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1. Introduction. Let λ be a nontrivial additive character of the finite
field Fq, and let χ be a multiplicative character of Fq. Unless otherwise
stated, in this paper we assume that q is a power of an odd prime. Then we
consider the exponential sum

(1.1)
∑

w∈SO−(2n,q)

λ(trw),

where SO−(2n, q) is a special orthogonal group over Fq (cf. (2.8)) and trw
is the trace of w. Also, we consider

(1.2)
∑

w∈O−(2n,q)

χ(detw)λ(trw),

where O−(2n, q) is an orthogonal group over Fq (cf. (2.2), (2.5), (2.6)) and
detw is the determinant of w.

The purpose of this paper is to find explicit expressions for the sums
(1.1) and (1.2). It turns out that both of them are polynomials in q with
coefficients involving powers of ordinary Kloosterman sums and the average
(over multiplicative characters of all orders) of squares of Gauss sums.

In [5], Hodges expressed certain exponential sums in terms of what we
call the “generalized Kloosterman sum over nonsingular symmetric matri-
ces” Ksym,t(A,B) (for m even in the main theorem of [5]) and the “signed
generalized Kloosterman sum over nonsingular symmetric matrices”
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Lsym,t(A,B) (for m odd in the main theorem of [5]), where A,B are t × t
symmetric matrices over Fq (cf. (7.1) and [9], (7.1)). Some of their general
properties were investigated in [5], and, for A or B zero, they were evaluated
in [4] (see also [5], Theorem 10). However, they have never been explicitly
computed for both A and B nonzero.

From a corollary to the main theorem in [5] and using an explicit expres-
sion of a sum similar to (1.2) but over O(2n + 1, q), we were able to find,
in [9], an expression for Lsym,2n+1

(
a2

4 C
−1, C

)
, where C is a nonsingular

symmetric matrix of size 2n+ 1 over Fq and 0 6= a ∈ Fq.
In this paper, from the corollary mentioned above and Theorem 6.1, we

will be able to find an explicit expression for Ksym,2n
(
a2

4 C
−1, C

)
, where C

is now a nonsingular symmetric matrix of size 2n with C ∼ J− (cf. (2.17)
and (4.2) with r = 2n) and 0 6= a ∈ Fq as before. Ksym,2n

(
a2

4 C
−1, C

)
for

C ∼ J+ (cf. (4.1) with r = 2n) was determined in [11].
Similar sums for other classical groups over a finite field have been con-

sidered and the results for these sums will appear elsewhere ([9]–[11]).
Finally, we would like to state the main results of this paper. For some

symbols, one is referred to the next section.

Theorem A. The sum
∑
w∈SO−(2n,q) λ(trw) in (1.1) equals

(1.3) qn
2−n−1

{(
− 1
q − 1

q−1∑

j=1

G(ψj , λ)2
)

×
[(n−1)/2]∑
r=0

qr(r+3)
[
n− 1

2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

− (q + 1)
[(n−2)/2]∑
r=0

qr(r+3)+1
[
n− 1
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
,

where the first and second unspecified sums are respectively over all integers
j1, . . . , jl−1 satisfying 2l− 3 ≤ j1 ≤ n− 2r− 2, 2l− 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤
jl−1 ≤ jl−2 − 2 and over the same set of integers satisfying 2l − 3 ≤ j1 ≤
n − 2r − 3, 2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2. Here K(λ; 1, 1)
is the usual Kloosterman sum (cf. (2.11)), and G(ψj , λ) and G(η, λ) are the
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usual Gauss sums (cf. (2.9)), where ψ is a multiplicative character of Fq of
order q − 1 and η is the quadratic character of Fq.

Theorem B. The sum
∑
w∈O−(2n,q) χ(detw)λ(trw) in (1.2) is the same

as the expression in (1.3), except that − 1
q−1

∑q−1
j=1 G(ψj , λ)2 appearing in the

first sum and q+ 1 appearing in the second sum are respectively replaced by
A(χ, λ) and χ(−1)A(χ, λ), where

A(χ, λ) = − 1
q − 1

q−1∑

j=1

G(ψj , λ)2 + χ(−1)(q + 1).

Theorem C. Let 0 6= a ∈ Fq. Then, for any nonsingular symmetric
matrix C over Fq of size 2n with C ∼ J− (cf. (2.17) and (4.2)), the Kloos-
terman sum over nonsingular symmetric matrices (cf. (7.1)) is independent
of C, and

Ksym,2n

(
a2

4
C−1, C

)
= qn

∑

w∈O−(2n,q)

λa(trw),

so that it equals qn times the expression in Theorem B with χ trivial ,
λ = λa.

The above Theorems A, B, and C are respectively stated as Theorem
5.2, Theorem 6.1, and Theorem 7.1.

2. Preliminaries. In this section, we fix some notations that will be
used in the sequel, describe some basic groups, recall some classical sums
and mention the q-binomial theorem. One may refer to [1], [2] and [12] for
some elementary facts of the following.

Let Fq denote the finite field with q elements, q = pd (p > 2 an odd
prime, d a positive integer).

Let λ be an additive character of Fq. Then λ = λa for a unique a ∈ Fq,
where, for α ∈ Fq,

(2.1) λa(α) = exp
{

2πi
p

(aα+ (aα)p + . . .+ (aα)p
d−1

)
}
.

It is nontrivial if a 6= 0.
trA and detA denote respectively the trace of A and the determinant

of A for a square matrix A, and tB denotes the transpose of B for any
matrix B.

GL(n, q) is the group of all nonsingular n × n matrices with entries in
Fq. Then

(2.2) O−(2n, q) = {w ∈ GL(2n, q) | twJ−w = J−},
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where

J− =




0 1n−1 0 0
...

...
1n−1 0 0 0

0 . . . 0 1 0
0 . . . 0 0 −ε



.

Here and throughout this paper, ε will denote a fixed element in F×q −F×2
q .

We write w ∈ O−(2n, q) as

(2.3) w =



A B e
C D f
g h i


 ,

where A, B, C, D are of size (n− 1)× (n− 1), e, f of size (n− 1)× 2, g, h
of size 2× (n− 1), and i of size 2× 2.

For α ∈ F×q , δα will denote the 2× 2 matrix over Fq

(2.4) δα =
[

1 0
0 −α

]
.

Then (2.2) is also given by

O−(2n, q)

(2.5) =







A B e
C D f
g h i


 ∈ GL(2n, q)

∣∣∣∣∣∣

tAC + tCA+ tgδεg = 0,
tBD + tDB + thδεh = 0,
tAD + tCB + tgδεh = 1n−1,

tef + tfe+ tiδεi = δε,
tAf + tCe+ tgδεi = 0,
tBf + tDe+ thδεi = 0





(2.6) =







A B e
C D f
g h i


 ∈ GL(2n, q)

∣∣∣∣∣∣

AtB +BtA+ eδε−1
te = 0,

CtD +DtC + fδε−1
tf = 0,

AtD +BtC + eδε−1
tf = 1n−1,

gth+ htg + iδε−1
ti = δε−1 ,

Ath+Btg + eδε−1
ti = 0,

Cth+Dtg + fδε−1
ti = 0




.

P (2n, q) is the maximal parabolic subgroup of O−(2n, q) defined by

(2.7) P (2n, q)

=







A 0 0
0 tA−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12



∣∣∣∣∣∣

A ∈ GL(n− 1, q),
tiδεi = δε,
tB +B + thδεh = 0
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=







A 0 0
0 tA−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12



∣∣∣∣∣∣

A ∈ GL(n− 1, q),

i ∈ O−(2, q),
tB +B + thδεh = 0





(cf. (4.9)). Finally,

(2.8) SO−(2n, q) = {w ∈ O−(2n, q) | detw = 1},
which is a subgroup of index 2 in O−(2n, q).

For a multiplicative character χ of Fq and an additive character λ of Fq,
the Gauss sum G(χ, λ) is defined as

(2.9) G(χ, λ) =
∑

α∈F×q

χ(α)λ(α).

In particular, if χ = η is the quadratic character of Fq and λ = λa is
nontrivial, then, as is well known [12, Theorems 5.15 and 5.30],

G(η, λ) =
∑

α∈Fq
λ(α2)(2.10)

=
{
η(a)(−1)d−1√q, p ≡ 1 (mod 4),
η(a)(−1)d−1(

√−1)d
√
q, p ≡ 3 (mod 4).

For a nontrivial additive character λ of Fq, a, b ∈ Fq, K(λ; a, b) is the
Kloosterman sum defined by

(2.11) K(λ; a, b) =
∑

α∈F×q

λ(aα+ bα−1).

For integers n, r with 0 ≤ r ≤ n, we define the q-binomial coefficients as

(2.12)
[
n
r

]

q

=
r−1∏

j=0

(qn−j − 1)/(qr−j − 1).

The order of the group GL(n, q) is denoted by

(2.13) gn =
n−1∏

j=0

(qn − qj) = q(
n
2)
n−1∏

j=0

(qn−j − 1).

Then we have

(2.14)
gn

gn−rgr
= qr(n−r)

[
n
r

]

q

,

for integers n, r with 0 ≤ r ≤ n.
For x an indeterminate, n a nonnegative integer,

(2.15) (x; q)n = (1− x)(1− xq) . . . (1− xqn−1).
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Then the q-binomial theorem says

(2.16)
n∑
r=0

[
n
r

]

q

(−1)rq(
r
2)xr = (x; q)n.

[y] denotes the greatest integer ≤ y, for a real number y.
Finally, for n×n matrices A,B over Fq, we will say that A is equivalent

to B and write

(2.17) A ∼ B if and only if B = twAw for some w ∈ GL(n, q).

3. Bruhat decomposition. In this section, we will discuss the Bruhat
decomposition of O−(2n, q) with respect to the maximal parabolic subgroup
P (2n, q) of O−(2n, q) (cf. (2.7)). This decomposition (in fact, its slight vari-
ants (3.15) and (3.16)) will play a key role in deriving the main theorems in
Sections 5 and 6, and an elementary proof of it will be provided.

As a simple application, we will demonstrate that this decomposition
yields the well-known formula for the order of the group O−(2n, q) when
combined with the q-binomial theorem.

Theorem 3.1. (a) There is a one-to-one correspondence

P (2n, q)\O−(2n, q)→ P ′(n+ 1, q)\Λ
given by

P (2n, q)



A B e
C D f
g h i


 7→ P ′(n+ 1, q)

[
C D f
g h i

]
,

where

P ′(n+ 1, q) =
{[

a b
c d

]
∈ GL(n+ 1, q)

∣∣∣∣
a ∈ GL(n− 1, q),
b = 0, tdδεd = δε

}

=
{[

a b
c d

]
∈ GL(n+ 1, q)

∣∣∣∣
a ∈ GL(n− 1, q),
b = 0, d ∈ O−(2, q)

}
,

Λ =
{[

C D f
g h i

] ∣∣∣∣
C,D, f, g, h, i are respectively
(n− 1)× (n− 1), (n− 1)× (n− 1), (n− 1)× 2,

2× (n− 1), 2× (n− 1), 2× 2 matrices over Fq subject to the
conditions (3.1) below , and the matrix is of full rank n+ 1

}
,

(3.1)




CtD +DtC + fδε−1

tf = 0,
gth+ htg + iδε−1

ti = δε−1 ,
Cth+Dtg + fδε−1

ti = 0,

and , for δε, δε−1 , one refers to (2.4).
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(b) For given
[C D f

g h i

] ∈ Λ, there exists a unique r (0 ≤ r ≤ n − 1),
p′ ∈ P ′(n+ 1, q), p ∈ P (2n, q) such that

p′
[
C D f
g h i

]
p =




1r 0 0 0 0
0 0 0 1n−1−r 0
0 0 0 0 12


 .

(c) We have

O−(2n, q) =
n−1∐
r=0

PσrP,

where P = P (2n, q) and

(3.2) σr =




0 0 1r 0 0
0 1n−1−r 0 0 0
1r 0 0 0 0
0 0 0 1n−1−r 0
0 0 0 0 12


 ∈ O

−(2n, q).

P r o o f. It is easy to see that the map in (a) is well defined and injective.
For the surjectivity, it is enough to see that, for any given

[C D f

g h i

] ∈ Λ,


A B e
C D f
g h i


 ∈ O−(2n, q) for some A,B, e.

Choose x ∈ GL(n − 1, q) such that x[C D f ] is a row echelon matrix.
Let r (0 ≤ r ≤ n − 1) be the number of pivots in xC. Then, for some
y ∈ GL(n− 1, q),

(3.3) p′1

[
C D f
g h i

]
p1 =




1r 0
D′ f ′

0 0
g′ h′ i


 ,

where

p′1 =
[
x 0
0 12

]
∈ P ′(n+ 1, q), p1 =



y 0 0
0 ty−1 0
0 0 12


 ∈ P (2n, q).

Write

D′ =
[
D′11 D′12
D′21 D′22

]
, f ′ =

[
f ′1
f ′2

]
,

where D′11 is of size r × r, D′22 of size (n − 1 − r) × (n − 1 − r), and f ′1 of
size r × 2, etc.

It can be checked directly that if
[C D f

g h i

] ∈ Λ then p̃ ′
[C D f

g h i

]
p̃

∈ Λ for any p̃ ′ ∈ P ′(n + 1, q) and p̃ ∈ P (2n, q). Thus the first identity
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in (3.1) must be satisfied by (3.3). So we get tD′11 + D′11 + f ′1δε−1
tf ′1 = 0,

D′21 = 0, f ′2 = 0.
Put

p2 =




tD′11 −D′12 −f ′1
1n−1

tD′12 0 0
0 1n−1 0
0 δε−1

tf ′1 0 12


 .

Then p2 ∈ P (2n, q), and (3.3) right multiplied by p2 is

(3.4)




1r 0 0 0 0
0 0 0 D′22 0

g′ h′′ i′


 .

Since (3.4) is of full rank, D′22 must be invertible. Hence (3.4) left multiplied
by p′2 is

(3.5)




1r 0 0 0 0
0 0 0 1n−1−r 0

g′ h′′ i′


 ,

where

p′2 =




1r 0 0
0 D′−1

22 0
0 0 12


 ∈ P ′(n+ 1, q).

Put
g′ = [g′1 g

′
2], h′′ = [h′′1 h

′′
2 ],

where g′1 and h′′1 are of 2× r. Now, the second and third identities of (3.1)
must be satisfied by (3.5). So we get h′′1 = 0, g′2 = 0, ti′δεi′ = δε.

Let

p′3 =




1r 0 0
0 1n−1−r 0

−i′−1
g′1 −i′−1

h′′2 i′−1


 .

Then p′3 ∈ P ′(n+ 1, q) and (3.5) left multiplied by p′3 is

(3.6)




1r 0 0 0 0
0 0 0 1n−1−r 0
0 0 0 0 12


 .

So far we have shown that p′
[C D f

g h i

]
p equals (3.6) for p′ = p′3p

′
2p
′
1 ∈

P ′(n+ 1, q), p = p1p2 ∈ P (2n, q) and for a unique integer r (0 ≤ r ≤ n− 1).
This shows (b).

Write

p′ =
[
tA−1 0

0 i

] [
1n−1 0
h 12

]
.
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Choose any (n− 1)× (n− 1) matrix B satisfying tB+B+ thδεh = 0 . Then
p′′−1

σrp
−1 is a matrix in O−(2n, q) whose last n + 1 rows constitute the

matrix
[C D f

g h i

]
, where p′′ is given by

p′′ =



A 0 0
0 tA−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12


 .

This completes the proof for (a).
In view of (a), the Bruhat decomposition in (c) is equivalent to

(3.7) Λ =
n−1∐
r=0

P ′




1r 0 0 0 0
0 0 0 1n−1−r 0
0 0 0 0 12


P,

where P ′ = P ′(n+ 1, q), P = P (2n, q). (b) says that Λ is a union of double
cosets as in (3.7). The disjointness in (3.7) is easy to see.

Put

(3.8) Q = Q(2n, q)

=







A 0 0
0 tA

−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12



∣∣∣∣∣∣

A ∈ GL(n− 1, q),

i ∈ SO−(2, q),
tB +B + thδεh = 0




.

Then Q(2n, q) is a subgroup of index 2 in P (2n, q) (cf. (2.7), (4.10)), and

(3.9) O−(2n, q) =
n−1∐
r=0

PσrQ.

Write, for each r (0 ≤ r ≤ n− 1),

Ar = Ar(q) = {p ∈ P (2n, q) | σrpσ−1
r ∈ P (2n, q)},(3.10)

Br = Br(q) = {p ∈ Q(2n, q) | σrpσ−1
r ∈ P (2n, q)}.(3.11)

Then Br is a subgroup of Ar of index 2 and

(3.12) |Br\Q| = |Ar\P |.
Expressing O−(2n, q) as a disjoint union of right cosets of P = P (2n, q),

the Bruhat decomposition in (c) of Theorem 3.1 and the decomposition in
(3.9) can be rewritten as follows.

Corollary 3.2.

O−(2n, q) =
n−1∐
r=0

Pσr(Ar\P ),(3.13)
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O−(2n, q) =
n−1∐
r=0

Pσr(Br\Q),(3.14)

where P = P (2n, q), and Q,Ar, Br are respectively as in (3.8), (3.10), (3.11).

The decomposition in (3.14) can further be modified to give the following
decompositions.

Corollary 3.3.

SO−(2n, q) =
( ∐

0≤r≤n−1
r even

Qσr(Br\Q)
)

(3.15)

q
( ∐

0≤r≤n−1
r odd

(%Q)σr(Br\Q)
)
,

O−(2n, q) =
( ∐

0≤r≤n−1
r even

Qσr(Br\Q)
)

(3.16)

q
( ∐

0≤r≤n−1
r even

(%Q)σr(Br\Q)
)

q
( ∐

0≤r≤n−1
r odd

Qσr(Br\Q)
)

q
( ∐

0≤r≤n−1
r odd

(%Q)σr(Br\Q)
)
,

where

(3.17) % =




1n−1 0 0 0
0 1n−1 0 0
0 0 1 0
0 0 0 −1


 .

Write p ∈ P (2n, q) as

(3.18) p =



A 0 0
0 tA

−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12


 ,

with

A =
[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12

B21 B22

]
,

and h = [h1 h2]. Here A11, A12, A21, and A22 are respectively of sizes r× r,
r × (n− 1− r), (n− 1− r)× r, and (n− 1− r)× (n− 1− r), similarly for
tA−1, B, and h1 is of size 2× r.
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Then σrpσ−1
r ∈ P if and only if A11B11 +A12B21 = 0, A12 = 0, E21 = 0,

ih1 = 0, A11
th1δε + A12

th2δε = 0 if and only if A12 = 0, B11 = 0, h1 = 0.
Recalling the order of O−(2, q) in (4.12), we have

(3.19) |Ar(q)| = 2(q + 1)grgn−1−rq(n−1)(n+2)/2qr(2n−3r−5)/2,

where gn is as in (2.13). Also,

(3.20) |P (2n, q)| = 2(q + 1)gn−1q
(n−1)(n+2)/2.

From (2.14), (3.19) and (3.20), we get

(3.21) |Ar(q)\P (2n, q)| =
[
n− 1
r

]

q

qr(r+3)/2.

Combining (3.20) and (3.21), we also have

(3.22) |P (2n, q)|2|Ar(q)|−1 = 2(q + 1)qn
2−n

n−1∏

j=1

(qj − 1)q(
r
2)q2r

[
n− 1
r

]

q

.

The decomposition in (3.13) yields

(3.23) |O−(2n, q)| =
n−1∑
r=0

|P (2n, q)|2|Ar(q)|−1.

Now, from (3.22) and (3.23) and applying the binomial theorem (2.16) with
x = −q2, we have the following theorem. We note here that this result was
already shown in [3].

Theorem 3.4.

(3.24) |O−(2n, q)| = 2qn
2−n(qn + 1)

n−1∏

j=1

(q2j − 1).

P r o o f.

|O−(2n, q)| = 2(q + 1)qn
2−n

n−1∏

j=1

(qj − 1)
n−1∑
r=0

[
n− 1
r

]

q

q(
r
2)q2r

= 2(q + 1)qn
2−n

n−1∏

j=1

(qj − 1)(−q2; q)n−1

= 2qn
2−n(qn + 1)

n−1∏

j=1

(q2j − 1).

4. Some propositions. For r even, every nonsingular symmetric matrix
of size r over Fq is equivalent either to
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(4.1) J+ =
[

0 1r/2
1r/2 0

]
∼




0 1
1 0

. . .
0 1
1 0




or to
(4.2)

J− =




0 1r/2−1 0 0
...

...
1r/2−1 0 0 0

0 . . . 0 1 0
0 . . . 0 0 −ε



∼




0 1
1 0 0

. . .
0 1
1 0

0 1 0
0 −ε




.

On the other hand, for r odd every nonsingular symmetric matrix of size r
over Fq is equivalent either to

(4.3) J =




0 1(r−1)/2 0
1(r−1)/2 0 0

0 0 1


 ∼




0 1
1 0 0

. . .
0 1

0 1 0
1




or to

(4.4) εJ = ε




0 1(r−1)/2 0
1(r−1)/2 0 0

0 0 1


 ∼ ε




0 1
1 0 0

. . .
0 1

0 1 0
1



.

The following proposition can be proved analogously to the correspond-
ing Proposition 4.1 in [9], so we only sketch the proof.

Proposition 4.1. Let λ be a nontrivial additive character of Fq, and let
B be a nonsingular symmetric matrix of size r with entries in Fq. Then

(4.5)
∑

h∈Fr×2
q

λ(tr δεthBh) =
{
qr if r is even,
−qr if r is odd ,

where Fr×2
q denotes the set of all r × 2 matrices over Fq, and δε is as in

(2.4).
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P r o o f. Since the corresponding sums in (4.5) are the same for equivalent
matrices B and B′, it suffices to consider the cases when B is respectively
equal to the matrix on the right hand side of (4.1)–(4.4).

If B ∼ (4.1) or B ∼ (4.2), then we get exactly the square of the corre-
sponding expressions in Proposition 4.1 of [9].

On the other hand, if B ∼ (4.3) or B ∼ (4.4), then we get

η(−ε)G(η, λ)2qr−1 = (−1)(q+1)/2G(η, λ)2qr−1 = −qr

(cf. (2.10)). So in these cases also, up to sign, we get the square of the
corresponding expressions in Proposition 4.1 of [9].

The following can be proved in exactly the same manner as Proposition
4.2 of [9].

Proposition 4.2. Let λ be a nontrivial additive character of Fq. For
a positive integer r, let Ωr be the set of all r × r nonsingular symmetric
matrices over Fq. Then

br(λ) =
∑

B∈Ωr

∑

h∈Fr×2
q

λ(tr δεthBh)(4.6)

=





qr(r+6)/4
r/2∏

j=1

(q2j−1 − 1) for r even,

−q(r2+4r−1)/4
(r+1)/2∏

j=1

(q2j−1 − 1) for r odd ,

where δε is as in (2.4).

The next two propositions are well known and will be used in showing
Proposition 4.5.

Proposition 4.3 [12, Theorem 5.30]. Let λ be a nontrivial additive char-
acter of Fq (here q = pd with p any prime including p = 2), and let ψ be a
multiplicative character of Fq of order d = (n, q − 1). Then

(4.7)
∑

α∈Fq
λ(αn) =

d−1∑

j=1

G(ψj , λ),

where G(ψj , λ) is the Gauss sum as in (2.9).

Proposition 4.4 (Davenport–Hasse). Let λ be an additive character of
Fq, and ψ a multiplicative character of Fq, not both of them trivial. Suppose
that λ′ = λ ◦ trFqs/Fq and ψ′ = ψ ◦NFqs/Fq . Then

(4.8) G(ψ′, λ′) = (−1)s−1G(ψ, λ)s.



356 D. S. Kim

For the next proposition, we note the following. We have

(4.9) O−(2, q) = {w ∈ GL(2, q) | twδεw = δε}.
Now, SO−(2, q) = {w ∈ O−(2, q) | detw = 1} is a subgroup of index 2 in
O−(2, q), and

(4.10) O−(2, q) = SO−(2, q)q δ1 SO−(2, q).

Note here that δ1 =
[ 1 0

0 −1

]
(cf. (2.4)). Moreover,

(4.11) SO−(2, q) =
{[

a bε
b a

] ∣∣∣∣ a, b ∈ Fq, a2 − b2ε = 1
}
.

In particular, this says that

(4.12) |SO−(2, q)| = q + 1, |O−(2, q)| = 2(q + 1).

Proposition 4.5. Let λ be a nontrivial additive character of Fq. Then

∑

w∈SO−(2,q)

λ(trw) = − 1
q − 1

q−1∑

j=1

G(ψj , λ)2,(4.13)

∑

w∈SO−(2,q)

λ(tr δ1w) = q + 1,(4.14)

where ψ is a multiplicative character of Fq of order q − 1.

P r o o f. (4.14) is clear, since, from (4.11), we see that λ(tr δ1w) = λ(0) =
1 for each w ∈ SO−(2, q). Let K = Fq(

√
ε) be the quadratic extension field

of Fq, and let σ be the Frobenius automorphism of K given by σα = αq.
Then, from (4.11), we see that the left hand side of (4.13) equals

∑

α∈K,NK/Fq (α)=1

λ ◦ trK/Fq (α)

=
∑

α∈F×q \K×
λ ◦ trK/Fq

(
σα

α

)
(Hilbert’s Theorem 90)

=
1

q − 1

∑

α∈K×
λ ◦ trK/Fq (α

q−1)

=
1

q − 1

{ ∑

α∈K
λ ◦ trK/Fq (α

q−1)− 1
}
.(4.15)

Let ψ be a multiplicative character of Fq of order q− 1. Then ψ ◦NK/Fq
is a multiplicative character of K of order q − 1, and (ψ ◦NK/Fq )j = ψj ◦
NK/Fq for each positive integer j. Thanks to (4.7), the sum in (4.15) can be
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expressed as

∑

α∈K
λ ◦ trK/Fq (α

q−1) =
q−2∑

j=1

G(ψj ◦NK/Fq , λ ◦ trK/Fq )

= −
q−2∑

j=1

G(ψj , λ)
2

((4.8)).

By substituting the last expression into (4.15), we get the desired result.

R e m a r k. For j = q − 1, ψj is trivial and hence G(ψj , λ) = −1. For
j = 1, . . . , q − 2, ψj is nontrivial and G(ψj , λ) is

√
q in absolute value (cf.

[12], Theorem 5.11). Thus, from (4.13), we have∣∣∣
∑

w∈SO−(2,q)

λ(trw)
∣∣∣ ≤ q − 1.

(4.13) also shows that
∑q−1
j=1 G(ψj , λ)2 does not depend on the choice of

a multiplicative character ψ of Fq of order q − 1.

5. SO−(2n, q) case. In this section, we will consider the sum in (1.1),
∑

w∈SO−(2n,q)

λ(trw),

for any nontrivial additive character λ of Fq and find an explicit expression
for this by using the decomposition in (3.15).

The sum in (1.1) can be written, using (3.15), as

(5.1)
∑

0≤r≤n−1
r even

|Br\Q|
∑

w∈Q
λ(trwσr) +

∑

0≤r≤n−1
r odd

|Br\Q|
∑

w∈Q
λ(tr %wσr),

where Br = Br(q), Q = Q(2n, q) are respectively as in (3.11), (3.8), and
%, σr are respectively as in (3.17), (3.2). Here one should note that, for each
q ∈ Q, ∑

w∈Q
λ(trwσrq) =

∑

w∈Q
λ(tr qwσr) =

∑

w∈Q
λ(trwσr),

and %−1q% ∈ Q. Write w ∈ Q as

w =



A 0 0
0 tA−1 0
0 0 i






1n−1 B −thδε
0 1n−1 0
0 h 12


 ,

with

A=
[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12

B21 B22

]
, h= [h1 h2],
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tB11 +B11 + th1δεh1 = 0, tB21 +B12 + th1δεh2 = 0,
(5.2)

tB22 +B22 + th2δεh2 = 0.

Note that the conditions in (5.2) are equivalent to tB+B+ thδεh = 0. Here
A11, A12, A21, A22 are respectively of sizes r×r, r×(n−1−r), (n−1−r)×r,
(n− 1− r)× (n− 1− r), similarly for tA−1, B, and h1 is of size 2× r.

Now,

wσr =



M ∗ ∗
∗ N ∗
∗ ∗ i




with

(5.3) M =
[
A11 A12

A21 A22

] [
B11 0
B21 1n−1−r

]
, N =

[
E11 E12

E21 E22

] [
0 0
0 1n−1−r

]
,

and

%wσr =



M ∗ ∗
∗ N ∗
∗ ∗ δ1i




with M,N as in (5.3). So the sum in (5.1) is

(5.4)
∑

i∈SO−(2,q)

λ(tr i)
∑

0≤r≤n−1
r even

|Br\Q|

×
∑

λ(trA11B11 + trA12B21 + trA22 + trE22)

+
∑

i∈SO−(2,q)

λ(tr δ1i)
∑

0≤r≤n−1
r odd

|Br\Q|

×
∑

λ(trA11B11 + trA12B21 + trA22 + trE22),

where the innermost sums are respectively over A, B, h subject to the
conditions in (5.2).

Consider, for any r (0 ≤ r ≤ n− 1), the sum

(5.5)
∑

A,B,h

λ(trA11B11 + trA12B21 + trA22 + trE22).

For each fixed A, h, the subsum over B in (5.5) is

(5.6)
∑

λ(trA11B11 + trA12B21),

where the sum is over all B11, B21, B22 satisfying tB11 +B11 + th1δεh1 = 0,
tB22+B22+th2δεh2 = 0. Since the summand is independent of B22, it equals
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(5.7) q(
n−1−r

2 )
∑

B11

λ(trA11B11)
∑

B21

λ(trA12B21).

The sum over B21 in (5.7) is nonzero if and only if A12 = 0, in which case it
is qr(n−1−r). On the other hand, the sum over B11 in (5.7) is nonzero if and

only if A11 is symmetric, in which case it equals q(
r
2)λ
( − 1

2 tr δεh1A11
th1
)
.

To see this, let

A11 = (αij), B11 = (βij), h1 =
[
h11 h12 . . . h1r

h21 h22 . . . h2r

]
.

Then the condition tB11 +B11 + th1δεh1 = 0 is equivalent to

βii = 1
2 (h2

2iε− h2
1i) for 1 ≤ i ≤ r,

βij + βji = h2ih2jε− h1ih1j for 1 ≤ i < j ≤ r.
Using these relations, it is not hard to see that

trA11B11 = −1
2

tr δεh1A11
th1 +

∑

1≤i<j≤r
(αji − αij)βij .

Hence the sum over B11 in (5.7) is nonzero if and only if αji = αij for

1 ≤ i < j ≤ r, i.e., A11 is symmetric. Moreover, it is q(
r
2)λ
(− 1

2 tr δεh1A11
th1
)

in that case.
We have shown so far that the sum in (5.6) is nonzero if and only if

A =
[A11 0
A21 A22

]
with A11 nonsingular symmetric, in which case it equals

q(
n−1−r

2 )+(r2)+r(n−1−r)λ
(− 1

2 tr δεh1A11
th1
)

= q(
n−1

2 )λ
(− 1

2 tr δεh1A11
th1
)
.

For such an A =
[A11 0
A21 A22

]
,
[E11 E12

E21 E22

]
=
[ tA−1

11 ∗
0 tA−1

22

]
, and hence the sum in

(5.5) can be written as

q(
n−1

2 )
∑

A21,h2

∑

A11,h1

λ
(− 1

2 tr δεh1A11
th1
)∑

A22

λ(trA22 + trA−1
22 )

= q(n−1)(n+2)/2+r(n−r−3)
∑

A11,h1

λ
(− 1

2 tr δεh1A11
th1
)∑

A22

λ(trA22 + trA−1
22 )

= q(n−1)(n+2)/2+r(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1),

where br(λ) is as in (4.6), and in [10], for a, b ∈ Fq,KGL(t,q)(λ; a, b) is defined
as

(5.8) KGL(t,q)(λ; a, b) =
∑

w∈GL(t,q)

λ(a trw + b trw−1).
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Putting everything together, the sum in (5.1) can be written as

(5.9) q(n−1)(n+2)/2
{ ∑

i∈SO−(2,q)

λ(tr i)
∑

0≤r≤n−1
r even

|Br\Q|qr(n−r−3)

× br(λ)KGL(n−1−r,q)(λ; 1, 1) +
∑

i∈SO−(2,q)

λ(tr δ1i)

×
∑

0≤r≤n−1
r odd

|Br\Q|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1)
}
.

From (3.12), (3.21), (4.6), (4.13), and (4.14), we see that the above ex-
pression (5.9) equals

(5.10) q(n−1)(n+2)/2

×
{(
− 1
q − 1

q−1∑

j=1

G(ψj , λ)2
) ∑

0≤r≤n−1
r even

qnr−r
2/4
[
n− 1
r

]

q

×
r/2∏

j=1

(q2j−1 − 1)KGL(n−1−r,q)(λ; 1, 1)

− (q + 1)
∑

0≤r≤n−1
r odd

q(4nr−r2−2r−1)/4

×
[
n− 1
r

]

q

(r+1)/2∏

j=1

(q2j−1 − 1)KGL(n−1−r,q)(λ; 1, 1)
}
.

An explicit expression for (5.8) was obtained in [10].

Theorem 5.1. For integers t ≥ 1 and nonzero elements a, b of Fq, the
Kloosterman sum KGL(t,q)(λ; a, b) is given by

(5.11) KGL(t,q)(λ; a, b)

= q(t−2)(t+1)/2
[(t+2)/2]∑

l=1

qlK(λ; a, b)t+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1),

where K(λ; a, b) is the usual Kloosterman sum in (2.11) and the inner sum is
over all integers j1, . . . , jl−1 satisfying 2l−3 ≤ j1 ≤ t−1, 2l−5 ≤ j2 ≤ j1−2,
. . . , 1 ≤ jl−1 ≤ jl−2 − 2. Here we adopt the convention that the inner sum
in (5.11) is 1 for l = 1, and that j0 = t+ 1 for l = 2.

Combining (5.10) with the explicit expression of Kloosterman sum in
(5.11), and replacing r in the first sum and the second sum in (5.10) respec-
tively by 2r and 2r + 1, we obtain the following theorem.
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Theorem 5.2. Let λ be a nontrivial additive character of Fq. Then the
Gauss sum over SO−(2n, q),

∑

w∈SO−(2n,q)

λ(trw),

is given by

qn
2−n−1

{(
− 1
q − 1

q−1∑

j=1

G(ψj , λ)2
) [(n−1)/2]∑

r=0

qr(r+3)
[
n− 1

2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

− (q + 1)
[(n−2)/2]∑
r=0

qr(r+3)+1
[
n− 1
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
.

Here K(λ; 1, 1) is the usual Kloosterman sum as in (2.11), and G(ψj , λ) and
G(η, λ) are the usual Gauss sums in (2.9) with ψ a multiplicative character
of Fq of order q − 1 and with η the quadratic character of Fq. In addition,
the first unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l − 3 ≤
j1 ≤ n − 2r − 2, 2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2 and the
second one is over all integers j1, . . . , jl−1 satisfying 2l−3 ≤ j1 ≤ n−2r−3,
2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2.

6. O−(2n, q) case. Let χ be a multiplicative character of Fq, and let λ
be a nontrivial additive character of Fq. Then we will consider the Gauss
sum in (1.2), ∑

w∈O−(2n,q)

χ(detw)λ(trw),

and find an explicit expression for it.
From the decompositions in (3.15) and (3.16), the above sum is∑
w∈SO−(2n,q) λ(trw) plus

χ(−1)
{ ∑

0≤r≤n−1
r even

|Br\Q|
∑

w∈Q
λ(tr %wσr)(6.1)

+
∑

0≤r≤n−1
r odd

|Br\Q|
∑

w∈Q
λ(trwσr)

}
,
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where the expression in curly brackets is the same as that in (5.9), except
that

∑
i∈SO−(2,q) λ(tr i) and

∑
i∈SO−(2,q) λ(tr δ1i) are interchanged. So the

sum in (1.2) equals

(6.2) q(n−1)(n+2)/2A(χ, λ)

×
{ ∑

0≤r≤n−1
r even

|Br\Q|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1)

+ χ(−1)
∑

0≤r≤n−1
r odd

|Br\Q|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1)
}
,

where

A(χ, λ) =
∑

i∈SO−(2,q)

λ(tr i) + χ(−1)
∑

i∈SO−(2,q)

λ(tr δ1i)(6.3)

= − 1
q − 1

q−1∑

j=1

G(ψj , λ)2 + χ(−1)(q + 1)

with ψ a multiplicative character of Fq of order q − 1 (cf. (4.13), (4.14)).
From (3.21) (cf. (3.12)), (4.6), (5.11), and replacing r in the first sum and

the second sum in (6.2) respectively by 2r and 2r + 1, we get the following
theorem.

Theorem 6.1. Let χ be a multiplicative character of Fq, and let λ be a
nontrivial additive character of Fq. Then the Gauss sum over O−(2n, q),

∑

w∈O−(2n,q)

χ(detw)λ(trw),

is given by

(6.4) qn
2−n−1A(χ, λ)

{ [(n−1)/2]∑
r=0

qr(r+3)
[
n− 1

2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

− χ(−1)
[(n−2)/2]∑
r=0

qr(r+3)+1
[
n− 1
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
.
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Here A(χ, λ) is as in (6.3), K(λ; 1, 1) is the usual Kloosterman sum as in
(2.11), and G(η, λ) is the usual Gauss sum with η the quadratic charac-
ter of Fq. Moreover , the first unspecified sum in (6.4) is over all integers
j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ n − 2r − 2, 2l − 5 ≤ j2 ≤ j1 − 2, . . . ,
1 ≤ jl−1 ≤ jl−2−2, and the second one is over all integers j1, . . . , jl−1 satis-
fying 2l−3 ≤ j1 ≤ n−2r−3, 2l−5 ≤ j2 ≤ j1−2, . . . , 1 ≤ jl−1 ≤ jl−2−2.

7. Application to Hodges’ Kloosterman sum. In [5], the generalized
Kloosterman sum over nonsingular symmetric matrices is defined, for t× t
symmetric matrices A,B over Fq, as

(7.1) Ksym,t(A,B) =
∑
w

λ1(tr(Aw +Bw−1)),

where w runs over the set Ωt of all nonsingular symmetric matrices over Fq
of size t.

In contrast to his other papers [6]–[8], Hodges neglected to mention an
important special case of the main theorem in [5]. Namely, if m = t and U
is a nonsingular matrix in the main theorem, then s1 = s2 = 0.

Now, take m = t = 2n, A = B = J− in (4.2) with r = 2n, U = a
2 12n with

0 6= a ∈ Fq, in the main theorem of [5]. Then, in view of the above-mentioned
observation, we have the identity

(7.2)
∑

w∈O−(2n,q)

λa(trw) = q−nKsym,2n

(
a2

4
(J−)−1, J−

)
,

where Ksym,2n
(
a2

4 (J−)−1, J−
)

is as in (7.1). We state this fact as the fol-
lowing theorem.

Theorem 7.1. For 0 6= a ∈ Fq, we have the identity
∑

w∈O−(2n,q)

λa(trw) = q−nKsym,2n

(
a2

4
(J−)−1, J−

)
(7.3)

= q−nKsym,2n

(
a2

4
C−1, C

)
,

where λa is as in (2.1) and C is any nonsingular symmetric matrix over Fq
of size 2n with C ∼ J−.

R e m a r k. The second identity in (7.3) is clear from the definition in
(7.1).

Combining Theorems 6.1 and 7.1, we get the following result.

Theorem 7.2. Let 0 6= a ∈ Fq, and let C be any nonsingular symmetric
matrix over Fq of size 2n with C ∼ J−. Then the following generalized
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Kloosterman sum over nonsingular symmetric matrices is the same for every
such C, and

(7.4) Ksym,2n

(
a2

4
C−1, C

)

= qn
2−1A(λa)

{ [(n−1)/2]∑
r=0

qr(r+3)
[
n− 1

2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λa; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

−
[(n−2)/2]∑
r=0

qr(r+3)+1
[
n− 1
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λa; 1, 1)n−2r−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
,

where

A(λa) = − 1
q − 1

q−1∑

j=1

G(ψj , λa)2 + q + 1

with ψ a multiplicative character of Fq of order q−1, K(λa; 1, 1) is the usual
Kloosterman sum as in (2.11) (cf. (2.1)), and η is the quadratic character
of Fq. In addition, the first unspecified sum in (7.4) is over all integers
j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ n − 2r − 2, 2l − 5 ≤ j2 ≤ j1 − 2,
. . . , 1 ≤ jl−1 ≤ jl−2 − 2, and the second one is over all integers j1, . . . , jl−1

satisfying 2l−3 ≤ j1 ≤ n−2r−3, 2l−5 ≤ j2 ≤ j1−2, . . . , 1 ≤ jl−1 ≤ jl−2−2.
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