = J(g, 2a).

P r o o f. We have 2a · 2−g = 0.ag−2 . . . a00. Hence

J(g, 2a) = I(ag−2, . . . , a0, 0), J(g, 2a+ 1) = I(ag−2, . . . , a0, 1).

Every x ∈ J(g, 2a) has the form

x = 0.ag−2 . . . a00xgxg+1 . . .

Because g = −blog2 cc,
c = 0.0 . . . 01cgcg+1 . . .

with a block of g − 1 leading zeros. Thus

x +̇ c = 0.ag−2 . . . a01 . . . ∈ J(g, 2a+ 1).
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It is clear from the analysis of the dyadic expansions above that the map
Tc : J(g, 2a)→ J(g, 2a+ 1) is a bijection. Further, (Tc)−1 = Tc.

Lemma 4.2. Let f(x) := 1[0,1/3[(x). Then f̂(0) = 1/3, and , for all k,
2g ≤ k < 2g+1, g ≥ 0,

|f̂(k)| = 1
3 · 2−g.

P r o o f. We use Lemma 1 in Hellekalek [2] to derive the result.

Lemma 4.3. Let f be as in Lemma 4.2. Then

(19) f ∗ f(x) =

{
1
3 − 2

3 · 2blog2 xc if x ∈ ]0, 1[,
1
3 if x = 0.

P r o o f. We have

(20) f ∗ f(x) =
\

[0,1/3[

1[0,1/3[(t +̇ x) dt = λ([0, 1/3[ ∩ ([0, 1/3[ +̇ x)).

Now, let x = c be a dyadic rational, c 6= 0, define g := −blog2 cc, and let
β := 1/3. If a is defined by β(g) = a · 2−g, then

(21) [0, β[ = [β(g), β[ ∪
a−1⋃

b=0

J(g, b) (disjoint).

If g is even and, hence, a is odd, then Lemma 4.1 implies that

(22) [0, β(g)[ +̇ c = [0, β(g)− 2−g[ ∪ [β(g), β(g) + 2−g[,

and
[β(g), β[ +̇ c ⊆ [β(g)− 2−g, β(g)[.

This implies that

λ([0, β[ ∩ ([0, β[ +̇ c)) = (β(g)− 2−g) + λ([β(g), β[) + λ(Tc[β(g), β[).

The transformation Tc preserves the measure λ, hence

(23) λ([0, β[ ∩ ([0, β[ +̇ c)) = 1
3 − 2

3 · 2−g.
The case g odd (and hence a even) is treated in the same way. We use
Lebesgue’s theorem of dominated convergence to extend the identity (23)
from dyadic rationals c to the case of arbitrary elements x in [0, 1[.

Corollary 4.4. (i) Let ϕ : [0, 1[ → R, ϕ(x) := 3f ∗ 3f , f as in
Lemma 4.2, and let φ : [0, 1[s → R,

φ(x) := −1 +
s∏

i=1

ϕ(xi), x = (x1, . . . , xs).

Then Lemmas 4.2 and 4.3 imply

(24) ϕ̂(k) = %(k) =
{

2−2g if 2g ≤ k < 2g+1, with g ≥ 0,
1 if k = 0,
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and

(25) φ̂(k) =
{
%(k) if k 6= 0,
0 if k = 0.

(ii) The function ϕ and , hence, φ is represented pointwise by its Walsh
series. We even have uniform convergence of the Walsh series. This fact is
important in the proof of Theorem 3.5.

P r o o f. Part (i) is trivial. Part (ii) follows from direct comparison of
the values of ϕ(x) and of its Walsh series expansion

∑
k ϕ̂(k)wk(x) for x ∈

[2−g, 2−g+1[, g ≥ 1. It is elementary to show that even uniform convergence
of the Walsh series holds.

P r o o f o f T h e o r e m 3.5. From Corollary 4.4(i) it follows that the
Walsh series of φ has the form

φ =
∑

k 6=0

%(k)wk.

Part (ii) of the same corollary tells us that φ is equal to its Walsh series at
every point of [0, 1[s. Further, for arbitrary x and y in [0, 1[s such that the
coordinates of x and y fulfill either condition (C1) or (C2) of Remark 2.1,

wk(x +̇ y) = wk(x)wk(y),

for all Walsh functions wk. The result follows by a simple calculation.
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