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On the divisors of ak + bk
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Pieter Moree (Bonn)

1. Introduction. Let a and b be two fixed non-zero coprime integers.
Consider the sequence {uk}∞k=1, where uk = ak + bk. We say n ≥ 1 is good
if it divides uk for some k ≥ 1 and bad otherwise. In this paper we will
characterize the odd good integers (Theorem 1) and use this to derive an
asymptotic formula for G(x), the number of good integers not exceeding x
(Theorem 5). This result implies that almost all integers are bad. Several
authors have studied good primes (see e.g. [1, 19, 21] and the references
cited there). Some authors studied this problem in a different guise (see
Section 2). In contrast little seems to be known about good integers, which
are the main focus of this paper.

I would like to thank Patrick Solé for asking a question that motivated
this research and for his interest in my attempts to solve it. His question,
to characterize numbers occurring as divisors of 2n + 1, arose in joint work
with Vera Pless and Z. Qian on Z4-linear codes [14]. Furthermore, I thank
T. Kleinjung for some inspiring discussions and B. Z. Moroz and G. Niklasch
for helpful comments.

2. Elementary observations. To avoid trivialities assume ψ := a/b 6=
±1. If n is good, it must be coprime with a and b. Furthermore, we have ψc ≡
−1 (mod n) for some natural number c. (In symmetric design parlance,
see e.g. [9, p. 147], ψ is said to be semiprimitive (mod n).) Unless stated
otherwise we assume in the sequel that n is coprime with 2ab and that p
does not divide 2ab. (The letter p always denotes a prime.) The restriction to
odd good numbers is made to avoid unwieldy technical complications. Only
in the proof of Theorem 5 we will consider even good numbers (which only
exist in case ab is odd). If n is good, then all its divisors must be good. In
particular, if pe, e ≥ 2, is good, then p is good. This holds also in the other
direction, since if ψe ≡ −1 (mod p), then by induction and the binomial
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theorem we have ψep
j ≡ −1 (mod p1+j), for every j ≥ 0. Thus we have

proved:

Proposition 1. The number pe, e ≥ 2, is good iff p is good.

It follows that n is good iff the squarefree kernel of n is good. We will use
several times the fact that for p odd the only solutions of x2 ≡ 1 (mod pν)
are x ≡ ±1 (mod pν) (this is so since (Z/pνZ)∗ is cyclic for odd p and ν ≥ 1
and hence cannot contain more than one subgroup of order 2). Let pr be
good. Not surprisingly, the smallest natural number e such that ψe ≡ −1
(mod pr) is related to ordpr (ψ).

Proposition 2. If pr is good , then ordpr (ψ) = 2e where e is the smallest
natural number such that ψe ≡ −1 (mod pr).

P r o o f. Clearly ordpr (ψ) | 2e. Now if ordpr (ψ) were a divisor of e, then it
would follow that ψe ≡ 1 (mod pr). Thus ordpr (ψ) = 2c for some c dividing
e. Since ψc is a solution of x2 ≡ 1 (mod pr) and ψc 6≡ 1 (mod pr), we must
have ψc ≡ −1 (mod pr). It follows that c = e, by the minimality of e.

So if pr is good, then ordpr (ψ) is even. On the other hand, if ordpr (ψ) is
even, then ψordpr (ψ)/2 is a solution 6≡ 1 (mod pr) of x2 ≡ 1 (mod pr) and
thus pr is good. Thus we have deduced:

Proposition 3. The prime power pr is good iff ordpr (ψ) is even.

Thus studying primes that are good is equivalent to studying primes for
which ordp(ψ) is even. Several authors have investigated the latter question.
Sierpiński [17] seems to have been the first. Hasse [7] improved on Brauer
[2], who improved on Sierpiński. Hasse, using the arithmetic of Kummer
extensions, proved a weaker version of Theorem 2 below; he showed that
the set C0 has a Dirichlet density and computed it.

It is an observation going at least back to Gauss that the g-adic period of
1/b is equal to ordb(g), the order of g in the multiplicative group of invertible
residue classes modulo b. Krishnamurthy [8] conjectured that asymptotically
one-third of the primes p > 5 have odd decimal period. Since a set of primes
which has a Dirichlet density does not always have a natural density, Hasse’s
result is not strong enough to imply Krishnamurty’s conjecture. Odoni [12]
established this conjecture in a much more general form. It turns out that
the set of primes under consideration is a union of an infinite number of
Frobenian sets, i.e., sets which differ finitely from some complete set of
unramified primes having prescribed Frobenius conjugacy class in some fixed
Galois extension of the rationals. To find a good remainder term, one thus
needs to find a uniform version of Chebotarev’s theorem. To this end Odoni
used results obtained by Lagarias and Odlyzko. The error term obtained
by Odoni was improved by Wiertelak in [18] and subsequently in [20], who



Divisors of ak + bk 199

used a uniform version of the Prime Ideal Theorem instead of Chebotarev’s
theorem.

The next proposition relates ordpr to ordp .

Proposition 4. Let pr be an odd prime power. Then ordpr (ψ) =
ordp(ψ)pj for some j ≥ 0.

P r o o f. We have ψordp(ψ) ≡ 1 (mod p) and ψordp(ψ)pr−1 ≡ 1 (mod pr)
(cf. proof of Proposition 1). Thus ordpr (ψ) | ordp(ψ)pr−1 and so ordpr (ψ) =
cpj for some c | ordp(ψ) and j ≥ 0. Since 1 ≡ ψcp

j ≡ ψc (mod p), c =
ordp(ψ).

(It is not difficult to give an expression for j, however this will not be
needed for our purposes.)

3. Characterization of odd good numbers. In this section we will
derive a characterization for odd good numbers. In the proof we will make
use of the following

Lemma 1. Let a1, . . . , ak be natural numbers. The system S of congru-
ences

x ≡ a1 (mod 2a1), . . . , x ≡ ai (mod 2ai), . . . , x ≡ ak (mod 2ak)

has a solution x iff there exists e ≥ 0 such that 2e ‖ ai for 1 ≤ i ≤ k.

P r o o f. The system of congruences S has a solution iff there exist odd
integers c1, . . . , ck such that

a1c1 = . . . = akck.

It is clearly necessary that the exact power of 2, say 2e, dividing a1 must
equal the exact power of 2 dividing ai for 2 ≤ i ≤ k. Put a′i = ai/2e. Then
the a′i are odd and it remains to show that

a′1c1 = . . . = a′kck,

for certain odd integers c1, . . . , ck. The choice ci = lcm(a′1, . . . , a
′
k)/a′i, with

1 ≤ i ≤ k, will do.

Theorem 1. A number n coprime to 2ab is good iff there exists e ≥ 1
such that 2e ‖ ordp(ψ) for every prime p dividing n.

P r o o f. (⇒) Let n be good and coprime to 2ab. Let p1, . . . , pk be its
prime divisors. Define ei by peii ‖n. There exists c such that, for 1 ≤ i ≤ k,
ψc ≡ −1 (mod peii ). Now, using Proposition 2, we see that ordpei

i
(ψ) is even

and

(1) c ≡ ordpei
i

(ψ)/2 (mod ordpei
i

(ψ)), 1 ≤ i ≤ k.
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Lemma 1 with ai = ordpei
i

(ψ)/2, 1 ≤ i ≤ k, then yields the existence of
an e ≥ 1 such that 2e ‖ ordpei

i
(ψ) for 1 ≤ i ≤ k. Using Proposition 4, the

implication ⇒ then follows.
(⇐) By assumption and Proposition 4, there exists e ≥ 1 such that

2e ‖ ordpei
i

(ψ) for 1 ≤ i ≤ k. By Lemma 1 there exists an integer c satisfying
c ≡ ordpei

i
(ψ)/2 (mod ordpei

i
(ψ)) for 1 ≤ i ≤ k. Thus ψc ≡ −1 (mod peii )

for 1 ≤ i ≤ k and hence ψc ≡ −1 (mod n).

4. Counting good primes. In order to go beyond Theorem 1, one
needs to study, for r ≥ 0, the sets Cr := {p : 2r ‖ ordp(ψ)}. Wiertelak [18]
proved that Cr has a natural density and gave a remainder term which he
subsequently improved in [20]. Let Li(x) denote the logarithmic integral. It
is well known that π(x), the number of primes not exceeding x, satisfies

π(x) = Li(x) +O

(
x

log3 x

)
.

Combining this with [18, Theorem 1] and [20, Theorem 2], one deduces the
following result.

Theorem 2. Let a and b be two non-zero integers. Put ψ = a/b. Assume
that ψ 6= ±1. Let λ be the largest number such that |ψ| = u2λ , where u is a
rational number. Let ε = sign(ψ). Let Pa,b be the set of primes not dividing
2ab. Put , for r ≥ 0,

Cr = {p ∈ Pa,b : 2r ‖ ordp(ψ)}.
We have the estimate

(2) Cr(x) = δr Li(x) +O

(
x(log log x)4

log3 x

)
,

where the implied constant may depend on a and b. For ε = +1, the constants
{δr}∞r=0 are given by

{
1− 2

3
· 1

2λ
,

1
3
· 1

2λ
, . . .

}

if u 6= 2u2
1, with rational u1;

{
7
24
,

7
24
,

8
24
,

1
24
, . . .

}

if u = 2u2
1 and λ = 0; {

14
24
,

8
24
,

1
24
, . . .

}
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if u = 2u2
1 and λ = 1, and , if u = 2u2

1 and λ ≥ 2, by{
1− 1

3
· 1

2λ
,

1
3
· 1

2λ+1 , . . .

}
.

In case ε = −1 the sequence {δr}∞r=0 is formed out of the corresponding
case with ε = +1 by interchanging the first two terms. Thus, for example,
if u 6= 2u2

1 and ε = −1, then

{δr}∞r=0 =
{

1
3
· 1

2λ
, 1− 2

3
· 1

2λ
,

1
3
· 1

2λ+1 , . . .

}
.

The densities indicated by the dots are computed as follows: If δj is the last
density given, then δk = δj · 2j−k for k > j.

Corollary 1. If ψ is neither of the form ±u2
1 nor ±2u2

1, with rational
u1, then (2) holds with δ0 = 1

3 and , for r ≥ 1, δr = 2
3 · 1

2r .

5. Counting good integers. Let Godd denote the set of odd good
integers and G the set of good integers. Then, by Theorem 1,

Godd =
∞⋃
r=1

Gr,

where Gr is the set of natural numbers including 1 which are composed of
primes in Cr only. The sets Gr are completely multiplicative; cd ∈ Gr if and
only if c, d ∈ Gr, where c and d are natural numbers. Thus the problem of
estimating Godd(x), and, as we will see, that of estimating G(x), reduces to
that of estimating Gr(x) for r ≥ 1. (If S is any set of natural numbers, then
S(x) denotes the number of elements n in S with 1 < n ≤ x.) In order to
estimate Gr(x), we use an estimate of the following form:

Theorem 3. Let S be a completely multiplicative set such that
∑

p∈S, p≤x
1 = τ Li(x) +O

(
x

logN x

)
,

where τ > 0 and N > 3 are fixed. Then

S(x) = cx logτ−1 x+O(x logτ−2 x),

where c > 0 is a constant.

This result, which is a particular case of Theorem 2 of [10, Chapter 4],
is tantalizingly close to what we will need in order to prove Theorem 5,
namely:

Theorem 4. Let S be a completely multiplicative set such that

(3)
∑

p≤x
f(p) = τ Li(x) +O

(
x(log log x)g

log3 x

)
,
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where τ > 0 and g ≥ 0 are fixed and f denotes the characteristic function
of S. Then

S(x) =
∑

n≤x
f(n) = cx logτ−1 x+O(x(log log x)g+1 logτ−2 x),

where

c =
1

Γ (τ)
lim
s↓1

(s− 1)τLf (s) > 0,

Γ denotes the Gamma function and

Lf (s) :=
∞∑
n=1

f(n)
ns

(Re s > 0).

R e m a r k. For convenience of proof the characteristic function of S is
introduced. Notice that if S is a completely multiplicative set, then its char-
acteristic function f is completely multiplicative, that is, f(cd) = f(c)f(d)
for all natural numbers c and d.

P r o o f o f T h e o r e m 4. Assume f satisfies the conditions of Theo-
rem 4. Then, by Abel summation,

(4)
∑

p≤x
f(p) log p = τx+O

(
xl2(x)g

log2 x

)
,

where l2(x) = log log(x + 16). Put Λf (n) = f(pr) log p if n = pr is a prime
power and Λf (n) = 0 otherwise. Using (4) one deduces
∑

n≤x
Λf (n) =

∑

p≤x
f(p) log p+

∑

m≥2

∑

pm≤x
f(pm) log p = τx+O

(
xl2(x)g

log2 x

)
.

From this it follows by Abel summation that

(5)
∑

n≤x

Λf (n)
n

= τ log x+Bf +O

(
l2(x)g

log x

)
,

where Bf is a constant. Another estimate that is needed is the following:

(6)
∑

n≤x

f(n)
n

= O(logτ x).

Noticing that
∑

n≤x

f(n)
n
≤
∏

p≤x

(
1 +

f(p)
p

+
f(p2)
p2 + . . .

)
�
∏

p≤x

(
1 +

f(p)
p

+O

(
1
p2

))

� exp
{∑

p≤x

f(p)
p

+O(1)
}
� exp{τ log log x+O(1)} � logτ x,
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where we use the fact that
∑
p≤x f(p)/p = τ log log x+O(1), which follows

from (3) on using Abel summation, (6) follows.
Next we use the iterative process as explained in §4.11 of the book of

Postnikov [15] to establish that

(7)
∑

n≤x

f(n)
n

= a1 logτ x+ a2 logτ−1 x+O(l2(x)g+1 logτ−2 x),

with a1, a2 constants. The approach is to start the iteration with the initial
estimate (6) and iterate three times to obtain (7). Choose c0 > 0 such that

h(x) := min
(

1, c0
l2(x)g

log(x+ 1)

)

is positive non-increasing for x > 1. Thus, by (5),
∣∣∣∣
∑

n≤x

Λf (n)
n
− τ log x−Bf

∣∣∣∣ ≤ c1h(x)

for x > 1, where c1 is a constant. Putting

µf (x) =
∑

n≤x

f(n)
n

and g(x) =
∑

n≤x

f(n)
n

h

(
x

n

)
,

we have, noticing that f(n) log n =
∑
d|n f(d)Λf (n/d),

∑

n≤x

f(n) log n
n

=
∑

n≤x

∑

d|n

f(d)Λf (n/d)
d(n/d)

=
∑

d≤x

f(d)
d

∑

k≤x/d

Λf (k)
k

= τ
∑

n≤x

f(n)
n

log
(
x

n

)
+Bfµf (x) +O(g(x)).

We write this equality in the form

−
∑

n≤x

f(n)
n

log
(
x

n

)
+µf (x) log x=τ

∑

n≤x

f(n)
n

log
(
x

n

)
+Bfµf (x)+O(g(x)).

This inequality in turn can be written as

(8) µf (x) log x− (τ + 1)
x\
1

µf (v)
v

dv = Bfµf (x) +O(g(x)).

Since h(x) = O(1), the right hand side of (8) is O(µf (x)) = O(logτ x) by
(6) and thus

(9) µf (x) log x− (τ + 1)
x\
1

µf (v)
v

dv = O(logτ x).
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So

µf (x)

x logτ+1 x
− τ + 1

x logτ+2 x

x\
1

µf (v)
v

dv = O

(
1

x log2 x

)
.

Replacing x by u in this relation and integrating from 2 to x, we obtain

x\
2

µf (u)

u logτ+1 u
du− (τ + 1)

x\
2

1

u logτ+2 u

u\
1

µf (v)
v

dv du = c2 +O

(
1

log x

)
,

for some constant c2. Interchanging the order of integration in the second
integral we obtain

x\
2

µf (u)

u logτ+1 u
du− (τ + 1)

x\
2

µf (v)
v

( x\
v

du

u logτ+2 u

)
dv

− (τ + 1)
2\
1

µf (v)
v

( x\
2

du

u logτ+2 u

)
dv = c2 +O

(
1

log x

)
,

whence
x\
2

µf (u)

u logτ+1 u
du+

x\
2

µf (v)
v

(
1

logτ+1 x
− 1

logτ+1 v

)
dv

+
2\
1

µf (v)
v

(
1

logτ+1 x
− 1

logτ+1 2

)
dv = c2 +O

(
1

log x

)
.

After cancellation we have

1

logτ+1 x

x\
1

µf (v)
v

dv = c3 +O

(
1

log x

)
,

i.e.
x\
1

µf (v)
v

dv = c3 logτ+1 x+O(logτ x),

for some constant c3. So along with (9) we obtain

(10) µf (x) = a1 logτ x+O(logτ−1 x),

for some constant a1. We start the next iteration by estimating the right
hand side of (8) more precisely than O(logτ x). To this end the term g(x)
appearing in (8) will be investigated more closely.

We take 0 < θ < 1 − ε0, where ε0 (0 < ε0 < 1) is fixed and make the
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following estimates:

g(x) =
∑

x1−θ<n≤x

f(n)
n

h

(
x

n

)
+ g(x1−θ)

=
∑

x1−θ<n≤x

f(n)
n

h

(
x

n

)
+O

(
h(xθ)

∑

n≤x

f(n)
n

)

=
∑

x1−θ<n≤x

f(n)
n

h

(
x

n

)
+O(θ−1l2(x)g logτ−1 x)

=
1\

1−θ
h(x1−u) dµf (xu) +O(θ−1l2(x)g logτ−1 x).

Put Df (x) = µf (x)− a1 logτ x. We then obtain

g(x) = τa1 logτ x
1\

1−θ
h(x1−u)uτ−1 du+

1\
1−θ

h(x1−u) dDf (xu)

+O(θ−1l2(x)g logτ−1 x).

Recalling that vara≤z≤bh(z) =
Tb
a
|dh(z)|, we obtain

∣∣∣
1\

1−θ
h(x1−u) dDf (xu)

∣∣∣

=
∣∣∣h(1)Df (x)− h(xθ)Df (x1−θ)−

1\
1−θ

Df (xu) dh(x1−u)
∣∣∣

≤ O(logτ−1 x) + max
x1−θ≤z≤x

Df (z) var1≤z≤xθ h(z) = O(logτ−1 x),

since h(xθ) = O(1), Df (x) = O(logτ−1 x) by (10) and var1≤z≤xθ h(z) =
O(1). Since

1\
1−θ

h(x1−u)uτ−1 du =
θ\
0

h(xz)(1− z)τ−1 dz = O(θ),

we obtain on putting θ = l2(x)g/2/
√

log x and gathering the various error
terms

g(x) = τa1 logτ x
1\

1−θ
h(x1−u)uτ−1 du+O(logτ−1 x) +O(θ−1l2(x)g logτ−1 x)

= O(θ logτ x) +O(logτ−1 x) +O(θ−1l2(x)g logτ−1 x)

= O(l2(x)g/2 logτ−1/2 x).
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Inserting this into (8) and using (10) we obtain (9) with the sharpened right
hand side

Bfa1 logτ x+O(l2(x)g/2 logτ−1/2 x).

Then making one more iteration, we find (on keeping track of the new,
sharpened, right hand sides)

µf (x) = a1 logτ x+ a2 logτ−1 x+O(l2(x)g/2 logτ−3/2 x),

for some constant a2. Next put ∆f (x) = µf (x)− a1 logτ x− a2 logτ−1 x. We
have already seen that ∆f (x) = O(l2(x)g/2 logτ−3/2 x). We now obtain, for
0 < ϑ < 1− ε0,

g(x) = τa1 logτ x
1\

1−ϑ
h(x1−u)uτ−1 du(11)

+ (τ − 1)a2 logτ−1 x

1\
1−ϑ

h(x1−u)uτ−2 du

+
1\

1−ϑ
h(x1−u) d∆f (xu) +O(ϑ−1l2(x)g logτ−1 x).

We have
1\

1−ϑ
h(x1−u)uτ−1 du =

ϑ\
0

h(xz)(1− z)τ−1 dz = O
( ϑ\

0

h(xz) dz
)

(12)

= O

(
1

log x

xϑ\
1

h(v)
v

dv

)
= O

(
l2(x)g+1

log x

)
.

Using (12) we see that the first term in the right hand side of (11) is of order
l2(x)g+1 logτ−1 x. The second term in (11) is of order logτ−1 x. Proceeding
as in the derivation of the estimate for

∣∣∣
1\

1−ϑ
h(x1−u) dDf (xu)

∣∣∣,

we obtain
∣∣∣

1\
1−ϑ

h(x1−u) d∆f (xu)
∣∣∣ = O(l2(x)g/2 logτ−3/2 x)

and so

g(x) = O(l2(x)g+1 logτ−1 x) +O(logτ−1 x)

+O(l2(x)g/2 logτ−3/2 x) +O(ϑ−1l2(x)g logτ−1 x).
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On taking ϑ = 1/2 we obtain g(x) = O(l2(x)g+1 logτ−1 x). Inserting this
into (8) and making a final iteration, we then find (on keeping track of the
new, sharpened, right hand sides) the estimate (7).

We express
∑
n≤x f(n) = S(x) in terms of µf (x):

S(x) =
∑

n≤x

f(n)
n

n = xµf (x)−
x\
2

µf (t) dt+O(1).

By substituting the estimate (7) in this expression we obtain

S(x) = x(a1 logτ x+ a2 logτ−1 x+O(logτ−2 x))

−
x\
2

(a1 logτ t+ a2 logτ−1 t+O(logτ−2 t)) dt+O(1)

= τa1x logτ−1 x+O(xl2(x)g+1 logτ−2 x).

It remains to show that

τa1 =
1

Γ (τ)
lim
s↓1

(s− 1)τLf (s) > 0.

Notice that the condition of [15, Lemma 6, p. 96] is satisfied. So by the last
identity on p. 98 of [15] we have

µf (x) =
C

Γ (τ + 1)
logτ x

(
1 +O

(
1

log log x

))
,

where C = lims↓1(s− 1)τLf (s) and therefore

τa1 =
τC

Γ (τ + 1)
=

1
Γ (τ)

lim
s↓1

(s− 1)τLf (s).

(Here we used the fact that S is a semigroup and that its zetafunction
equals Lf (s).) That τa1 is positive follows from the fact that C is positive,
which follows from the proof of [15, Lemma 6, p. 96], but is omitted in the
statement. This completes the proof of Theorem 4.

Next we deduce from Theorems 1, 2 and 4 an estimate for G(x) which,
since limr→∞ δr = 0, has error O(x logδ−1 x) for arbitrary given δ > 0.
Notice that the first term in (13) is not necessarily the dominant one.

Theorem 5. Let a and b be two non-zero coprime integers such that
a 6= ±b. Let G denote the set of integers m > 1 such that m divides ak + bk

for some k ≥ 1. Let G(x) be the number of elements in G not exceeding x.
Then, for t ≥ 1, there exist positive constants c1, . . . , ct such that

(13) G(x) =
x

log x
(c1 logδ1 x+ c2 logδ2 x+ . . .+ ct logδt x+O(logδt+1 x)),

where δ1, . . . , δt are given in Theorem 2. The implied constant and c1, . . . , ct
may depend on a and b.



208 P. Moree

Corollary 2. Let λ and u1 be as in Theorem 2. We have G(x) ∼
cx log−α x, for some constant c > 0, where in case u 6= 2u2

1, α = 1− 1
3 · 1

2λ if
ε = +1 and α = 2

3 · 1
2λ if ε = −1. If u = 2u2

1 and ε = +1, then α = 2
3 if λ ≤ 1

and α = 1− 1
3 · 1

2λ+1 if λ ≥ 2. If u = 2u2
1 and ε = −1, then α = 2

3 ,
5
12 ,

1
3 · 1

2λ

according as λ = 0, λ = 1 or λ ≥ 2.

P r o o f. There are no even good integers when ab is even. In this case,
by Theorem 1,

G(x) =
∞∑
r=1

Gr(x).

Next assume that ab is odd. Let m = 2νµ with µ odd be a good divisor,
whence m | ak + bk for some k ≥ 1. First assume µ > 1. By Theorem 1,
µ ∈ Gr for some (unique) r ≥ 1. If r ≥ 2 it follows by (1) that k is even.
Then ak + bk ≡ 2 (mod 4) and hence ν = 0 or ν = 1. If r = 1 it follows by
(1) that k is odd. Since for arbitrary ξ ≥ 0, the only solution of xk ≡ −1
(mod 2ξ) is x ≡ −1 (mod 2ξ), it follows that 0 ≤ ν ≤ w, where 2w ‖ a + b.
Finally, in case µ = 1 we have 2ν = ak + bk. This Diophantine equation has
at most w solutions, as one easily checks. From these restrictions on ν and
Theorem 1, we deduce

G(x) =
w∑
z=0

G1

(
x

2z

)
+
∞∑
r=2

{
Gr

(
x

2

)
+Gr(x)

}
+O(1).

We now use Theorem 4 to estimate Gr(x) for r ≥ 1. By Theorem 2, (3) is
satisfied with τ = δr and g = 4. Applying Theorem 4 and using δr ≤ 1, we
obtain

Gr(x) = drx logδr−1 x+O(xl2(x)5 logδr−2 x)(14)

= drx logδr−1 x+O(x logδt+1−1 x),

for some positive constant dr. The result now follows, irrespective of whether
ab is even or not, once we show that

(15)
∞∑

r=t+1

Gr(x) = O(x logδt+1−1 x).

To this end, notice that the primes in Ct, t ≥ s ≥ 1, satisfy p ≡ 1 (mod 2s).
Thus ∑

r≥s
Gr(x) ≤

∑

n≤x
p|n⇒p≡1 (mod 2s)

1.

This latter sum can be estimated with the help of Theorem 3, or of course
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its improvement Theorem 4, and the estimate

π(x; 2s, 1) :=
∑

p≤x
p≡1 (mod 2s)

1 =
1

2s−1 Li(x) +O

(
x

log4 x

)
,

which follows from the Prime Number Theorem for arithmetic progressions.
Thus by choosing s large enough (taking 2s−1 ≥ 1/δt+1 will do), we can
ensure that

∑
r≥sGr(x) = O(x logδt+1−1 x). By (14), t ≥ 1, and the fact

that {δr}∞r=2 is monotonic decreasing, we have
∑

t+1≤r≤s
Gr(x) = O(x logδt+1−1 x).

Thus (15) holds and the result follows.

R e m a r k 1. If (2) were true with a sharper error term, this would not
lead to an improvement in the error of (13), at least by the approach followed
here.

R e m a r k 2. In [11] the estimate (13) with δi = 21−i/3 is established
for the counting function of the divisors of the sequence 2, 1, 3, 4, 7, 11, . . . of
Lucas numbers.

6. An example and an application. As an example let us consider
the case of a = 2 and b = 1. (This is relevant for coding theory purposes,
cf. [14].) Using special cases of quadratic, biquadratic and octic reciprocity
(cf. [2]) and Hasse’s technique from [7] to compute Dirichlet densities, it is
not difficult to prove:

Theorem 6. Let p be an odd prime and 2r ‖ p− 1. Then at most one of
the following holds:

(i) If p ≡ 7 (mod 8), then p ∈ C0;
(ii) If r = 3 and p is represented by the form X2 + 64(X + 2Y )2, then

p ∈ C0;
(iii) If p ≡ 3 (mod 8), then p ∈ C1,
(iv) If r = 3 and p is represented by the form X2 + 256Y 2, then p ∈ C1;
(v) If p ≡ 5 (mod 8), then p ∈ C2;
(vi) If r ≥ 4 and p is represented by the form X2 + 64(X + 2Y )2, then

p ∈ Cr−2;
(vii) If p is represented by the form X2 + 16(X + 2Y )2, then p ∈ Cr−1.

The smallest odd prime that is not covered is 337. The Dirichlet density
of the primes not covered is 1/32.
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By Theorem 5 it follows that for t ≥ 0, there exist positive constants
c1, . . . , c3+t such that

(16) G(x) =
x

log x

(
c1 log1/3 x+ c2 log7/24 x

+
t∑

k=0

c3+k log
1
3 · 1

2k+3 x+O(log
1
3 · 1

2t+4 x)
)
.

In order to prove this directly, a weaker version of Theorem 2 will do. On
using [13, Theorem 2] an error term of O(x log−5/3 x) in Theorem 2 suffices,
on using [6, Theorem 2] an error term of O(x log−3/2 x). Moreover, since
good numbers in this case are obviously odd, even good numbers need not
be considered.

Note that an integer n has a divisor m ≡ 7 (mod 8) if and only if either
there is a prime p ≡ 7 (mod 8), or both a prime p ≡ 3 (mod 8) and a prime
q ≡ 5 (mod 8) dividing n. Using Theorem 6 one then deduces:

Lemma 2. If n has a divisor m such that m ≡ 7 (mod 8), then n is bad.

The bad numbers n < 100 which are not congruent to 7 (mod 8) are
21, 35, 45, 49, 51, 69, 73, 75, 77, 85, 89, 91 and 93. The bad numbers n < 200
which have no divisors congruent to 7 (mod 8) are 51, 73, 85, 89, 123, 153
and 187. There are O(x log−1/2 x) integers ≤ x without divisors congruent to
7 (mod 8). By equation (16), O(x log−1/2 x) of these are bad. Thus Lemma 2
allows one to find all but O(x log−1/2 x) of the bad integers not exceeding x.

For m ≥ 1, let Km denote the cyclotomic number field Q(e2πi/m). The
prime divisors of {2k + 1} are related to the Stufe (level) of a number field.
Identities similar to

(X2
1 +X2

2 )(Y 2
1 + Y 2

2 ) = (X1Y1 −X2Y2)2 + (X1Y2 +X2Y1)2

hold for 4 and 8 variables as well. One might ask whether there exist such
identities for sums of squares of n variables (where n 6= 1, 2, 4, 8). This is
connected (see [16]) with the notion of the Stufe, s(K), of a field K; i.e. the
smallest positive integer for which the equation −1 = α2

1 + . . .+α2
s (αi ∈ K)

is solvable. (If this equation is not solvable in K, the field K is called formally
real and one puts s(K) = ∞.) Pfister proved that the Stufe of any field, if
it exists, is a power of two. Hilbert proved that s(Km) ≤ 4 for m ≥ 3. More
recent contributions involving the Stufe of cyclotomic number fields can be
found in [3, 4, 5]. If 4 |m, then i ∈ Km and thus s(Km) = 1. Thus assume
4 -m. In that case Fein et al. [5] proved a result which is equivalent with
the assertion that s(Km) = 2 iff m is divisible by some prime divisor of the
sequence {2k+1}∞k=1. (Thus s(Km) = 4 iff m is coprime with all numbers in
{2k+1}∞k=1.) This result in combination with Theorem 6 gives Theorem 1 of
both [3] and [4] and Theorem 4 of [5]. Using Theorems 2 and 4 one deduces:
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Theorem 7. The number of m ≤ x such that Q(e2πi/m) is of Stufe 4,
St4(x), equals

St4(x) = c
x

log17/24 x

(
1 +O

(
(log log x)5

log x

))
,

where c > 0 is a constant.

R e m a r k. It seems that the authors of [5] believed that their Theorem 5
was new with them. However, this result is due to Hasse [7], but the method
of proof in [5] provides an interesting alternative to Hasse’s method.
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[7] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale

Zahl a 6= 0 von gerader bzw. ungerader Ordnung mod. p ist, Math. Ann. 166 (1966),
19–23.

[8] E. V. Kr i shnamurthy, An observation concerning the decimal periods of prime
reciprocals, J. Recreational Math. 24 (1969), 212–213.

[9] E. S. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University
Press, Cambridge, 1983.

[10] P. Moree, Psixyology and Diophantine equations, Ph.D. Thesis, Leiden University,
1993.

[11] —, Counting divisors of Lucas numbers, MPI-Bonn preprint No. 34, 1996.
[12] R. W. K. Odoni, A conjecture of Krishnamurthy on decimal periods and some

allied problems, J. Number Theory 13 (1981), 303–319.
[13] —, A problem of Rankin on sums of powers of cusp-form coefficients, J. London

Math. Soc. 44 (1991), 203–217.
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