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The number of families of solutions
of decomposable form equations
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1. Introduction. In [16], Schmidt introduced the notion of family of
solutions of norm form equations and showed that there are only finitely
many such families. In [18], Voutier gave an explicit upper bound for the
number of families. Independently, in [5], Gy6ry extended the notion of
family of solutions of norm form equations to decomposable form equations
and gave an explicit upper bound for the number of families. In this paper,
we obtain a significant improvement of the upper bounds of Voutier and
Gyéry, by applying the results from Evertse [4].

Let 8 be a non-zero rational integer. Further, let M denote an algebraic
number field of degree r and I(X) = a1 X7 + ...+ a; X, a linear form with
coefficients in M. There is a non-zero ¢ € Q such that the norm form

T

(1.1) F(X) = cNuyyol(X)) = CH(ozgi)Xl +...4+ad9X,)
i=1
has its coefficients in Z. Here, we denote by o), ... a(") the conjugates of

a € M. We deal among other things with norm form equations of the shape
F(x)=+p8 inxeZ™.

It is more convenient for us to consider the equivalent equation which is also

called a norm form equation,

(1.2) cNyjg(z) =+ inzeM,

where M is the Z-module {x = I(x) : x € Z™} which is contained in M.
In 1971, Schmidt [15] proved his fundamental result that (1.2) has only

finitely many solutions if M satisfies some natural non-degeneracy condition.

Later, Schmidt [16] dealt also with the case where M is degenerate and
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showed that in that case, the set of solutions of (1.2) can be divided in a
natural way into families, and is the union of finitely many such families.
Below, we give a precise definition of a family of solutions of (1.2); here we
mention that it is a coset xilrq,; contained in M, where x is a solution of
(1.2) and L, is a particular subgroup of finite index in the unit group of
the ring of integers of some subfield J of M. Schmidt’s results have been
generalised to equations of the type

(1.3) cNyyk(r) € BOs  inxz e M,

where K is an algebraic number field, Og is the ring of S-integers in K for
some finite set of places S, OF is the unit group of Og, ¢, B are elements of
K* = K\{0}, M is a finite extension of K, and M is a finitely generated
Og-module contained in M. In fact, Schlickewei [13] proved the analogue of
Schmidt’s result on families of solutions in the case where Qg is contained
in Q, and Laurent [9] generalised this to arbitrary algebraic number fields
K. The main tools in the proofs of these results were Schmidt’s subspace
theorem and Schlickewei’s generalisation to the p-adic case and to number
fields.

In [5], GyOry generalised the concept of family of solutions to decompos-
able form equations over Og, i.e. to equations of the form

(1.4) F(x) € fO%  inx=(z1,...,2m) € O,

where K, S are as above, # is a non-zero element of Og and F(X) =
F(X1,...,X.) is a decomposable form with coefficients in Og, that is, F'
can be expressed as a product of linear forms in m variables with coeffi-
cients in some extension of K. We can reformulate (1.4) in a shape similar
to (1.3) as follows. According to [1], pp. 7781, there are finite extension
fields My,..., M, of K, linear forms [;(X) = a; X1 + ... + o X, with
coefficients in M; for j =1,...,¢ and ¢ € K* such that

(1.5) F(X) = c ][ Nag,x (15(X).

j=1
Now let
A=M &...D M,

be the direct K-algebra sum of M, ..., M;, that is, the cartesian product
M; x ... x M; endowed with coordinatewise addition and multiplication. If
we express an element of A as (aq,...,a;), then we implicitly assume that
aj € Mjfor j =1,...,t. We define the norm Ny, k(a) of a = (a1,..., ) €
A to be the determinant of the K-linear map = — az from A to itself. This
norm is known to be multiplicative. Further, we have

(1.6) Na/k(a) = Nag i (ar) ... Nag i (o)
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where Ny, /x is the usual field norm. Note that the Og-module
M={zx=(l1(x),...,li(x)) : x € O}

is contained in A. Now (1.5) and (1.6) imply that (1.4) is equivalent to

(1.7) cNy/k(z) € BO5  inxe M,

(1.7) will also be referred to as a decomposable form equation. In [5], Gyéry
showed that the set of solutions of (1.7) is the union of finitely many fam-
ilies. Further, in [5] he extended some of his results to decomposable form
equations over arbitrary finitely generated integral domains over Z.

In [17], Schmidt made a further significant advancement by deriving,
as a consequence of his quantitative subspace theorem, an explicit upper
bound for the number of solutions of norm form equation (1.2) over Z for
every non-degenerate module M. Schlickewei proved a p-adic generalisation
of Schmidt’s quantitative subspace theorem and used it to derive an explicit
upper bound for the number of solutions of S-unit equations [14]. Among
others, this was used by Gy6ry [5] to obtain an explicit upper bound for
the number of families of solutions of decomposable form equation (1.7).
Independently, Voutier [18] obtained upper bounds similar to Gyéry’s for the
number of families of solutions of norm form equation (1.3), in the special
case where K = Q, 8 = 1. Recently, Evertse [4] improved the results of
Schmidt and Schlickewei just mentioned. In this paper, we apply the results
from [4] to obtain an upper bound for the number of families of solutions of
(1.7) which is much sharper than Gyéry’s and Voutier’s (cf. Theorem 1 in
Section 1.2).

In Section 1.1 we introduce the necessary terminology. In Section 1.2 we
state our main results (Theorems 1 and 2) and some corollaries. In partic-
ular, in Corollary 2 we give an upper bound for the number of O§-cosets of
solutions of (1.7) in the case where that number is finite; here, an O%-coset
is a set xO% = {ex : ¢ € O%} where z is a fixed solution of (1.7). Further, in
Section 2 we derive from Theorem 1 an asymptotic formula (cf. Corollary 4)
for the number of O%-cosets of solutions of (1.7), whenever this number is
infinite. The other sections are devoted to the proofs of Theorems 1 and 2.

1.1. Terminology. Here and in the sequel we use the following notation:
the unit group of a ring R with 1 is denoted by R* and for x € R and a
subset H of R we define xH := {zh : h € H}. Let K be an algebraic number
field. Denote by Ok the ring of integers and by My the collection of places
(equivalence classes of absolute values) on K. Recall that My consists of
finitely many infinite (i.e. archimedean) places (the number of these being
71472 where r1, ro denote the number of isomorphic embeddings of K into R
and the number of complex conjugate pairs of isomorphic embeddings of K
into C, respectively) and of infinitely many finite (non-archimedean) places
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which may be identified with the prime ideals of Og. For every v € My we
choose an absolute value | - |, from v. Now let S be a finite subset of Mg
containing all infinite places. The ring of S-integers and its unit group, the
group of S-units, are defined by

Os={zeK:|z|,<1lforv¢gS}, Oi={xecK:|z|,=1forv¢S},

respectively, where v ¢ S means v € Mg \S. For a finite extension J of K,
we denote by O s the integral closure of Og in J.
We first introduce families of solutions for norm form equations

(13) CNM/K(JZ‘) € ,802* inx € M,

where, as before, M is a finite extension of K, M is a finitely generated
Og-module contained in M and ¢, 8 are elements of K*. Let V := KM be
the K-vector space generated by M. For a subfield J of M containing K,
define the sets

(1.8) VIi={zeV:zJCV}, M/ =v/nM.

As is easily seen, we have \x € V7 for € V/, A € J. Further, define the
subgroup of the unit group of O; g,

(1.9) Unm, g ={e€O0fg: eM? = M7}

For instance from Lemma 9 of [5] it follows that ${x( s has finite index
in OF 4. Note that NM/K( ) € Of for € € Upqs. Hence if x € M7 is
solution of (1.3) then so is every element of the coset xiq, 7. Such a coset
is called a family of solutions (or rather an (M, J)-family of solutions) of
(1.3). Laurent [9] proved the generalisation of Schmidt’s result that the set
of solutions of (1.3) is the union of at most finitely many families.

Now let A = M1 ®...® M, be the direct K-algebra sum of finite extension
fields My, ..., M; of K. Note that A has unit element 14 = (1,...,1) (¢
times) where 1 is the unit element of K and that the unit group of A is
A* = {(&,...,&) € A& ... & # 0}, For each K-subalgebra B of A,
denote by Op s the integral closure of Og in B. Thus,

OA,S = OMl,S D...D OMt,S
is the direct sum of the integral closures of Og in My, ..., My, respectively,
and
Ops=0asNB

for each K-subalgebra B of A. From these facts and (1.6) it follows easily
that for b € 04,5 we have N,k (b) € Og and that for b in the unit group
0% s we have Ny g (b) € O%.

Let ¢, 6 € K*, let M be a finitely generated Og-module contained in A,
and consider the equation

(1.7) cNy/g(r) € BOs  inxe M.
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Families of solutions of (1.7) are defined in precisely the same way as for
(1.3), but now the role of the subfields J of M in (1.3) is played by the
K-subalgebras B of A that contain the unit element 14 of A. Thus, let
V := KM be the K-vector space, contained in A, generated by M and for
each K-subalgebra B of A with 14 € B define the sets

(1.10) VB.={zeV:z2BCV}, MP.=vEnMm
and the subgroup of the unit group of Op g,
(1.11) Un,p = {e € OF g : eMP = MP}

which is known to have finite index [O% ¢ : Um 8] in Of g (cf. [5], Lemma
9). Clearly, VB is closed under multiplication by elements of B (and in fact
the largest subspace of V' with this property). An (M, B)-family of solutions
of (1.7) is a coset g, g, where B is a K-subalgebra of A containing 14
and x € M?P is a solution of (1.7); since Na/k(e) € Of for ¢ € U, B,
every element of x4y p is a solution of (1.7). If A = M is a finite extension
field of K this notion of family of solutions coincides with that for norm
form equation (1.3), since then the K-subalgebras of A containing 14 are
precisely the subfields of M containing K. In [5], Gyéry proved among other
things that the set of solutions of (1.7) is the union of finitely many families.

1.2. Results. Below, we first recall Gy6ry’s result on the number of fam-
ilies of solutions of (1.7) and then state our improvement. As before, let K
be an algebraic number field, S a finite set of places on K containing all
infinite places, A = My & ... & M, where My,..., M; are finite extensions
of K, and M a finitely generated (not necessarily free) Og-submodule of A.
Let a; = (1, ...,04) (i =1,...,m) be a set of generators of M. Thus,

M={zx = (l1(x),...,l:(x)) : x € O}

where [;(x) = a1;21 + ... + iz, for j =1,...,¢t, and by (1.6) we have
Nk (z) = H;:1 N,k (l5(x)). We call d a denominator of M if d € K*
and if the polynomial al]_[;:1 N, /i (15(X)) has its coefficients in Og. This
notion of denominator is easily shown to be independent of the choice of the
generators ai, ..., .

We consider equation (1.7), and impose the following conditions on
S, A, M, 3 and ¢:
S has cardinality s,
A has dimension ZE:ﬂMi : K] =r > 2 as a K-vector space,
the K-vector space V := KM has dimension n > 2,
B € Os\{0}, cis a denominator of M.

For every finite place v on K, let ord,(-) denote the discrete valuation cor-

(1.12)

responding to v with value group Z; recall that |- |, = Cy ordv() for some
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Cy, > 1. For § € K*, let wg(3) denote the number of v ¢ S with ord, () # 0

and put
' ro\ws® r-ord,(8) +n
(7))

Further, let D be the degree over Q of the normal closure of the composite
M; ... M; over Q; thus, [K : Q] < D < (r[K : Q])!. Gy6ry [5] proved that
the set of solutions of (1.7) is contained in some finite union of cosets of unit
groups

(113)  210%, sU...Uz, 0% ¢ withw < (4sD)* "% 4y (8),
where for i = 1,...,w, B; is a K-subalgebra of A with 14 € B;, x; € A*
with x; B; C V, and where the set of solutions of (1.7) contained in z;0p, s
is the union of at most [O%. ¢ : U, p,] (M, B;)-families of solutions. This
implies an upper bound for the number of families of solutions of (1.7) which
depends on n,r, 3,s and the indices [OF, ¢ : Unm,p;] (cf. [5], Theorem 3),
so ultimately on the module M. We mention that Voutier [18], Chap. V
independently obtained a result similar to (1.13) but only for norm form
equation (1.3) and with K =Q, = 1.

Gyéry’s result can be improved as follows. A K-subalgebra B of A is
said to be S-minimal if 14 € B, and if for each proper K-subalgebra B’
of B with 14 € B’, the quotient group Of 4/O%p, ¢ is infinite. A family of
solutions of (1.7) is said to be reducible if it is the union of finitely many
strictly smaller families of solutions, and irreducible otherwise. Put

b2 () ::< r >wS(B)vl;[S<ordv(ﬂ)+n_1)7

(1.14) n—1 n—1

e(n) := %n(n +1)(2n+1)—2.

THEOREM 1. Assume (1.12). The set of solutions of

can be expressed as a finite union of irreducible families of solutions. More
precisely, the set of solutions of (1.7) is contained in some finite union of
cosets

(1.15) 1105, gU... U, 0p ¢ withw < (23372) (M3, ()

such that fori=1,...,w, B; is an S-minimal K-subalgebra of A, x; € A*
with x;B; C V', and the set of solutions of (1.7) contained in z;0%, g 15 the
union of at most [Op, s : YUnm,p,] (M, B;)-families of solutions which are all
irreducible. '
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Remark 1. The right-hand side of Gy6ry’s bound (1.13) depends dou-
bly exponentially on n and in the worst case when D = (r[K : Q])! triply
exponentially on r, whereas our bound (1.15) depends only polynomially on
r and exponentially on n3. (1.13) can be better than (1.15) in terms of r
only if D is very small compared with r, e.g. if A = Q" for some large r.
It is likely that, in (1.15), 233 can be improved upon, and that e(n) can be
replaced by a linear expression of n.

For some very special type of norm form equation, Voutier succeeded in
deriving an upper bound for the number of families of solutions independent
of the module M (see the remark after Corollary 1). It is an open problem
whether an explicit bound independent of M exists in full generality, for
equations (1.3) or (1.7) (1).

Remark 2. We can express the set of solutions of (1.7) as a minimal
finite union of irreducible families, that is, as a union F; U ... U F,; where
Fi,...,Fy are irreducible families of solutions, none of which is contained
in the union of the others. We claim that any other irreducible family of
solutions of (1.7) is contained in one of F7, ..., F,. In other words, F, ..., Fy
are the maximal irreducible families of solutions of (1.7). Hence Theorem
1 above gives automatically an upper bound for the number of maximal
irreducible families. To prove our claim, let G be an arbitrary irreducible
family of solutions of (1.7). Then G is the union of the sets G N F; for
i=1,...,9 and by Lemma 3 in Section 2, each of these sets is a union of
finitely many families. Then one of these families, contained in Fi, say, is
equal to G. Hence G C F;.

Remark 3. There is only one way to express the set of solutions of
(1.7) as a minimal union of irreducible families, since the families appearing
in such a union are the maximal irreducible families of solutions of (1.7).

We also investigate the problem to give an upper bound for the number
of K-subalgebras B of A for which (1.7) has (M, B)-families of solutions. Let
again V = K M. Suppose again that dimg A =r and dimg V =n. If z is a
solution in MPB, then x € VB N A*, where A* is the unit group of A. Hence
(1.7) can have (M, B)-families of solutions only for those K-subalgebras B
of A for which

(1.16) la€B, VBnA*£0.

In [5], Gy6ry proved that the number of algebras B with (1.16) is at most
n”. We can improve this as follows:

(!) Added in proof: W. M. Schmidt and P. Voutier have recently proved that, in
general, an upper bound for the number of families of solutions of (1.3) or (1.7) must
depend on the module M (see also footnote (%)).
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THEOREM 2. The number of K-subalgebras B of A with (1.16) is at most
(nmax(r —n,2))".

We do not know whether the dependence on 7 is necessary.

We derive some corollaries from Theorem 1. First we specialise Theorem
1 to norm form equation (1.3). Let K, S be as above so that in particular S
has cardinality s. Further, let M be a finite extension of K of degree r > 2,
M a finitely generated Og-submodule of M such that the K-vector space
KM has dimension n > 2, and ¢, # constants such that 5 € Og\{0} and ¢
is a denominator of M. Then, by applying Theorem 1 with A = M, we get
at once the following result which improves upon the corresponding results
in [5] and [18]:

COROLLARY 1. The set of solutions of

can be expressed as a finite union of irreducible families of solutions. More
precisely, the set of solutions of (1.3) is contained in some finite union of
cosets

1:1(’)?}1’5 U...uU wal’}w’S with w < (2337"2)6(")51[12(@

such that for i = 1,...,w, J; is a subfield of M containing K, x; € M*
is such that z;J; C V', and the set of solutions of (1.3) in ;07 ¢ is the
union of at most [OF. st 5] (M, J;)-families of solutions which are all
wrreducible.

As mentioned before, for a very special type of norm form equation
Voutier ([18], Theorem V.3) obtained an upper bound for the number of
families independent of M: namely, he proved that if M is a Z-module of
rank 3 contained in the ring of integers of an algebraic number field M of
degree r > rank M = 3, then the set of solutions of the equation

is the union of at most r2*"" families ?).

We return to equation (1.7). In what follows, we consider K as a K-
subalgebra of A by identifying o« € K with a - 14. The set of solutions of
(1.7) can be divided into O%-cosets xO0%. Gy6ry [5], Corollary 2, gave an
explicit upper bound for the number of O§-cosets of solutions of (1.7) in the
case where this number is finite. We can improve this as follows:

COROLLARY 2. Assume (1.12). Suppose that (1.7) has only finitely many
%-cosets of solutions. Then this number is at most (23312)¢(M)syy ().

(2) Added in proof: W. M. Schmidt and P. Voutier have recently constructed a
class of ternary cubic norm form equations N, /Q(w) = 1 in which there are equations

with arbitrarily many families of solutions.
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For B = 1, this gives the Corollary to Theorem 1 of [4].

Proof. Let B be one of the S-minimal K-subalgebras of A occurring in
(1.15). We may assume that (1.7) has an (M, B)-family of solutions, 24,5,
say. By identifying ¢ € O with € - 14, we may view O% as a subgroup of
U, B Let w < 0o be the index of OF in Uy, g. Then 2y, g is the union of
precisely w Og-cosets. So our assumption implies that w is finite. Therefore,
[Op.s : OF] is finite. Now since B is S-minimal, it follows that B = K. So
each algebra B; occurring in (1.15) is equal to K, i.e. O 5 = Of, and
Corollary 2 follows. m

In general, it is as yet not effectively decidable whether (1.7) has only
finitely many OF-cosets of solutions. Schmidt [17], Theorem 3, derived an
explicit upper bound for the number of solutions of norm form equations over
7 satisfying an effectively decidable non-degeneracy condition. It is possible
to give a similar effective non-degeneracy condition for (1.7) as well, which
implies that for every § € Og \ {0}, the number of O¥%-cosets of solutions
is finite. Moreover, under that condition we can derive an upper bound for
the number of O%-cosets of solutions with a better dependence on 3 in that
unlike the bound in Corollary 2, it does not depend on the quantities ord, (/)
(v € Mg\S) appearing in 12(5).

The vector space V = KM is said to be non-degenerate if VB N A* = ()
for every K-subalgebra B of A with 14 € B, B # K, where A* is the unit
group of A. (1.16) implies that in that case, each algebra B; occurring in
(1.15) is equal to K. Hence the set of solutions of (1.7) is the union of finitely
many Og-cosets.

COROLLARY 3. Assume (1.12) and in addition that V. = KM is non-
degenerate. Then the set of solutions of (1.7) is the union of at most
(23392)e(m)(s+ws () 0% -cosets.

Proof. We apply Theorem 1 with S’ := SU{v ¢ S : ord,(3) > 0}
replacing S. Thus, § € OF,. We have to replace s by the cardinality of S’
which is s’ := s + wg (). Moreover, in the definition of 15(/3), S has to be
replaced by S, which means that 15(3) has to be replaced by 1. Let M’ be
the Og/-module generated by M. Thus, every solution of (1.7) satisfies

(1.7) cNy/k(z) € Oy  inxeM.

Clearly, ¢ is a denominator of M’. Moreover, since V is non-degenerate,
the set of solutions of (1.7’) is the union of finitely many O%,-cosets. So by
Corollary 2, the set of solutions of (1.7), and hence also the set of solutions
of (1.7), is contained in the union of at most (23372)¢("s" O%,-cosets. Now
if any two solutions z1, 2 of (1.7) belong to the same OF,-coset then they
belong to the same Of%-coset: for if o9 = ex; with ¢ € OF,, then e" =
cNa/k(22)/cNajk(21) € OF, hence € € O. This proves Corollary 3. m
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2. An asymptotic formula. In this section, we state and prove an
asymptotic density result for the collection of O%-cosets of solutions of equa-
tion (1.7), in the case where the number of these is infinite. This asymptotic
density result is a consequence of (the qualitative part of) Theorem 1.

We recall the definition of absolute (multiplicative) Weil height. Let Q
denote the algebraic closure of Q. Let x = (z1,...,z,) € Q \{0}. Take
any algebraic number field L containing x1,...,%,, and let o1,...,04 be
the isomorphic embeddings of L into Q, where d = [L : Q]. Further, let
(z1,...,x,) denote the fractional ideal with respect to the ring of integers
of L, generated by x1,...,2,, and denote by Ny ,o((21,...,7,)) its norm.
Then the absolute Weil height of x is defined by

[T, max(|o;(21)],....|oi(za)]) }l/d‘
Nijg((z1,.. -5 2n))
It is clear that H(x) does not depend on the choice of L. Further,

(2.1) H(\x)=H(x) forxeQ"\{0}, xeQ".

Now let K be an algebraic number field and A = M7, & ... & M;, where
My, ..., M; are finite extension fields of K. We define the height H(x) of
x = (&,...,&) € A to be the absolute Weil height of the vector with
coordinates consisting of &1,...,& and their conjugates over K, that is, if
Tids---sTip;, With r; = [M; : K| are the K-isomorphic embeddings of M;

into Q then we put

H(x) = H(ria(81)s-mm (&) osmn(&e)se ooy 1o (&)
Note that by (2.1) we have
(2.2) H(x) = H(Az) forx € A\{0}, A € K*,

i.e. H may be viewed as a height on the collection (A\{0})/K* of K*-cosets
xK* (x € A\{0}). This height satisfies

(2.3) #{x € (A\{0})/K* : H(z) < X} <oo for X > 0.

Namely, by Northcott’s theorem [10], [11] we know that for every d >
0, X > 0, there are, up to multiplication by elements from @*, only finitely

many x = (&1,....6,) € Q'\{0} with H(x) < X and [Q(&) : Q] < d

H(x) = H(z1, ..., 75) ;:{

for i@ = 1,...,n. This implies that the set of non-zero elements z of A
with H(z) < X can be divided into finitely many classes, where x =
(&, &), vy = (n1,...,m¢) € A are said to belong to the same class
if (), 1 (&) = almia(m),..., e, () for some o € Q . But

clearly, if for instance & # 0, then a = 7 1(m /&) = ... = 1, (m /&),
which implies that o € K. So if 2,y € A\{0} belong to the same class then
they belong to the same K™*-coset.
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For a finitely generated abelian group A, denote by A, the torsion
subgroup of A and by rank A the rank of the free abelian group A/A¢os. Let
as usual S be a finite set of places on K which contains all infinite places.
For a K-subalgebra B of A containing the unit element 14 of A we put

0B,s := rank Op 5/0%,

where we view O as a subgroup of OF ¢ by identifying e € Og withe-14. By
a straightforward generalisation of Dirichlet’s unit theorem, OF g is finitely
generated, hence pp g is finite.

Let again 8,c € K*, and let M be a finitely generated Og-submodule
of A such that condition (1.12) holds. For every X > 0 we consider the set
of solutions of

(2.4) ¢Na/k(z) € pOs inxzeM with H(z) < X.

From (2.2) and Of C K* it follows that the set of solutions of (2.4) can
be divided into O%-cosets xOf%. Denote by N(X) the maximal number of
distinct O%-cosets contained in the set of solutions of (2.4). From (2.3) it
follows that N(X) is finite: namely, if , y are solutions of (2.4) with y = ez
for some ¢ € K*, then €" = Ny /k(y)/Na/k(x) € OF, so x,y belong to
the same O%-coset. For norm form equations over QQ, asymptotic formulas
for N(X) were derived by Gyéry and Pethé [6] (in the archimedean case)
and Pethé [12] (for an arbitrary finite set of places S); Gyéry and Pethé [7]
and Everest [2] obtained more precise results in certain special cases. From
(the qualitative part of) Theorem 1 we derive the following generalisation
of Peth&’s result [12]:

COROLLARY 4. We have
N(X) =~(log X)? +O((log X)¢™)  as X — oo,

where v is a positive number independent of X and where ¢ is the mazimum
of the numbers op g, taken over all K-subalgebras B of A with 14 € B
for which the equation cN i (x) € BO% in x € M has (M, B)-families of
solutions.

We mention that for Og = Z, Everest and Gy6ry [3] recently obtained
some refinements for equations of the form (1.4).

Remark 4. 7, o and the constant in the error term are all ineffec-
tive. By (1.16), we can estimate o from above by the effectively computable
number gg, which is the maximum of the numbers pp g, taken over all K-
subalgebras B of A with 14 € B, VB N A* # (). Further, using the explicit
bound in Theorem 1, one can effectively compute an upper bound for v; we
shall not work this out.
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To derive Corollary 4 we need some lemmas. The first lemma is undoubt-
edly well-known but we could not find a proof of it in the literature.

LEMMA 1. Let A be a finitely generated additive abelian group of rank o,
and let f be a function from A to R with the following properties:

f(x) >0 forxe A

flx+y) < fl@)+ fly) formye A
fAx) = Af(z) forze A, N€ ZLso;
for every Y >0, the set {x € A: f(x) <Y} is finite.

(2.9) #reA: f(x) <Y}=Y24+0(Y? ) asY — o
where v = (A, f) is a positive constant.

Proof. We first assume that A = Z¢. For z = (&1, ...,&,) € R? we define
the maximum norm ||z|| := max(|&;],. .., |&,|). Letting e; = (0,...,1,...,0)
(i =1,...,0) denote the vector in Z¢ with a single 1 on the ith place, we
infer from (2.5)—(2.7) that for x = (&1,...,&,),y = (1, ...,1,) € Z2 we have

[f (@) = f(y)| < max(f(z —y), fly —2)) < Z & — mil max(f (e:), f(—ei)),

whence

(2.10) [f(@) = f() < Cllz =yl

where C' := 37 | max(f(e;), f(—e;)).

We extend f to a function on Q¢ by putting f(z) := A"1f(\z) for
x € Q2 where A is the smallest positive integer such that Az € Z¢. This
extended f satisfies again (2.5)-(2.7) and (2.10), but now for all z,y € Q¢
and A € Q>¢. Using (2.10) and taking limits we can extend f to a continuous
function f : R — R which satisfies (2.5)—(2.7) and (2.10) for all z,y € R®
and A € R>g.

For Y > 0 we define the set Cy := {z € R¢ : f(z) < Y'}. Since f is
continuous, this set is Lebesgue measurable. By (2.7) we have Cy = {Yz :
x € C1}. Hence Cy has Lebesgue measure 7Y2, where v is the Lebesgue
measure of C;. We can cover R¢ by the unit cubes U, := {x € R? : [z —z|| <
1/2} (z € Z2). These cubes have Lebesgue measure 1, and any two different
cubes have at most part of their boundary in common. (2.7) and (2.10)
imply that

Cy_cyp2 C U U.CCyycyp forY >CJ2.

z€Z°
f(z)<Y
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Now let n(Y) be the number of z € Z2 with f(z) < Y. By comparing
Lebesgue measures, we get

(2.11) WY = C/2)¢ <n(Y) <A(Y +C/2)¢  for Y > C/2.

From (2.8) it follows that n(Y) is finite; hence ~ is finite. Moreover, for Y
sufficiently large, n(Y) > 0, hence v > 0. Now (2.9) follows at once from
(2.11). This settles the case A = Z¢°.

Now let A be an arbitrary additive abelian group. There are uy,...,u, €
A such that every x € A can be expressed uniquely as

r=t+Cui+ ...+ u, witht€ Ayors, 2= (C1,...,Cp) € Z°.

Put f'(z) :== f(Giur + ...+ (oup). (2.6) implies that f'(z) — f(—t) < f(z) <
f'(z)+ f(t). Further, (2.7) with A = 0 implies that f(0) = 0. More generally,
(2.7) implies that f(t) = 0 for ¢ € Ayors since for such ¢ there is a positive
integer A with At = 0. Hence f(z) = f'(2) for x € A. Clearly, f’ and Z°
satisfy (2.5)-(2.8). So by what we proved above we have

#{2€Z%: f(2) <Y} =79Y2+0(Y? ) asY — oo

with some positive 4’. From this, one deduces easily that (2.9) holds with
v ="+ #Aiors. This completes the proof of Lemma 1. m

For a subset F of A with the property that for each z € F the coset
rQ0% is contained in F, we denote by Nx(X) the maximal number of distinct
O%-cosets xO% with z € F and H(z) < X.

LEMMA 2. Let F =z, be a family of solutions of (1.7), where B is
a K-subalgebra of A containing 14 and x € MP. Then for some positive
real v depending only on M and B we have

(2.12) Nz (X) = v(log X)255 + O((log X )25~ 1) as X — oo.

Proof. We use the following properties of the absolute Weil height which
are straightforward consequences of its definition:

H(x)>1 forxeQ@"\{0},
(2 13) H(xlylw-'»xnyn)SH(xla"'axn)H(ylv"-ayn) _
’ for x1,...,%n, Y1,...,yn € Q,
H(zp,...,2}) = H(z1,...,2,)" for x1,...,2, € Q, X € Z>o.
Let 4 := Upq, and 0o := 0p,s. Since U has finite index in OF g, the factor
group 4/0% has rank gg. We apply Lemma 1 to A = $/O% and f = log H.
By (2.2), f is well-defined on A. Further, (2.13) implies (2.5)—(2.7), and (2.8)
follows from (2.3) and the fact that /0% = U4/(K* NY) may be viewed as
a subgroup of A*/K*. It follows that

(2.14) Ny(X) = v(log X)? + O((log X)) as X — oo
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for some positive constant v. By (2.13) we have ¢; H (2vu) < H(u) < coH (zu)
for u € U, where ¢; = H(x)™! and ¢ = H(z™'), and this implies that
Ny(c3'X) < Npw(X) < Ny(e; ' X). Now Lemma 2 follows from (2.14) and
the fact that both (log(c;* X)) and (log(cy ' X)) differ from (log X )2 by
at most O((log X)2°~1). m

LEMMA 3. For any two K-subalgebras By, Bs of A containing 14, the
intersection of an (M, By)-family and an (M, Bs)-family is the union of at
most finitely many (M, By N Bs)-families.

Proof. Let G; = x4 B, with z; € MPBi for i = 1,2 be the two
families of solutions and put B := By N Bsy. Let 29 € G N Gs. Then zg €
MBr A MB2. From definition (1.10) it follows easily that MB: C M5B
for i = 1,2. Therefore, 1o € MPB. Further, we have G; = zolp g, for
i = 1,2, hence G1 N Ga = xo(Upn,B, N YU, B,). We claim that Upq p is a
subgroup of finite index in Unq g, N Urs,B,; then it follows at once that
G1 N Gy is the union of finitely many families yirg g with y € MB. To
prove the claim, let ¢ € U p and take i € {1,2}. Then ¢ € B C B,
whence by (1.10), eMBi C VBi where V = KM. Further, by (1.11) we
have eMBi C eMB = MP C M. Therefore, by (1.10), eMBi C MPB:.
Similarly, we find e~ MP: C MPi. Hence eMBi = MPBi ie. e € Upy p, for
it =1,2. So Upn,B C Up,B, N B,. Now our claim follows from the fact
that both groups have finite index in Op ¢ = 0% s NO%L, 5. w

Proof of Corollary 4. By Theorem 1, the set of solutions of (1.7)
can be expressed as

(2.15) FiU...UF,

where for each i, F; is an (M, B;)-family of solutions of (1.7) for some
K-subalgebra B; of A containing 14. For a tuple I = {i; < ... < i} of
integers from {1,...,p}, let By := B;, N...NB;,, Fr .= F;, N...NF;,
and let Nj(X) be the number of cosets zOF with x € Fr and H(z) < X.
Put 01 := max{op, s : i = 1,...,p}. Thus, op, s < g1 for each tuple I as
above. Lemma 3 implies that for each I, F; is the union of finitely many
(M, By)-families. So by Lemma 2 we have

Ni(X) =v7(log X)2* + O((log X)2*71)  as X — o0

where v; = 0 if pp, s < 01. Note that v; > 0 for at least one i € {1,...,p}.
Now by (2.15) and the rule of inclusion and exclusion we have

NX)=> Ni(X)= > Ni(X)+ > Ni(X)—...,
i=1 #I1=2 #I1=3
hence

N(X) =v(log X)?* + O((log X)2*71)  as X — oo
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where

p
VZZ%‘— Z 1+ Z Y=
i=1 #I1=2 #1=3
Since N(X) > N;(X) fori=1,...,p we have v > ; for i = 1,...,p, hence
v > 0. Lemma 2 implies that (1.7) does not have any family of solutions
zUpm,p with op s > 01; therefore, o1 = p. This completes the proof of
Corollary 4. =

3. Reduction to O} g-cosets. Let K be an algebraic number field,
and let S, My,...,My,A= M &...® M;, M be as in Section 1.2. Further,
let s = #S,r = dimg A > 2,n = dimg KM > 2,¢,3 be as in (1.12). For
r € A, we define the coset 207 ¢ = {ex : ¢ € O} g}. In this section we
prove Lemma 4 below which is in fact an improvement of Lemma 5 of [5].

LEMMA 4. The set of solutions of
(1.7) cNa/g(r) € BOg  inzeM

is contained in some union x10% g U ... Uxy, O} g where t1 < Ya(B) and
where for j =1,...,t1, x; € M is a solution of (1.7).

We prove this by slightly refining some arguments of Schmidt [17]. In
the proof of Lemma 4 we need some further lemmas. We first recall some
lemmas from [17]. Let E be a field endowed with a non-archimedean additive
valuation V' (i.e. V(xy) = V(x) + V(y),V(z + y) > min(V(x),V(y)) for
xz,y € E,V(0) = oo, and there is an z € E with V(x) # 0,V (z) # o0).
For z = (z1,...,2,) € E™, put V(z) = min(V (z1),...,V(z,)). Further, let
Ly,...,L, ber > n linear forms in n variables with coefficients in F.

LEMMA 5. Let z € E™ with z # 0. There is a subset S of {1,...,r} of
cardinality n — 1 such that every z' € E™ with

V()2 V), VL) = V(Li(z) forieS
satisfies
V(Li(z')) > V(Li(z)) fori=1,...,r
Proof. This is precisely Lemma 13 of [17], except that that lemma has
the additional condition V(z) = 0. Suppose that V(z) # 0. Let A € E be
such that V(\) = V(z) and put z; := A~'z. Then V(z;) = 0. Now Lemma

5 follows at once from Lemma 13 of [17] applied to z;, on observing that
V(Li(z1)) =V (Li(z)) = V(A fori=1,...,r. m

We call the subset S related to z as in Lemma 5 an anchor for z.
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LEMMA 6. Let dy,...,d, be positive rational numbers, v a real and S a
subset of {1,...,r} of cardinality n — 1. Put

7(S):= {z € E": idiV(Li(z)) =1, S is an anchor for z}.
=1
Then for any z1,2z2 € T(S) with V(Li(z1)) = V(Li(z2)) for i € S we have
V(LZ(Zl)) = V(LZ(ZQ)) f07’ 1= 1, e, T

Proof. Let Z1,Z2 € T(S) with V(LZ(Zl)) = V(L»L(ZQ)) for i € S.
We may assume without loss of generality that V(z2) > V(z1). Then by
Lemma 5 we have V(L;(z2)) > V(L;(z1)) for ¢ = 1,...,r. Together with
S diV(Li(z;)) = for j = 1,2 this implies that V(L;(z2)) = V(L;(z1))

fori=1,...,r. m

As before, if we express an element of A as a t-tuple (&1,...,&:), say,
then it is implicitly assumed that & € M; for i = 1,...,t. Fix v € Mg \ S.
For i =1,...,t, let w;1,...,w;y denote the places on M; which lie above
v, and denote by e;;, f;; the ramification index and residue class degree,
respectively, of w;; over v. Let K denote the algebraic closure of K. Choose
a continuation of ord, to K and denote this also by ord,; then ord, assumes
its values in Q. For ¢ = 1,...,t let &; denote the collection of K-isomorphic
embeddings of M; into K; then & can be expressed as a disjoint union,

51 = (‘:1‘1 U...u gigi with #gm = eijfij for j = 1, N
such that for j =1,...,9;,
(3.1) ordy,; (o) = egjordy,(o(a)) for a € My, o € &;.
LEMMA 7. There are integers ¢;; (i =1,...,t, j=1,...,¢9;) and u, with

uy < ordy,(B) such that for every solution x = (&1,...,&) € M of (1.7) we
have

(32) ordwij(ﬁi)—cij >0 fOT’izl,...,t, ]: 1,...,gi,
t  gi
(3.3) D fijlordu,, (&) = cij} = uo.
i=1 j=1
Proof. Let {ay = (ag1,...,axt) : K =1,...,m} be a set of generators

of M as an Og-module. Define the integers
(3.4) ¢ij = min{ordy,, (aki) :k=1,...,m} fori=1,....,t, j=1,...,g.

Let x = (&1,...,&) € M be a solution of (1.7). Then z = ;" | Bray for
certain 31, ..., By € Og. Since the place w;; lies above v € Mk \ S, we have
ordey,, (Bk) > 0fori=1,...,t,j =1,...,g;. Together with & = >} | Brou
for i = 1,...,t and (3.4), this implies ord.,;(§;;) > ¢ for i = 1,...,1,
j=1,...,g;. This proves (3.2).
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We now prove (3.3) for some u,. By assumption, ¢ is a denominator for

M, ie.

t
CHNMi/K(alin + ...+ Oészm) c Os[Xl, .. ,Xm]
i=1
Since © = (&1, .., &) is a solution of (1.7) we have ¢ [[\_, N, k(&) € BOG,
Slo)

m

t
33 PO =T My X ) € Ol X
i=1 k=1 >*

For a polynomial P(X) € K[X1,...,X,,] denote by ord,(P) the minimum
of the numbers ord,(«) for all coefficients a of P. By Gauss’ lemma (cf.
[8], p. 55, Prop. 2.1) we have ord,(PQ) = ord,(P) + ord,(Q) for P,Q €
K[X1,...,X,]. By applying this to (3 5) we obtain

0 < ord,(F) = ord, () + Z > 1 min ord, (o (aki/&))

i=10€&; —

= ord,( +ZZ Z 121]1612 ord, (o(agi/&:))

= 1] 10’651]

= ord,(8) + sz” mln ordy,; (axi/&) by (3.1)

’L].]].

= ord, () + Z Z fij{eij —ordy,, (&)} by (3.4).

=1 j=1
This implies (3.3) with u, = ord, () — ord,(F). m

LEMMA 8. If z = (&1,...,&) runs through the set of solutions of (1.7),
then the tuple v, (x) := (ordy,,(§) i =1,...,t, j =1,...,g;) runs through
ordq,(ﬁ)+n71) )

n—1

a set of cardinality at most (nil)(
Proof. Let
O, :={y € K:ord,(y) >0}, M, :=MO0O,

be the local ring at v, and the localisation of M at v, respectively. We note
that Og € O, and M C M,. Since O, is a principal ideal domain, the
O,-module M, is free of rank n = dimxg KM. Let {ay = (ag1,...,0pt) :
k = 1,...,n} be an O,-basis of M,. Further, let z = (&,...,&) € M
be a solution of (1.7). Then z = z;a; + ... + 2z,a, for some vector z =
(21, ...,2n) € OF which is uniquely determined by z. For each i € {1,...,t}
and each o € &; (the collection of K-isomorphic embeddings of M; into K)
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define the linear form L;,(z) := o(a1;)z1 + ... + 0(@n;i)2zn. Thus
(36) 0'(&) :Lw(z) fori=1,...,t, 0 €&;.

Recall that Zzzl[Mi : K] = r. Let Lq,...,L, be the linear forms L;,
(i=1,...,t,0 €&) insome order. Fori=1,...,t,7=1,...,¢;, let

]:ij = {k‘ S {1,...,7“} : Ly = L;, for some o € gij},
where the set &;; is defined by (3.1). Then by (3.1) and (3.6),

(37) ordwij (&) = eij OI‘dU (O’(fz)) = eij OI‘dU(Lk(Z))
fori=1,...,t, j=1,...,9, ]{36.7:1'3'.

We apply Lemma 6 with E = K and V = ord,. Let S, C {1,...,r} be an
anchor for z in the sense of Lemma 5. Then S, has cardinality n — 1, and
the tuple (ord,(Lk(z)) : k =1,...,r) is uniquely determined by S, and the
(n — 1)-tuple (ord,(Lg(z)) : k € S;). Let

S,={(,j):1<i<t, 1<j<g, Fiy NS #0}.

Now (3.7) implies that once S, is given, the tuple (ord.,, (&) : (i,)) €
S!) determines uniquely (ord,(Lg(z)) : k € S.), the latter determines
uniquely (ord, (Lg(z)) : k = 1,...,r) and this last tuple determines uniquely
(ordey,; (&) i =1,...,t, j = 1,...,9;) = ¥y(x), again by (3.7). We con-
clude that ¢, () is determined uniquely by S, and the tuple (ord.,; (&) :
(i,4) € ;).

By Lemma 7 there are integers ¢;; (i =1,...,t, j=1,...,¢;) such that
ordy,; (&) — ¢y > 0 for (i,5) € S, and

(38) Y fordu, (&) — e} <33 filordu, () — ey} < ordy(8).

(i,9)€S, i=1j=1

The set S, has cardinality < n—1, since S, has cardinality n—1 and the sets
Fi; are pairwise disjoint. Given the set S, (3.8) implies that for the tuple

(ordy,; (&) = (4,7) € S,) we have at most (Ord“gg‘)sz#sé) < (Ord”f_)irn_l)
possibilities. Moreover, as S, is a subset of {1,...,r} of cardinality n — 1,

we have at most (nil) possibilities for S,. This proves Lemma 8. m

Proof of Lemma 4. For z = (§,...,&) € A define the tuple of
integers 1(z) := (ordy,(§) i =1,...,t, w;1S) where w; 1S indicates that
w; runs through all places on M; not lying above a place in S. Then ¢ is
an additive homomorphism on A* with kernel O} g, since z = (&1,...,&) €
Ohse & €0y gfori=1,...tsordy,(§)=0fori=1,...¢ wtS.
In particular, for z1,2z5 € A* we have ¥(z1) = ¢¥(x2) & 110} ¢ = 2207 g

Now ¢ (z) can be obtained by combining all tuples ¢, (z) (v € Mgk \ S)
from Lemma 8. Hence if = runs through all solutions of (1.7), then (x)
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runs through a set of cardinality at most

1 (n r 1) <ordv(f)_+1n - 1) i),

vEMK\S

This completes the proof of Lemma 4. m

4. Proof of Theorem 1. Let K, S, s = #S, My,..., My, A= M; &
o ®My, r=dimg A > 2, M, n =dimg KM, ¢, § be as in (1.12). Further,
put V := KM. By Lemma 4, the set of solutions of (1.7) is contained in some
finite union of O} g-cosets. For the moment, we consider only the solutions
of (1.7) in a fixed 0% g-coset 290} 5. More generally, we deal with elements
of the set

(41) VN xooz’s
where xg is a fixed element of A*. As before, we view K as a K-subalgebra
of A by identifying o € K with aly = (..., ) (r times).

LEMMA 9. Let B = {a € A : aV C V} be the algebra of scalars of V.

Suppose that n > 2 and that the quotient group (’)*B’S/(’)g s finite. Then
there are proper K-linear subspaces Y1, ...,Y;, of V such that

2

VNzo0h s CY1U...UY;,  withty < (250047,

Proof. We assume that x¢p = 1; this is no loss of generality since if
zo # 1, we may prove Lemma 9 with a:glv N O} s replacing VN zoO0} .
We want to apply Lemma 16 of [4] and for this purpose we must introduce
some notation.

For i =1,...,t, let 71,...,7, (r; = [M; : K]) be the K-isomorphic
embeddings of M; into K and define the map f: A — K " by

f(aj) = (7-171(51)7 s Tl (51)7 R Tt,l(&)? <o Tty (ft))

for x = (51,...,515) € A.

Thus, f(z) = (21,...,2,) € K . Let G denote the Galois group of K/K.

Clearly, for ¢ € G, @ = 1,...,t, 0 0T1,...,0 0 T;,, iS a permutation
of 7i1,...,7ir;- This implies that there is an action by G on {1,...,r}
attaching to each o € G a permutation (o(1),...,0(r)) of (1,...,r) such
that for z € A we have
o(x;) =54 fori=1,...,r, 0 €G,
where (z1,...,x,) = f(x). Define the K-algebra
A={x=(x1,...,2.) eK : o(x;) = x5 fori=1,...,7, 0 € G}.

Then f is an injective K-homomorphism from A to A. For instance from
Lemma 2 of [4] it follows that K-linearly independent vectors of A are also
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K-linearly independent; so dimg A < r = dimg A. It follows that | is also
surjective, i.e. a K-algebra isomorphism from A to A. Let Og denote the
integral closure of Og in K, (5’; the unit group of Og, and @ZT the r-fold
cartesian product of this unit group. It is easy to verify that

(4.2) f(O4s) =AN(0g).
A symmetric partition of {1,...,r} is a collection of sets P = {Py,..., P;}
such that P, U...UP, ={1,...,r}, P,NP; =0 for 1 <i < j <gq and such

that for each P € P, o € G, the set o(P) = {o(k) : k € P} belongs also to
P. To a symmetric partition P we attach the K-subalgebra of A,

Ap ={x=(z1,...,2,) € A: z; = z; for each pair of indices ¢, j

belonging to the same set of P}.
Let W :=§(V) and let P be a symmetric partition of {1,...,7} such that
(4.3) cW CW  for xz € Ap.

Let B := §~1(Ap). Then B is a K-subalgebra of B. Hence OE,s/OZ* (with
e € OF identified with (e,...,¢) (¢ times)) is finite. Now (4.2) implies that
f maps OBS to Op g == Ap N (@*S)”. Further, §f maps O to f(O%) =
{(e,...,e) (r times) : € € O%}. Hence

(4.4) Op s/f(O%) is finite.

Now let P be the symmetric partition specified in the statement of Lemma
16 of [4]. This P satisfies (4.3), hence (4.4) and so the condition of Lemma 16
of [4] is satisfied. Therefore, according to Lemma 16 of [4], the set W N (Og)"
is contained in some union W; U ... U W,, of proper linear subspaces of W

2 P~
with ¢, < (26674)™ °. By (4.2) we have V N 045 =W n(Og)"). Hence
VNOL s CYiN...NY, with Y; = f71(W;) for i = 1,...,tp. This proves
Lemma 9. m

We want to relax the condition of Lemma 9 that Of 4/O% be finite and
for this, we need some preparations.

We recall that a K-subalgebra B of A is said to be S-minimal if 1 4 € B,
and if B has no proper K-subalgebra B’ with 14 € B’ for which O% /0%, 5
is finite. Every K-subalgebra B of A with 14 € B has an S-minimal K-
subalgebra B’ for which Of 4/O% g is finite. Namely, let B’ be the inter-
section of all K-subalgebras By of B with 14 € B; for which (9*375/(9*3173
is finite. Then OF, ¢ is the intersection of all groups O, ¢. Furthermore, B
has only finitely many K-subalgebras. Hence O% ¢/O%, g is finite. If B” is
a K-subalgebra of B’ with 14 € B” such that (’)7*3,73/(9;3,,’5 is finite, then
O%.5/ Ok g is finite, and therefore B” O B’. Hence B’ is S-minimal.
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In what follows, let
B={xe€A:2V CV}

be the algebra of scalars of A, and let B’ be an S-minimal K-subalgebra of
B for which Of ¢/O% g is finite. Every K-subalgebra of A is semisimple,
i.e. isomorphic to a direct sum of finite extension fields of K. So in particular
we have

B=Lie.. el

for certain finite extension fields L}, . .., L; of K. Then B’ has K-subalgebras
LY,..., Ly such that

B'=LY+...+ L] as vector space,
(4.5) Ly -L7=(0) for1<i<j<g,

L!>L, fori=1,...,q.
Fori=1,...,q, denote by 1; the unit element of L. Then (4.5) and 14 € B’
imply that
(4.6) la=1+...+1, 1;-1,=0 for 1<i<j<q.
Let 1, = (éila---ugit) with iij S Mj for g =1,...,t. Since 112 = 1;, we
have £i2j = &;;, whence &;; € {0,1} for j = 1,...,t. Together with (4.6) this
implies that there are subsets Pp,..., P, of {1,...,t} such that
(47) 11 = (gila-'-ygit) with gij =1 for ] € Pi, gij =0 for ] gpl,
Define the K-algebras

Ai: @MJ fOTizl,...,q,
JEP;

the projections

II :A— A - (&, ..., &) — (& :jeP) fori=1,...,q,
and

II=(IL,...,I1I)) : A= A1 & .. DAy : x— (I (z),...,,(z)).

11 is merely a permutation of coordinates, so I] is a K-algebra isomorphism
from A to A; @ ... ® A,. Further define

B, :=1I1;(B), L;:=1I;(B"), V;:=I(V) fori=1,...,q,
where B;, L; are K-subalgebras, and V; is a subspace of A;. Then we have:

LEMMA 10. (i) [I(B)=B1®...® By, I(B')=L1®...® Ly, II(V) =

Vie...eV,.

(ii) Fori=1,...,q, L; is isomorphic to a finite extension field of K.
(i) Bi={z € A;: 2V; CV;} fori=1,...,q.
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Proof. (i) We prove only that II(V) = Vi @& ... & V,; the proofs that
II(B) =B1®...®& By and I[I(B') = L1 @ ... ® L, are entirely similar.
It is obvious that II(V) C Vi & ... @ V. Conversely, let z = (z1,...,2,)
with z; € V; for j = 1,...,q. Choose y; € V such that II;(y;) = x; for
j=1,...,q and put y := Z‘;:lljwyj. Since 1; € L;’ C B’ C B we
have 1;V C V for j = 1,...,q; hence y € V. Now (4.7) and (4.8) imply
that for j = 1,...,¢q, the coordinates of y with indices in P; are equal
to the corresponding coordinates of y;. Hence II;(y) = II;(y;) = z; for
j=1,...,q. Therefore, II (y) = x. We infer that indeed II(V) = V1 ®...®V,.

(ii) Let ¢ € {1,..., q}. We first show that II,(L)) = II;(B’). Now L/ is a
K-subalgebra of B’, hence II;(L!) C II;(B’). Conversely, let € B’. Then
r=x1+...+xywithz; € L} for j =1,...,q. Now II;(1;) = (1,...,1) and
by (4.5) we have 1;,2; = 0 for j # i. Hence
This shows that indeed IT;(L!) = II;(B’). Now II; is non-trivial as its image
contains (1,...,1) and LY is a field, hence L; = II;(LY) is a field.

(i) Let i € {1,...,q}. Put B; := {z € A; : 2V; C V;}. For z € B,
we have x = II;(y) for some y € B, whence 2V; = II;(yV) C II;(V) = V,.
Therefore, B; C Ez To prove the opposite inclusion, consider B=1 —1(§1@
G Eq). Then B is a K-subalgebra of A and for z € B we have, by (i),
V=10 (z)- Vi®...aV)) CI'(Via...aV,) =V, therefore,
B C B. It follows that EZ C Hl(é) C II;(B) = B;, which completes the
proof. m

Fix again ¢ € {1,...,q}. We have L; C B; C A;, so that A; may be
viewed as an L;-algebra and B; as an L;-subalgebra of A;. Further, the unit
element 14, of A; is just the unit element of L;, and so 14, € B;. Lastly,
by Lemma 10(iii), V; is an L;-vector space. Note that O, 5 = ®jep,Onm;,s,
Op,.s = Oa, s N B;, Or, s = Oa, 5N L; are the integral closures of Og
in A;, B;, L;, respectively. Clearly, Op, ¢ / 07, s is a homomorphic image of
Op.5/ O 5 50

(4.9) Og, 5/01, s is finite.
We are now ready to prove the following generalisation of Lemma 9:

LEMMA 11. Either V = yB’ for somey € A, or there are proper K -linear
subspaces Y1,...,Y:, of V' such that

3
2
VNzo0hg CY1U...UY,, withts < (25604 "

Proof. As mentioned before, for i = 1,...,q, V; may be viewed as
an L;-vector space. First assume that dimy, V; = 1 for ¢ = 1,...,¢q. Then
for ¢ = 1,...,q there is an y; € A;, such that V; = y;L;. Together with
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Lemma 10(i) this implies that V = II-'(y1 L1 & ... ® y,L,) = yB’ with
Yy = H_l((ylv cee 7yq))-

Now assume that dimp, Vi > 2, say. Put n; := dimp, V4, r; := dimp, 4,
let S7 be the set of places lying above those in S, and s; the cardinality of
Si. Then since V; is a K-linear subspace of II(V) =V, and A, of I1(A) = A,
we have

nl[leK]:divalgn, rl[leK]:dimKAlgr,
s1 < s[L; : K.
Further, putting z(, := II;(x(), we have
H1(V N IL’()OZﬁ) - ‘/1 N 'CUE)OZ,S‘
In view of Lemma 10(iii) and of (4.9), we may apply Lemma 9 with L4,

Ay, By, Vi, S1 replacing K, A, B,V,S. Thus, there are proper Li-linear
subspaces Z1, ..., Z;, of Vi with

2 2
t3 < (2667%)”151 < (266r4)" s
such that Vlﬂzz,{)(’)jh,s C Z1U...UZ,,. But each of these subspaces Z; is a K-

linear subspace of V;. Hence it follows that Vﬂazo(’)X ¢ € Y1U...UY,, where
Y; = 117 '(Z;) is a proper K-linear subspace of V. This proves Lemma 11. m

We recall that e(n) is defined by e(n) = in(n+1)(2n + 1) — 2.

LEMMA 12. There are y1,...,yr, € A" and S-minimal K-subalgebras
Bi,...,B:, of A such that

yiB; CV  fori=1,..., 14,
VNaOhs Cy10p, sU.. .Uy, Op, s with ty < (2337r%)

e(n)s

Proof. We first deal with the special case where V- = yB; for some y € A
and some S-minimal K-subalgebra B of A. Assume that V NzoO0} ¢ # 0
and let y; € VNxoO% g. Then 2007 ¢ = 1107 ¢. By assumption we have
xo € A*, hence y, € A*. Further, y; = yz for some z € By, and so z € By.
Therefore, V = yB; = y1 B;1. It follows that

VN CC()OZ,S =y BN yloﬁ,s = leEhS’

which implies Lemma 12 for V = yB;.

We prove Lemma 12 in full generality by induction on n = dimg V.
If n =1, then V = yK for some y € A and we are done since K is an
S-minimal subalgebra of A. Suppose that n > 2, and that V is not equal
to yB for some y € A and some S-minimal K-subalgebra B of A. Then
by Lemma 11 we have V N z00% ¢ C Y1 U ... UY;, with t3 < (266r4)n28,
where Y7, ...,Y,, are proper K-linear subspaces of V. Now by the induction
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hypothesis we have for i = 1,...,t3,

Y; Nao0h s CyinOp, sV Ui O, , s with ts < (23372)c (1)
where y; ; € A*, and B; ; is an S-minimal K-subalgebra of A with y; ;B; ; C
Y; for j =1,...,ts5. It follows that

ts ts
VN %00273 - U U yi,jO*Bi,j7S with yi,jBi,j - V.

i=1j=1
2
Since t3ts < (233r2){2n Feln=D}s _ (233r2)5(n)s, this proves Lemma 12. m
Before finishing the proof of Theorem 1, we prove the following lemma:

LEMMA 13. Let B be an S-minimal K-subalgebra of A, and xolha B
an (M, B)-family of solutions of (1.7) with xg € MP. Then xolpm p is
irreducible.

Proof. Suppose that xoUxq,p is reducible. Then there are proper sub-
families 214 By, - - . Twla, B, Of ToUaq, B such that

(4.10) wOﬂM,B 23315.1/\/1731 U---wauM,Bw-
Further, there is no loss of generality to assume that
(4.11) s, e MP, BiCB fori=1,...,w.

Namely, if for instance Bj is not a K-subalgebra of B then by Lemma 3,
z18m.B, = 28, Nz18hay B, is the union of finitely many (M, B N By)-
families and, in (4.10), we may replace x4y, g, by this union. Further, if
B, = B then 214, B, is not a proper subfamily of zolUnr 5.

Put op := rank (9*375/(9;, 0 = max;—i, . ,{rank O*BZ_VS/O;}. From
(4.11) and the fact that B is S-minimal, it follows that ¢ < gp. On the
other hand, letting Nz(X) be the quantity in the statement of Lemma 2, it
follows from Lemma 2 and (4.10) that

Naosing s (X) = v(log X)?” + O((log X)?™ ") as X — 0o with y > 0,
Nﬂco”»/mB (X) = NU;-J’:l zihm, B, (X) = O((log X)g) as X — oo.

Thus, the assumption that zoin g is reducible leads to a contradiction.
This proves Lemma 13. =

Proof of Theorem 1. By Lemma 4, the set of solutions of (1.7) is
contained in some union U;lzl{V Nz;0% g} with z; € A" for j =1,...,1
and t; < 1(f). By Lemma 12, for j = 1,... ¢, V N0} g is a subset of

some finite union J;*, YinOp,, s with tg; < (233r2)e(n)3, where y,p, € A*

and By, is an S-minimal K-subalgebra of A with y;,Bj, CV,h=1,..., t4;.
It follows that the set of solutions of (1.7) is contained in J,,_; ynOp, ¢ with
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w < (233r2)6(n)5w2 (8), where y;, € A* and By, is an S-minimal K-subalgebra
of Awithy, B, CV, h=1,...,w.

We recall that if B is an S-minimal K-subalgebra of A, then, by Lemma
13, any (M, B)-family of solutions is automatically irreducible. Hence the
proof of Theorem 1 is complete once we show that the set of solutions of
(1.7) belonging to some coset yOp ¢ with y € A*, yB C V is the union of
at most [ := [Of g : U ] (M, B)-families of solutions. Clearly, yOp 5 is
the union of I cosets 24 p With z € A*. Suppose that z{ p contains a
solution, say zp, of (1.7). Then z8Un, B = 2o, . We have zp € M and
also 0B = 2B = yB C V, s0 290 € VEN M = M?, which implies that
z € MPB. This proves that 28, p is an (M, B)-family of solutions of (1.7).
This completes the proof of Theorem 1. m

5. Proof of Theorem 2. We will prove Theorem 2 more generally,
for arbitrary fields K of characteristic 0. Thus, let K be any field of char-
acteristic 0, A = M; & ... ® M; where My,..., M; are finite extension
fields of K with dimg A = Z:Zl[Mi : K] =r, and V is an n-dimensional
K-linear subspace of A. It is our purpose to prove that there are at most
{nmax(r —n,2)}" K-subalgebras of A with

(1.16) la€B, VBnA*£0.
_We make some reductions. Let K be the algebraic closure of K and A =
K" with coordinatewise addition and multiplication. For z = (&1,...,&) €

A, put f(z) == (m11(&), -1 (&1)s ooy e1(&t), - ooy e, (&), where for
i=1,...,t, %1,...,Tir (ri =[M;: K]) are the K-isomorphic embeddings
of M; into K. Then f is an injective K-algebra homomorphism from A into
A. Tt is easy to check that f maps K-linearly independent elements of A to
K-linearly independent elements of A. Hence, if for a K-linear subspace W
of A we define W to be the K-vector space generated by f(W), we see that
dimz W = dimgx W and that W is uniquely determined by W. Finally, if B
is a K-subalgebra of A then B is a K-subalgebra of A: namely, if 2,y € B,
then z = > &f(x:), y = > n;f(y;) with &, n; € K, x;,y; € B and therefore,
zy = > &nif(xiy;) € B. Note that 1 = (1,...,1) (r times) is the element
of A and that A = {(&,...,&) € K :&...6 4 0}. For K-subalgebras B
of A with (1.16) we have

(5.1) 1eB, VinA %o
Namely, it is clear that 1 € B. Further, if z € V5 N A*, we have f(z) € A

and also B C V, whence f(z)B C V, i.e. f(z) € VP N A" Since B is
uniquely determined by B, it follows that the number of K-subalgebras B
of A with (1.16) is at most the number of K-subalgebras B of A with (5.1).
Hence it suffices to prove the following:
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LEMMA 14. A has at most {nmax(r —n,2)}" K-subalgebras B with
(5.1).

Proof. Let B be a K-subalgebra of A with (5.1). Then, for some g < 7, B
is isomorphic to K  with coordinatewise operations. This implies that B has
K-subalgebras LY, ... , Ly, such that L} = Kfori=1,...,q, L] +.. ALy =
B, and L} - LY = (0) for 1 <i < j < q. Letting 1; be the unit element of L}
for i =1,...,q, we find, completely similarly to (4.7) and (4.8), that there
are non-empty subsets Py, ..., P, of {1,...,r} such that

(52) 1, = (gil,... >§ir) with glj =1 for ] S Pi, é.z_] =0 fOI’j ¢ PZ‘,
(6.3) PU...UP={1,....r}, PNPj=0 for1<i<j<r.

First suppose that 7 > n. On noting that dimzg V' = n, after a permuta-
tion of coordinates if necessary, we may assume that V' is the set of solutions

(&1,...,&) of a system of linear equations
(5.4) {k:chjfj fork=n+1,...,r
j=1

with ¢y, € K. Let (&1,...,&) € VB N A". Then lLizeVfori=1,...,q.
(5.2) implies that the coordinates of 1,z with indices in P; are the same
as those of x, while the coordinates of 1;x with indices outside P; are O.
Together with (5.4) this implies
fk = Z ijfj fOI‘k‘ERZ’, izl,...,q,
JEQ: _
0= > & forkeR:={n+1,...,7}\R;, i=1,...,q,
JEQ:
where Q; == P,Nn{l,...,n}, R, = P,Nn{n+1,...,r},i=1,...,q. Note
that

(5.5)

QU...UQ,={1,...,n}, @;inQ; =0 for 1 <i<j<g,
(5.6) ¢ RiU...UR;={n+1,...;r}, RRNR; =0 forl1<i<j<g,
QiﬂRj;é@ fOTi,jzl,...,q.

Further, by (5.2) and the fact that B =L} + ...+ L) = 1K + ... + 14K,
we see that B is determined uniquely by P, ..., P,, whence by Q1,...,Qq,
Ry, ..., R,. Recalling that x € A* we infer that it suffices to prove

(5.7)  there are at most {n max(r — n,2)}" collections {Q1,...,Qq, R1,. ..
..., Ry} with (5.6) such that (5.5) has a solution with &; ...&, # 0.

For the moment, we fix Q1,...,Q, and determine an upper bound for
the number of collections {Ry, ..., R,} for which (5.5) has a solution with
&1...& #0. Let n; := #Q, fori =1,...,q. Take i € {1,...,q}. We have
Q; # 0 since otherwise R; # () and each solution of (5.5) has & = 0 for
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k € R;. Define the vectors ¢, = (cx; : j € Qi) (k =n+1,...,r). We
have rank{cy : k € R;} < n; — 1, since otherwise each solution of (5.5)
has {; = 0 for j € Q;. Further, for each [ € R; the vector c¢; is linearly
independent of {c : k € R;}, since otherwise the equations >jeq; ki€ =0
for k € Ez imply ZjEQi c;;§; = 0 for some [ € R; and so each solution

of (5.5) has & = 0. It follows that {c; : k € R;} consists of all vectors
in {cxy : k = n+1,...,r} that are linear combinations of some linearly
independent subset of {ci : k € ]5%} But then, this linearly independent
subset uniquely determines R;. Recalling that rank{cy : k € El} <n;—1,
we infer that the number of possibilities for R; is at most the number of
linearly independent subsets of {c : k = n+1,...,r} of cardinality < n;—1,
and the latter is at most

<r 6 n) + <7“ I n) +...+ (;ii) < {max(r — n,2)}"™.

Therefore, for given Q1, ..., Qq, the number of possibilities for {R1,..., Ry}
is at most
{max(r —n,2)}" " = fmax(r —n, 2)}".

The number of possibilities for {Q1,...,Qq} is at most the number of parti-
tions of {1,...,n} into disjoint sets, which is < n™. This implies (5.7), hence
Lemma 14 for » > n. If » = n, then the sets R;,..., R, do not occur and
we only have to estimate the number of possibilities for {Q1,...,Q4}. So in
that case, Lemma 14 follows also. =
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