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The number of families of solutions
of decomposable form equations

by

J.-H. Evertse (Leiden) and K. Győry (Debrecen)

1. Introduction. In [16], Schmidt introduced the notion of family of
solutions of norm form equations and showed that there are only finitely
many such families. In [18], Voutier gave an explicit upper bound for the
number of families. Independently, in [5], Győry extended the notion of
family of solutions of norm form equations to decomposable form equations
and gave an explicit upper bound for the number of families. In this paper,
we obtain a significant improvement of the upper bounds of Voutier and
Győry, by applying the results from Evertse [4].

Let β be a non-zero rational integer. Further, let M denote an algebraic
number field of degree r and l(X) = α1X1 + . . .+αmXm a linear form with
coefficients in M . There is a non-zero c ∈ Q such that the norm form

(1.1) F (X) = cNM/Q(l(X)) = c

r∏

i=1

(α(i)
1 X1 + . . .+ α(i)

m Xm)

has its coefficients in Z. Here, we denote by α(1), . . . , α(r) the conjugates of
α ∈M . We deal among other things with norm form equations of the shape

F (x) = ±β in x ∈ Zm.
It is more convenient for us to consider the equivalent equation which is also
called a norm form equation,

(1.2) cNM/Q(x) = ±β in x ∈M,

where M is the Z-module {x = l(x) : x ∈ Zm} which is contained in M .
In 1971, Schmidt [15] proved his fundamental result that (1.2) has only

finitely many solutions ifM satisfies some natural non-degeneracy condition.
Later, Schmidt [16] dealt also with the case where M is degenerate and
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showed that in that case, the set of solutions of (1.2) can be divided in a
natural way into families, and is the union of finitely many such families.
Below, we give a precise definition of a family of solutions of (1.2); here we
mention that it is a coset xUM,J contained in M, where x is a solution of
(1.2) and UM,J is a particular subgroup of finite index in the unit group of
the ring of integers of some subfield J of M . Schmidt’s results have been
generalised to equations of the type

(1.3) cNM/K(x) ∈ βO∗S in x ∈M,

where K is an algebraic number field, OS is the ring of S-integers in K for
some finite set of places S, O∗S is the unit group of OS , c, β are elements of
K∗ = K\{0}, M is a finite extension of K, and M is a finitely generated
OS-module contained in M . In fact, Schlickewei [13] proved the analogue of
Schmidt’s result on families of solutions in the case where OS is contained
in Q, and Laurent [9] generalised this to arbitrary algebraic number fields
K. The main tools in the proofs of these results were Schmidt’s subspace
theorem and Schlickewei’s generalisation to the p-adic case and to number
fields.

In [5], Győry generalised the concept of family of solutions to decompos-
able form equations over OS , i.e. to equations of the form

(1.4) F (x) ∈ βO∗S in x = (x1, . . . , xm) ∈ OmS ,
where K,S are as above, β is a non-zero element of OS and F (X) =
F (X1, . . . , Xm) is a decomposable form with coefficients in OS , that is, F
can be expressed as a product of linear forms in m variables with coeffi-
cients in some extension of K. We can reformulate (1.4) in a shape similar
to (1.3) as follows. According to [1], pp. 77–81, there are finite extension
fields M1, . . . ,Mt of K, linear forms lj(X) = α1jX1 + . . . + αmjXm with
coefficients in Mj for j = 1, . . . , t and c ∈ K∗ such that

(1.5) F (X) = c

t∏

j=1

NMj/K(lj(X)).

Now let

A = M1 ⊕ . . .⊕Mt

be the direct K-algebra sum of M1, . . . ,Mt, that is, the cartesian product
M1 × . . .×Mt endowed with coordinatewise addition and multiplication. If
we express an element of A as (α1, . . . , αt), then we implicitly assume that
αj ∈Mj for j = 1, . . . , t. We define the norm NA/K(a) of a = (α1, . . . , αt) ∈
A to be the determinant of the K-linear map x 7→ ax from A to itself. This
norm is known to be multiplicative. Further, we have

(1.6) NA/K(a) = NM1/K(α1) . . . NMt/K(αt)
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where NMj/K is the usual field norm. Note that the OS-module

M = {x = (l1(x), . . . , lt(x)) : x ∈ OmS }
is contained in A. Now (1.5) and (1.6) imply that (1.4) is equivalent to

(1.7) cNA/K(x) ∈ βO∗S in x ∈M;

(1.7) will also be referred to as a decomposable form equation. In [5], Győry
showed that the set of solutions of (1.7) is the union of finitely many fam-
ilies. Further, in [5] he extended some of his results to decomposable form
equations over arbitrary finitely generated integral domains over Z.

In [17], Schmidt made a further significant advancement by deriving,
as a consequence of his quantitative subspace theorem, an explicit upper
bound for the number of solutions of norm form equation (1.2) over Z for
every non-degenerate moduleM. Schlickewei proved a p-adic generalisation
of Schmidt’s quantitative subspace theorem and used it to derive an explicit
upper bound for the number of solutions of S-unit equations [14]. Among
others, this was used by Győry [5] to obtain an explicit upper bound for
the number of families of solutions of decomposable form equation (1.7).
Independently, Voutier [18] obtained upper bounds similar to Győry’s for the
number of families of solutions of norm form equation (1.3), in the special
case where K = Q, β = 1. Recently, Evertse [4] improved the results of
Schmidt and Schlickewei just mentioned. In this paper, we apply the results
from [4] to obtain an upper bound for the number of families of solutions of
(1.7) which is much sharper than Győry’s and Voutier’s (cf. Theorem 1 in
Section 1.2).

In Section 1.1 we introduce the necessary terminology. In Section 1.2 we
state our main results (Theorems 1 and 2) and some corollaries. In partic-
ular, in Corollary 2 we give an upper bound for the number of O∗S-cosets of
solutions of (1.7) in the case where that number is finite; here, an O∗S-coset
is a set xO∗S = {εx : ε ∈ O∗S} where x is a fixed solution of (1.7). Further, in
Section 2 we derive from Theorem 1 an asymptotic formula (cf. Corollary 4)
for the number of O∗S-cosets of solutions of (1.7), whenever this number is
infinite. The other sections are devoted to the proofs of Theorems 1 and 2.

1.1. Terminology. Here and in the sequel we use the following notation:
the unit group of a ring R with 1 is denoted by R∗ and for x ∈ R and a
subset H of R we define xH := {xh : h ∈ H}. Let K be an algebraic number
field. Denote by OK the ring of integers and by MK the collection of places
(equivalence classes of absolute values) on K. Recall that MK consists of
finitely many infinite (i.e. archimedean) places (the number of these being
r1+r2 where r1, r2 denote the number of isomorphic embeddings of K into R
and the number of complex conjugate pairs of isomorphic embeddings of K
into C, respectively) and of infinitely many finite (non-archimedean) places
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which may be identified with the prime ideals of OK . For every v ∈MK we
choose an absolute value | · |v from v. Now let S be a finite subset of MK

containing all infinite places. The ring of S-integers and its unit group, the
group of S-units, are defined by

OS = {x ∈ K : |x|v ≤ 1 for v 6∈ S}, O∗S = {x ∈ K : |x|v = 1 for v 6∈ S},
respectively, where v 6∈ S means v ∈ MK\S. For a finite extension J of K,
we denote by OJ,S the integral closure of OS in J .

We first introduce families of solutions for norm form equations

(1.3) cNM/K(x) ∈ βO∗S in x ∈M,

where, as before, M is a finite extension of K, M is a finitely generated
OS-module contained in M and c, β are elements of K∗. Let V := KM be
the K-vector space generated by M. For a subfield J of M containing K,
define the sets

(1.8) V J = {x ∈ V : xJ ⊆ V }, MJ = V J ∩M.

As is easily seen, we have λx ∈ V J for x ∈ V J , λ ∈ J . Further, define the
subgroup of the unit group of OJ,S ,

(1.9) UM,J := {ε ∈ O∗J,S : εMJ =MJ}.
For instance from Lemma 9 of [5] it follows that UM,J has finite index
in O∗J,S . Note that NM/K(ε) ∈ O∗S for ε ∈ UM,J . Hence if x ∈ MJ is a
solution of (1.3) then so is every element of the coset xUM,J . Such a coset
is called a family of solutions (or rather an (M, J)-family of solutions) of
(1.3). Laurent [9] proved the generalisation of Schmidt’s result that the set
of solutions of (1.3) is the union of at most finitely many families.

Now let A = M1⊕. . .⊕Mt be the direct K-algebra sum of finite extension
fields M1, . . . ,Mt of K. Note that A has unit element 1A = (1, . . . , 1) (t
times) where 1 is the unit element of K and that the unit group of A is
A∗ = {(ξ1, . . . , ξt) ∈ A : ξ1 . . . ξt 6= 0}. For each K-subalgebra B of A,
denote by OB,S the integral closure of OS in B. Thus,

OA,S = OM1,S ⊕ . . .⊕OMt,S

is the direct sum of the integral closures of OS in M1, . . . ,Mt, respectively,
and

OB,S = OA,S ∩B
for each K-subalgebra B of A. From these facts and (1.6) it follows easily
that for b ∈ OA,S we have NA/K(b) ∈ OS and that for b in the unit group
O∗A,S we have NA/K(b) ∈ O∗S .

Let c, β ∈ K∗, letM be a finitely generated OS-module contained in A,
and consider the equation

(1.7) cNA/K(x) ∈ βO∗S in x ∈M.
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Families of solutions of (1.7) are defined in precisely the same way as for
(1.3), but now the role of the subfields J of M in (1.3) is played by the
K-subalgebras B of A that contain the unit element 1A of A. Thus, let
V := KM be the K-vector space, contained in A, generated by M and for
each K-subalgebra B of A with 1A ∈ B define the sets

(1.10) V B := {x ∈ V : xB ⊆ V }, MB := V B ∩M
and the subgroup of the unit group of OB,S ,

(1.11) UM,B := {ε ∈ O∗B,S : εMB =MB}
which is known to have finite index [O∗B,S : UM,B ] in O∗B,S (cf. [5], Lemma
9). Clearly, V B is closed under multiplication by elements of B (and in fact
the largest subspace of V with this property). An (M, B)-family of solutions
of (1.7) is a coset xUM,B , where B is a K-subalgebra of A containing 1A
and x ∈ MB is a solution of (1.7); since NA/K(ε) ∈ O∗S for ε ∈ UM,B ,
every element of xUM,B is a solution of (1.7). If A = M is a finite extension
field of K this notion of family of solutions coincides with that for norm
form equation (1.3), since then the K-subalgebras of A containing 1A are
precisely the subfields of M containing K. In [5], Győry proved among other
things that the set of solutions of (1.7) is the union of finitely many families.

1.2. Results. Below, we first recall Győry’s result on the number of fam-
ilies of solutions of (1.7) and then state our improvement. As before, let K
be an algebraic number field, S a finite set of places on K containing all
infinite places, A = M1 ⊕ . . . ⊕Mt where M1, . . . ,Mt are finite extensions
of K, andM a finitely generated (not necessarily free) OS-submodule of A.
Let ai = (αi1, . . . , αit) (i = 1, . . . ,m) be a set of generators of M. Thus,

M = {x = (l1(x), . . . , lt(x)) : x ∈ OmS }
where lj(x) = α1jx1 + . . . + αmjxm for j = 1, . . . , t, and by (1.6) we have
NA/K(x) =

∏t
j=1NMj/K(lj(x)). We call d a denominator of M if d ∈ K∗

and if the polynomial d
∏t
j=1NMj/K(lj(X)) has its coefficients in OS . This

notion of denominator is easily shown to be independent of the choice of the
generators a1, . . . , am.

We consider equation (1.7), and impose the following conditions on
S, A, M, β and c:

(1.12)





S has cardinality s,
A has dimension

∑t
i=1[Mi : K] = r ≥ 2 as a K-vector space,

the K-vector space V := KM has dimension n ≥ 2,
β ∈ OS\{0}, c is a denominator of M.

For every finite place v on K, let ordv(·) denote the discrete valuation cor-
responding to v with value group Z; recall that | · |v = C

− ordv(·)
v for some
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Cv > 1. For β ∈ K∗, let ωS(β) denote the number of v 6∈ S with ordv(β) 6= 0
and put

ψ1(β) :=
(

r

n− 1

)ωS(β) ∏

v 6∈S

(
r · ordv(β) + n

n

)
.

Further, let D be the degree over Q of the normal closure of the composite
M1 . . .Mt over Q; thus, [K : Q] ≤ D ≤ (r[K : Q])!. Győry [5] proved that
the set of solutions of (1.7) is contained in some finite union of cosets of unit
groups

(1.13) x1O∗B1,S ∪ . . . ∪ xwO∗Bw,S with w ≤ (4sD)237nDs6ψ1(β),

where for i = 1, . . . , w, Bi is a K-subalgebra of A with 1A ∈ Bi, xi ∈ A∗
with xiBi ⊂ V , and where the set of solutions of (1.7) contained in xiO∗Bi,S
is the union of at most [O∗Bi,S : UM,Bi ] (M, Bi)-families of solutions. This
implies an upper bound for the number of families of solutions of (1.7) which
depends on n, r, β, s and the indices [O∗Bi,S : UM,Bi ] (cf. [5], Theorem 3),
so ultimately on the module M. We mention that Voutier [18], Chap. V
independently obtained a result similar to (1.13) but only for norm form
equation (1.3) and with K = Q, β = 1.

Győry’s result can be improved as follows. A K-subalgebra B of A is
said to be S-minimal if 1A ∈ B, and if for each proper K-subalgebra B′

of B with 1A ∈ B′, the quotient group O∗B,S/O∗B′,S is infinite. A family of
solutions of (1.7) is said to be reducible if it is the union of finitely many
strictly smaller families of solutions, and irreducible otherwise. Put

(1.14)
ψ2(β) :=

(
r

n− 1

)ωS(β) ∏

v 6∈S

(
ordv(β) + n− 1

n− 1

)
,

e(n) :=
1
3
n(n+ 1)(2n+ 1)− 2.

Theorem 1. Assume (1.12). The set of solutions of

(1.7) cNA/K(x) ∈ βO∗S in x ∈M
can be expressed as a finite union of irreducible families of solutions. More
precisely , the set of solutions of (1.7) is contained in some finite union of
cosets

(1.15) x1O∗B1,S ∪ . . . ∪ xwO∗Bw,S with w ≤ (233r2)e(n)sψ2(β)

such that for i = 1, . . . , w, Bi is an S-minimal K-subalgebra of A, xi ∈ A∗
with xiBi ⊂ V , and the set of solutions of (1.7) contained in xiO∗Bi,S is the
union of at most [O∗Bi,S : UM,Bi ] (M, Bi)-families of solutions which are all
irreducible.
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R e m a r k 1. The right-hand side of Győry’s bound (1.13) depends dou-
bly exponentially on n and in the worst case when D = (r[K : Q])! triply
exponentially on r, whereas our bound (1.15) depends only polynomially on
r and exponentially on n3. (1.13) can be better than (1.15) in terms of r
only if D is very small compared with r, e.g. if A = Qr for some large r.
It is likely that, in (1.15), 233 can be improved upon, and that e(n) can be
replaced by a linear expression of n.

For some very special type of norm form equation, Voutier succeeded in
deriving an upper bound for the number of families of solutions independent
of the module M (see the remark after Corollary 1). It is an open problem
whether an explicit bound independent of M exists in full generality, for
equations (1.3) or (1.7) (1).

R e m a r k 2. We can express the set of solutions of (1.7) as a minimal
finite union of irreducible families, that is, as a union F1 ∪ . . . ∪ Fg where
F1, . . . ,Fg are irreducible families of solutions, none of which is contained
in the union of the others. We claim that any other irreducible family of
solutions of (1.7) is contained in one of F1, . . . ,Fg. In other words, F1, . . . ,Fg
are the maximal irreducible families of solutions of (1.7). Hence Theorem
1 above gives automatically an upper bound for the number of maximal
irreducible families. To prove our claim, let G be an arbitrary irreducible
family of solutions of (1.7). Then G is the union of the sets G ∩ Fi for
i = 1, . . . , g and by Lemma 3 in Section 2, each of these sets is a union of
finitely many families. Then one of these families, contained in F1, say, is
equal to G. Hence G ⊆ F1.

R e m a r k 3. There is only one way to express the set of solutions of
(1.7) as a minimal union of irreducible families, since the families appearing
in such a union are the maximal irreducible families of solutions of (1.7).

We also investigate the problem to give an upper bound for the number
of K-subalgebras B of A for which (1.7) has (M, B)-families of solutions. Let
again V = KM. Suppose again that dimK A = r and dimK V = n. If x is a
solution inMB , then x ∈ V B ∩A∗, where A∗ is the unit group of A. Hence
(1.7) can have (M, B)-families of solutions only for those K-subalgebras B
of A for which

(1.16) 1A ∈ B, V B ∩A∗ 6= ∅.
In [5], Győry proved that the number of algebras B with (1.16) is at most
nr. We can improve this as follows:

(1) Added in proof: W. M. Schmidt and P. Voutier have recently proved that, in
general, an upper bound for the number of families of solutions of (1.3) or (1.7) must
depend on the module M (see also footnote (2)).
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Theorem 2. The number of K-subalgebras B of A with (1.16) is at most
(nmax(r − n, 2))n.

We do not know whether the dependence on r is necessary.
We derive some corollaries from Theorem 1. First we specialise Theorem

1 to norm form equation (1.3). Let K,S be as above so that in particular S
has cardinality s. Further, let M be a finite extension of K of degree r ≥ 2,
M a finitely generated OS-submodule of M such that the K-vector space
KM has dimension n ≥ 2, and c, β constants such that β ∈ OS\{0} and c
is a denominator of M. Then, by applying Theorem 1 with A = M , we get
at once the following result which improves upon the corresponding results
in [5] and [18]:

Corollary 1. The set of solutions of

(1.3) cNM/K(x) ∈ βO∗S in x ∈M
can be expressed as a finite union of irreducible families of solutions. More
precisely , the set of solutions of (1.3) is contained in some finite union of
cosets

x1O∗J1,S ∪ . . . ∪ xwO∗Jw,S with w ≤ (233r2)e(n)sψ2(β)

such that for i = 1, . . . , w, Ji is a subfield of M containing K, xi ∈ M∗

is such that xiJi ⊂ V , and the set of solutions of (1.3) in xiO∗Ji,S is the
union of at most [O∗Ji,S : UM,Ji ] (M, Ji)-families of solutions which are all
irreducible.

As mentioned before, for a very special type of norm form equation
Voutier ([18], Theorem V.3) obtained an upper bound for the number of
families independent of M: namely, he proved that if M is a Z-module of
rank 3 contained in the ring of integers of an algebraic number field M of
degree r > rankM = 3, then the set of solutions of the equation

NM/Q(x) = 1 in x ∈M
is the union of at most r286r2

families (2).
We return to equation (1.7). In what follows, we consider K as a K-

subalgebra of A by identifying α ∈ K with α · 1A. The set of solutions of
(1.7) can be divided into O∗S-cosets xO∗S . Győry [5], Corollary 2, gave an
explicit upper bound for the number of O∗S-cosets of solutions of (1.7) in the
case where this number is finite. We can improve this as follows:

Corollary 2. Assume (1.12). Suppose that (1.7) has only finitely many
O∗S-cosets of solutions. Then this number is at most (233r2)e(n)sψ2(β).

(2) Added in proof: W. M. Schmidt and P. Voutier have recently constructed a
class of ternary cubic norm form equations NM/Q(x) = 1 in which there are equations
with arbitrarily many families of solutions.
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For β = 1, this gives the Corollary to Theorem 1 of [4].

P r o o f. Let B be one of the S-minimal K-subalgebras of A occurring in
(1.15). We may assume that (1.7) has an (M, B)-family of solutions, xUM,B ,
say. By identifying ε ∈ O∗S with ε · 1A, we may view O∗S as a subgroup of
UM,B . Let w ≤ ∞ be the index of O∗S in UM,B . Then xUM,B is the union of
precisely w O∗S-cosets. So our assumption implies that w is finite. Therefore,
[O∗B,S : O∗S ] is finite. Now since B is S-minimal, it follows that B = K. So
each algebra Bi occurring in (1.15) is equal to K, i.e. O∗Bi,S = O∗S , and
Corollary 2 follows.

In general, it is as yet not effectively decidable whether (1.7) has only
finitely many O∗S-cosets of solutions. Schmidt [17], Theorem 3, derived an
explicit upper bound for the number of solutions of norm form equations over
Z satisfying an effectively decidable non-degeneracy condition. It is possible
to give a similar effective non-degeneracy condition for (1.7) as well, which
implies that for every β ∈ OS \ {0}, the number of O∗S-cosets of solutions
is finite. Moreover, under that condition we can derive an upper bound for
the number of O∗S-cosets of solutions with a better dependence on β in that
unlike the bound in Corollary 2, it does not depend on the quantities ordv(β)
(v ∈MK\S) appearing in ψ2(β).

The vector space V = KM is said to be non-degenerate if V B ∩A∗ = ∅
for every K-subalgebra B of A with 1A ∈ B, B 6= K, where A∗ is the unit
group of A. (1.16) implies that in that case, each algebra Bi occurring in
(1.15) is equal to K. Hence the set of solutions of (1.7) is the union of finitely
many O∗S-cosets.

Corollary 3. Assume (1.12) and in addition that V = KM is non-
degenerate. Then the set of solutions of (1.7) is the union of at most
(233r2)e(n)(s+ωS(β)) O∗S-cosets.

P r o o f. We apply Theorem 1 with S′ := S ∪ {v 6∈ S : ordv(β) > 0}
replacing S. Thus, β ∈ O∗S′ . We have to replace s by the cardinality of S′

which is s′ := s + ωS(β). Moreover, in the definition of ψ2(β), S has to be
replaced by S′, which means that ψ2(β) has to be replaced by 1. LetM′ be
the OS′ -module generated by M. Thus, every solution of (1.7) satisfies

(1.7′) cNA/K(x) ∈ O∗S′ in x ∈M′.
Clearly, c is a denominator of M′. Moreover, since V is non-degenerate,
the set of solutions of (1.7′) is the union of finitely many O∗S′-cosets. So by
Corollary 2, the set of solutions of (1.7′), and hence also the set of solutions
of (1.7), is contained in the union of at most (233r2)e(n)s′ O∗S′-cosets. Now
if any two solutions x1, x2 of (1.7) belong to the same O∗S′ -coset then they
belong to the same O∗S-coset: for if x2 = εx1 with ε ∈ O∗S′ , then εr =
cNA/K(x2)/cNA/K(x1) ∈ O∗S , hence ε ∈ O∗S . This proves Corollary 3.
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2. An asymptotic formula. In this section, we state and prove an
asymptotic density result for the collection of O∗S-cosets of solutions of equa-
tion (1.7), in the case where the number of these is infinite. This asymptotic
density result is a consequence of (the qualitative part of) Theorem 1.

We recall the definition of absolute (multiplicative) Weil height. Let Q
denote the algebraic closure of Q. Let x = (x1, . . . , xn) ∈ Qn\{0}. Take
any algebraic number field L containing x1, . . . , xn, and let σ1, . . . , σd be
the isomorphic embeddings of L into Q, where d = [L : Q]. Further, let
(x1, . . . , xn) denote the fractional ideal with respect to the ring of integers
of L, generated by x1, . . . , xn, and denote by NL/Q((x1, . . . , xn)) its norm.
Then the absolute Weil height of x is defined by

H(x) = H(x1, . . . , xn) :=
{∏d

i=1 max(|σi(x1)|, . . . , |σi(xn)|)
NL/Q((x1, . . . , xn))

}1/d

.

It is clear that H(x) does not depend on the choice of L. Further,

(2.1) H(λx) = H(x) for x ∈ Qn\{0}, λ ∈ Q∗.
Now let K be an algebraic number field and A = M1 ⊕ . . . ⊕Mt, where
M1, . . . ,Mt are finite extension fields of K. We define the height H(x) of
x = (ξ1, . . . , ξt) ∈ A to be the absolute Weil height of the vector with
coordinates consisting of ξ1, . . . , ξt and their conjugates over K, that is, if
τi,1, . . . , τi,ri with ri = [Mi : K] are the K-isomorphic embeddings of Mi

into Q then we put

H(x) := H(τ1,1(ξ1), . . . , τ1,r1(ξ1), . . . , τt,1(ξt), . . . , τt,rt(ξt)).

Note that by (2.1) we have

(2.2) H(x) = H(λx) for x ∈ A\{0}, λ ∈ K∗,
i.e. H may be viewed as a height on the collection (A\{0})/K∗ of K∗-cosets
xK∗ (x ∈ A\{0}). This height satisfies

(2.3) #{x ∈ (A\{0})/K∗ : H(x) ≤ X} <∞ for X > 0.

Namely, by Northcott’s theorem [10], [11] we know that for every d >

0, X > 0, there are, up to multiplication by elements from Q∗, only finitely
many x = (ξ1, . . . , ξn) ∈ Qn\{0} with H(x) ≤ X and [Q(ξi) : Q] ≤ d
for i = 1, . . . , n. This implies that the set of non-zero elements x of A
with H(x) ≤ X can be divided into finitely many classes, where x =
(ξ1, . . . , ξt), y = (η1, . . . , ηt) ∈ A are said to belong to the same class
if (τ1,1(ξ1), . . . , τt,rt(ξt)) = α(τ1,1(η1), . . . , τt,rt(ηt)) for some α ∈ Q∗. But
clearly, if for instance ξ1 6= 0, then α = τ1,1(η1/ξ1) = . . . = τ1,r1(η1/ξ1),
which implies that α ∈ K. So if x, y ∈ A\{0} belong to the same class then
they belong to the same K∗-coset.
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For a finitely generated abelian group Λ, denote by Λtors the torsion
subgroup of Λ and by rankΛ the rank of the free abelian group Λ/Λtors. Let
as usual S be a finite set of places on K which contains all infinite places.
For a K-subalgebra B of A containing the unit element 1A of A we put

%B,S := rankO∗B,S/O∗S ,
where we viewO∗S as a subgroup ofO∗B,S by identifying ε ∈ O∗S with ε·1A. By
a straightforward generalisation of Dirichlet’s unit theorem, O∗B,S is finitely
generated, hence %B,S is finite.

Let again β, c ∈ K∗, and let M be a finitely generated OS-submodule
of A such that condition (1.12) holds. For every X > 0 we consider the set
of solutions of

(2.4) cNA/K(x) ∈ βO∗S in x ∈M with H(x) ≤ X.
From (2.2) and O∗S ⊂ K∗ it follows that the set of solutions of (2.4) can
be divided into O∗S-cosets xO∗S . Denote by N(X) the maximal number of
distinct O∗S-cosets contained in the set of solutions of (2.4). From (2.3) it
follows that N(X) is finite: namely, if x, y are solutions of (2.4) with y = εx
for some ε ∈ K∗, then εr = NA/K(y)/NA/K(x) ∈ O∗S , so x, y belong to
the same O∗S-coset. For norm form equations over Q, asymptotic formulas
for N(X) were derived by Győry and Pethő [6] (in the archimedean case)
and Pethő [12] (for an arbitrary finite set of places S); Győry and Pethő [7]
and Everest [2] obtained more precise results in certain special cases. From
(the qualitative part of) Theorem 1 we derive the following generalisation
of Pethő’s result [12]:

Corollary 4. We have

N(X) = γ(logX)% +O((logX)%−1) as X →∞,
where γ is a positive number independent of X and where % is the maximum
of the numbers %B,S , taken over all K-subalgebras B of A with 1A ∈ B
for which the equation cNA/K(x) ∈ βO∗S in x ∈ M has (M, B)-families of
solutions.

We mention that for OS = Z, Everest and Győry [3] recently obtained
some refinements for equations of the form (1.4).

R e m a r k 4. γ, % and the constant in the error term are all ineffec-
tive. By (1.16), we can estimate % from above by the effectively computable
number %0, which is the maximum of the numbers %B,S , taken over all K-
subalgebras B of A with 1A ∈ B, V B ∩ A∗ 6= ∅. Further, using the explicit
bound in Theorem 1, one can effectively compute an upper bound for γ; we
shall not work this out.
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To derive Corollary 4 we need some lemmas. The first lemma is undoubt-
edly well-known but we could not find a proof of it in the literature.

Lemma 1. Let Λ be a finitely generated additive abelian group of rank %,
and let f be a function from Λ to R with the following properties:

f(x) ≥ 0 for x ∈ Λ;(2.5)

f(x+ y) ≤ f(x) + f(y) for x, y ∈ Λ;(2.6)

f(λx) = λf(x) for x ∈ Λ, λ ∈ Z≥0;(2.7)

for every Y > 0, the set {x ∈ Λ : f(x) ≤ Y } is finite.(2.8)

Then

(2.9) #{x ∈ Λ : f(x) ≤ Y } = γY % +O(Y %−1) as Y →∞
where γ = γ(Λ, f) is a positive constant.

P r o o f. We first assume that Λ = Z%. For x = (ξ1, . . . , ξ%) ∈ R% we define
the maximum norm ‖x‖ := max(|ξ1|, . . . , |ξ%|). Letting ei = (0, . . . , 1, . . . , 0)
(i = 1, . . . , %) denote the vector in Z% with a single 1 on the ith place, we
infer from (2.5)–(2.7) that for x = (ξ1, . . . , ξ%), y = (η1, . . . , η%) ∈ Z% we have

|f(x)− f(y)| ≤ max(f(x− y), f(y − x)) ≤
%∑

i=1

|ξi − ηi|max(f(ei), f(−ei)),

whence

(2.10) |f(x)− f(y)| ≤ C‖x− y‖,
where C :=

∑%
i=1 max(f(ei), f(−ei)).

We extend f to a function on Q% by putting f(x) := λ−1f(λx) for
x ∈ Q% where λ is the smallest positive integer such that λx ∈ Z%. This
extended f satisfies again (2.5)–(2.7) and (2.10), but now for all x, y ∈ Q%
and λ ∈ Q≥0. Using (2.10) and taking limits we can extend f to a continuous
function f : R% → R which satisfies (2.5)–(2.7) and (2.10) for all x, y ∈ R%
and λ ∈ R≥0.

For Y > 0 we define the set CY := {x ∈ R% : f(x) ≤ Y }. Since f is
continuous, this set is Lebesgue measurable. By (2.7) we have CY = {Y x :
x ∈ C1}. Hence CY has Lebesgue measure γY %, where γ is the Lebesgue
measure of C1. We can cover R% by the unit cubes Uz := {x ∈ R% : ‖x−z‖ ≤
1/2} (z ∈ Z%). These cubes have Lebesgue measure 1, and any two different
cubes have at most part of their boundary in common. (2.7) and (2.10)
imply that

CY−C/2 ⊆
⋃

z∈Z%
f(z)≤Y

Uz ⊆ CY+C/2 for Y ≥ C/2.
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Now let n(Y ) be the number of z ∈ Z% with f(z) ≤ Y . By comparing
Lebesgue measures, we get

(2.11) γ(Y − C/2)% ≤ n(Y ) ≤ γ(Y + C/2)% for Y ≥ C/2.
From (2.8) it follows that n(Y ) is finite; hence γ is finite. Moreover, for Y
sufficiently large, n(Y ) > 0, hence γ > 0. Now (2.9) follows at once from
(2.11). This settles the case Λ = Z%.

Now let Λ be an arbitrary additive abelian group. There are u1, . . . , u% ∈
Λ such that every x ∈ Λ can be expressed uniquely as

x = t+ ζ1u1 + . . .+ ζ%u% with t ∈ Λtors, z = (ζ1, . . . , ζ%) ∈ Z%.
Put f ′(z) := f(ζ1u1 + . . .+ ζ%u%). (2.6) implies that f ′(z)− f(−t) ≤ f(x) ≤
f ′(z)+f(t). Further, (2.7) with λ = 0 implies that f(0) = 0. More generally,
(2.7) implies that f(t) = 0 for t ∈ Λtors since for such t there is a positive
integer λ with λt = 0. Hence f(x) = f ′(z) for x ∈ Λ. Clearly, f ′ and Z%
satisfy (2.5)–(2.8). So by what we proved above we have

#{z ∈ Z% : f ′(z) ≤ Y } = γ′Y % +O(Y %−1) as Y →∞
with some positive γ′. From this, one deduces easily that (2.9) holds with
γ = γ′ ·#Λtors. This completes the proof of Lemma 1.

For a subset F of A with the property that for each x ∈ F the coset
xO∗S is contained in F , we denote by NF (X) the maximal number of distinct
O∗S-cosets xO∗S with x ∈ F and H(x) ≤ X.

Lemma 2. Let F = xUM,B be a family of solutions of (1.7), where B is
a K-subalgebra of A containing 1A and x ∈ MB. Then for some positive
real γ depending only on M and B we have

(2.12) NF (X) = γ(logX)%B,S +O((logX)%B,S−1) as X →∞.
P r o o f. We use the following properties of the absolute Weil height which

are straightforward consequences of its definition:

(2.13)





H(x) ≥ 1 for x ∈ Qn\{0},
H(x1y1, . . . , xnyn) ≤ H(x1, . . . , xn)H(y1, . . . , yn)

for x1, . . . , xn, y1, . . . , yn ∈ Q,
H(xλ1 , . . . , x

λ
n) = H(x1, . . . , xn)λ for x1, . . . , xn ∈ Q, λ ∈ Z≥0.

Let U := UM,B and %0 := %B,S . Since U has finite index in O∗B,S , the factor
group U/O∗S has rank %0. We apply Lemma 1 to Λ = U/O∗S and f = logH.
By (2.2), f is well-defined on Λ. Further, (2.13) implies (2.5)–(2.7), and (2.8)
follows from (2.3) and the fact that U/O∗S = U/(K∗ ∩ U) may be viewed as
a subgroup of A∗/K∗. It follows that

(2.14) NU(X) = γ(logX)%0 +O((logX)%0−1) as X →∞
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for some positive constant γ. By (2.13) we have c1H(xu) ≤ H(u) ≤ c2H(xu)
for u ∈ U, where c1 = H(x)−1 and c2 = H(x−1), and this implies that
NU(c−1

2 X) ≤ NxU(X) ≤ NU(c−1
1 X). Now Lemma 2 follows from (2.14) and

the fact that both (log(c−1
1 X))%0 and (log(c−1

2 X))%0 differ from (logX)%0 by
at most O((logX)%0−1).

Lemma 3. For any two K-subalgebras B1, B2 of A containing 1A, the
intersection of an (M, B1)-family and an (M, B2)-family is the union of at
most finitely many (M, B1 ∩B2)-families.

P r o o f. Let Gi = xiUM,Bi with xi ∈ MBi for i = 1, 2 be the two
families of solutions and put B := B1 ∩ B2. Let x0 ∈ G1 ∩ G2. Then x0 ∈
MB1 ∩ MB2 . From definition (1.10) it follows easily that MBi ⊆ MB

for i = 1, 2. Therefore, x0 ∈ MB . Further, we have Gi = x0UM,Bi for
i = 1, 2, hence G1 ∩ G2 = x0(UM,B1 ∩ UM,B2). We claim that UM,B is a
subgroup of finite index in UM,B1 ∩ UM,B2 ; then it follows at once that
G1 ∩ G2 is the union of finitely many families yUM,B with y ∈ MB . To
prove the claim, let ε ∈ UM,B and take i ∈ {1, 2}. Then ε ∈ B ⊆ Bi,
whence by (1.10), εMBi ⊆ V Bi where V = KM. Further, by (1.11) we
have εMBi ⊆ εMB = MB ⊆ M. Therefore, by (1.10), εMBi ⊆ MBi .
Similarly, we find ε−1MBi ⊆MBi . Hence εMBi =MBi , i.e. ε ∈ UM,Bi for
i = 1, 2. So UM,B ⊆ UM,B1 ∩ UM,B2 . Now our claim follows from the fact
that both groups have finite index in O∗B,S = O∗B1,S

∩ O∗B2,S
.

P r o o f o f C o r o l l a r y 4. By Theorem 1, the set of solutions of (1.7)
can be expressed as

(2.15) F1 ∪ . . . ∪ Fp
where for each i, Fi is an (M, Bi)-family of solutions of (1.7) for some
K-subalgebra Bi of A containing 1A. For a tuple I = {i1 < . . . < it} of
integers from {1, . . . , p}, let BI := Bi1 ∩ . . . ∩ Bit , FI := Fi1 ∩ . . . ∩ Fit ,
and let NI(X) be the number of cosets xO∗S with x ∈ FI and H(x) ≤ X.
Put %1 := max{%Bi,S : i = 1, . . . , p}. Thus, %BI ,S ≤ %1 for each tuple I as
above. Lemma 3 implies that for each I, FI is the union of finitely many
(M, BI)-families. So by Lemma 2 we have

NI(X) = γI(logX)%1 +O((logX)%1−1) as X →∞
where γI = 0 if %BI ,S < %1. Note that γi > 0 for at least one i ∈ {1, . . . , p}.
Now by (2.15) and the rule of inclusion and exclusion we have

N(X) =
p∑

i=1

Ni(X)−
∑

#I=2

NI(X) +
∑

#I=3

NI(X)− . . . ,

hence
N(X) = γ(logX)%1 +O((logX)%1−1) as X →∞
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where

γ =
p∑

i=1

γi −
∑

#I=2

γI +
∑

#I=3

γI − . . .

Since N(X) ≥ Ni(X) for i = 1, . . . , p we have γ ≥ γi for i = 1, . . . , p, hence
γ > 0. Lemma 2 implies that (1.7) does not have any family of solutions
xUM,B with %B,S > %1; therefore, %1 = %. This completes the proof of
Corollary 4.

3. Reduction to O∗A,S-cosets. Let K be an algebraic number field,
and let S,M1, . . . ,Mt, A = M1 ⊕ . . .⊕Mt,M be as in Section 1.2. Further,
let s = #S, r = dimK A ≥ 2, n = dimK KM ≥ 2, c, β be as in (1.12). For
x ∈ A, we define the coset xO∗A,S = {εx : ε ∈ O∗A,S}. In this section we
prove Lemma 4 below which is in fact an improvement of Lemma 5 of [5].

Lemma 4. The set of solutions of

(1.7) cNA/K(x) ∈ βO∗S in x ∈M
is contained in some union x1O∗A,S ∪ . . . ∪ xt1O∗A,S where t1 ≤ ψ2(β) and
where for j = 1, . . . , t1, xj ∈M is a solution of (1.7).

We prove this by slightly refining some arguments of Schmidt [17]. In
the proof of Lemma 4 we need some further lemmas. We first recall some
lemmas from [17]. Let E be a field endowed with a non-archimedean additive
valuation V (i.e. V (xy) = V (x) + V (y), V (x + y) ≥ min(V (x), V (y)) for
x, y ∈ E, V (0) = ∞, and there is an x ∈ E with V (x) 6= 0, V (x) 6= ∞).
For z = (z1, . . . , zn) ∈ En, put V (z) = min(V (z1), . . . , V (zn)). Further, let
L1, . . . , Lr be r ≥ n linear forms in n variables with coefficients in E.

Lemma 5. Let z ∈ En with z 6= 0. There is a subset S of {1, . . . , r} of
cardinality n− 1 such that every z′ ∈ En with

V (z′) ≥ V (z), V (Li(z′)) ≥ V (Li(z)) for i ∈ S
satisfies

V (Li(z′)) ≥ V (Li(z)) for i = 1, . . . , r.

P r o o f. This is precisely Lemma 13 of [17], except that that lemma has
the additional condition V (z) = 0. Suppose that V (z) 6= 0. Let λ ∈ E be
such that V (λ) = V (z) and put z1 := λ−1z. Then V (z1) = 0. Now Lemma
5 follows at once from Lemma 13 of [17] applied to z1, on observing that
V (Li(z1)) = V (Li(z))− V (λ) for i = 1, . . . , r.

We call the subset S related to z as in Lemma 5 an anchor for z.
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Lemma 6. Let d1, . . . , dr be positive rational numbers, γ a real and S a
subset of {1, . . . , r} of cardinality n− 1. Put

T (S) :=
{

z ∈ En :
r∑

i=1

diV (Li(z)) = γ, S is an anchor for z
}
.

Then for any z1, z2 ∈ T (S) with V (Li(z1)) = V (Li(z2)) for i ∈ S we have
V (Li(z1)) = V (Li(z2)) for i = 1, . . . , r.

P r o o f. Let z1, z2 ∈ T (S) with V (Li(z1)) = V (Li(z2)) for i ∈ S.
We may assume without loss of generality that V (z2) ≥ V (z1). Then by
Lemma 5 we have V (Li(z2)) ≥ V (Li(z1)) for i = 1, . . . , r. Together with∑r
i=1 diV (Li(zj)) = γ for j = 1, 2 this implies that V (Li(z2)) = V (Li(z1))

for i = 1, . . . , r.

As before, if we express an element of A as a t-tuple (ξ1, . . . , ξt), say,
then it is implicitly assumed that ξi ∈ Mi for i = 1, . . . , t. Fix v ∈ MK \ S.
For i = 1, . . . , t, let wi1, . . . , wigi denote the places on Mi which lie above
v, and denote by eij , fij the ramification index and residue class degree,
respectively, of wij over v. Let K denote the algebraic closure of K. Choose
a continuation of ordv to K and denote this also by ordv; then ordv assumes
its values in Q. For i = 1, . . . , t let Ei denote the collection of K-isomorphic
embeddings of Mi into K; then Ei can be expressed as a disjoint union,

Ei = Ei1 ∪ . . . ∪ Eigi with #Eij = eijfij for j = 1, . . . , gi

such that for j = 1, . . . , gi,

(3.1) ordwij (α) = eij ordv(σ(α)) for α ∈Mi, σ ∈ Eij .
Lemma 7. There are integers cij (i = 1, . . . , t, j = 1, . . . , gi) and uv with

uv ≤ ordv(β) such that for every solution x = (ξ1, . . . , ξt) ∈ M of (1.7) we
have

ordwij (ξi)− cij ≥ 0 for i = 1, . . . , t, j = 1, . . . , gi,(3.2)
t∑

i=1

gi∑

j=1

fij{ordwij (ξi)− cij} = uv.(3.3)

P r o o f. Let {ak = (αk1, . . . , αkt) : k = 1, . . . ,m} be a set of generators
of M as an OS-module. Define the integers

(3.4) cij = min{ordwij (αki) : k = 1, . . . ,m} for i = 1, . . . , t, j = 1, . . . , gi.

Let x = (ξ1, . . . , ξt) ∈ M be a solution of (1.7). Then x =
∑m
k=1 βkak for

certain β1, . . . , βm ∈ OS . Since the place wij lies above v ∈MK \S, we have
ordwij (βk) ≥ 0 for i = 1, . . . , t, j = 1, . . . , gi. Together with ξi =

∑m
k=1 βkαki

for i = 1, . . . , t and (3.4), this implies ordwij (ξij) ≥ cij for i = 1, . . . , t,
j = 1, . . . , gi. This proves (3.2).
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We now prove (3.3) for some uv. By assumption, c is a denominator for
M, i.e.

c

t∏

i=1

NMi/K(α1iX1 + . . .+ αmiXm) ∈ OS [X1, . . . , Xm].

Since x = (ξ1, . . . , ξt) is a solution of (1.7) we have c
∏t
i=1NMi/K(ξi) ∈ βO∗S ,

so

(3.5) F (X) = β

t∏

i=1

NMi/K

( m∑

k=1

αki
ξi
Xk

)
∈ OS [X1, . . . , Xm].

For a polynomial P (X) ∈ K[X1, . . . , Xm] denote by ordv(P ) the minimum
of the numbers ordv(α) for all coefficients α of P . By Gauss’ lemma (cf.
[8], p. 55, Prop. 2.1) we have ordv(PQ) = ordv(P ) + ordv(Q) for P,Q ∈
K[X1, . . . , Xm]. By applying this to (3.5) we obtain

0 ≤ ordv(F ) = ordv(β) +
t∑

i=1

∑

σ∈Ei
min

1≤k≤m
ordv(σ(αki/ξi))

= ordv(β) +
t∑

i=1

gi∑

j=1

∑

σ∈Eij
min

1≤k≤m
ordv(σ(αki/ξi))

= ordv(β) +
t∑

i=1

gi∑

j=1

fij min
1≤k≤m

ordwij (αki/ξi) by (3.1)

= ordv(β) +
t∑

i=1

gi∑

j=1

fij{cij − ordwij (ξi)} by (3.4).

This implies (3.3) with uv = ordv(β)− ordv(F ).

Lemma 8. If x = (ξ1, . . . , ξt) runs through the set of solutions of (1.7),
then the tuple ψv(x) := (ordwij (ξi) : i = 1, . . . , t, j = 1, . . . , gi) runs through
a set of cardinality at most

(
r

n−1

)(ordv(β)+n−1
n−1

)
.

P r o o f. Let

Ov := {y ∈ K : ordv(y) ≥ 0}, Mv :=MOv
be the local ring at v, and the localisation ofM at v, respectively. We note
that OS ⊂ Ov and M ⊂ Mv. Since Ov is a principal ideal domain, the
Ov-module Mv is free of rank n = dimKKM. Let {ak = (αk1, . . . , αkt) :
k = 1, . . . , n} be an Ov-basis of Mv. Further, let x = (ξ1, . . . , ξt) ∈ M
be a solution of (1.7). Then x = z1a1 + . . . + znan for some vector z =
(z1, . . . , zn) ∈ Onv which is uniquely determined by x. For each i ∈ {1, . . . , t}
and each σ ∈ Ei (the collection of K-isomorphic embeddings of Mi into K)
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define the linear form Liσ(z) := σ(α1i)z1 + . . .+ σ(αni)zn. Thus

(3.6) σ(ξi) = Liσ(z) for i = 1, . . . , t, σ ∈ Ei.
Recall that

∑t
i=1[Mi : K] = r. Let L1, . . . , Lr be the linear forms Liσ

(i = 1, . . . , t, σ ∈ Ei) in some order. For i = 1, . . . , t, j = 1, . . . , gi, let

Fij = {k ∈ {1, . . . , r} : Lk = Liσ for some σ ∈ Eij},
where the set Eij is defined by (3.1). Then by (3.1) and (3.6),

(3.7) ordwij (ξi) = eij ordv(σ(ξi)) = eij ordv(Lk(z))

for i = 1, . . . , t, j = 1, . . . , gi, k ∈ Fij .
We apply Lemma 6 with E = K and V = ordv. Let Sx ⊂ {1, . . . , r} be an
anchor for z in the sense of Lemma 5. Then Sx has cardinality n − 1, and
the tuple (ordv(Lk(z)) : k = 1, . . . , r) is uniquely determined by Sx and the
(n− 1)-tuple (ordv(Lk(z)) : k ∈ Sx). Let

S ′x = {(i, j) : 1 ≤ i ≤ t, 1 ≤ j ≤ gi, Fij ∩ Sx 6= ∅}.
Now (3.7) implies that once Sx is given, the tuple (ordwij (ξi) : (i, j) ∈
S ′x) determines uniquely (ordv(Lk(z)) : k ∈ Sx), the latter determines
uniquely (ordv(Lk(z)) : k = 1, . . . , r) and this last tuple determines uniquely
(ordwij (ξi) : i = 1, . . . , t, j = 1, . . . , gi) = ψv(x), again by (3.7). We con-
clude that ψv(x) is determined uniquely by Sx and the tuple (ordwij (ξi) :
(i, j) ∈ S ′x).

By Lemma 7 there are integers cij (i = 1, . . . , t, j = 1, . . . , gi) such that
ordwij (ξi)− cij ≥ 0 for (i, j) ∈ S ′x and

(3.8)
∑

(i,j)∈S′x
{ordwij (ξi)− cij} ≤

t∑

i=1

gi∑

j=1

fij{ordwij (ξi)− cij} ≤ ordv(β).

The set S ′x has cardinality ≤ n−1, since Sx has cardinality n−1 and the sets
Fij are pairwise disjoint. Given the set Sx, (3.8) implies that for the tuple
(ordwij (ξi) : (i, j) ∈ S ′x) we have at most

( ordv(β)+#S′x
#S′x

) ≤ ( ordv(β)+n−1
n−1

)

possibilities. Moreover, as Sx is a subset of {1, . . . , r} of cardinality n − 1,
we have at most

(
r

n−1

)
possibilities for Sx. This proves Lemma 8.

P r o o f o f L e m m a 4. For x = (ξ1, . . . , ξt) ∈ A define the tuple of
integers ψ(x) := (ordwi(ξi) : i = 1, . . . , t, wi -S) where wi -S indicates that
wi runs through all places on Mi not lying above a place in S. Then ψ is
an additive homomorphism on A∗ with kernel O∗A,S , since x = (ξ1, . . . , ξt) ∈
O∗A,S ⇔ ξi ∈ O∗Mi,S

for i = 1, . . . , t ⇔ ordwi(ξi) = 0 for i = 1, . . . , t, wi -S.
In particular, for x1, x2 ∈ A∗ we have ψ(x1) = ψ(x2)⇔ x1O∗A,S = x2O∗A,S .

Now ψ(x) can be obtained by combining all tuples ψv(x) (v ∈ MK \ S)
from Lemma 8. Hence if x runs through all solutions of (1.7), then ψ(x)
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runs through a set of cardinality at most
∏

v∈MK\S

(
r

n− 1

)(
ordv(β) + n− 1

n− 1

)
= ψ2(β).

This completes the proof of Lemma 4.

4. Proof of Theorem 1. Let K, S, s = #S, M1, . . . ,Mt, A = M1 ⊕
. . .⊕Mt, r = dimK A ≥ 2,M, n = dimK KM, c, β be as in (1.12). Further,
put V := KM. By Lemma 4, the set of solutions of (1.7) is contained in some
finite union of O∗A,S-cosets. For the moment, we consider only the solutions
of (1.7) in a fixed O∗A,S-coset x0O∗A,S . More generally, we deal with elements
of the set

(4.1) V ∩ x0O∗A,S
where x0 is a fixed element of A∗. As before, we view K as a K-subalgebra
of A by identifying α ∈ K with α1A = (α, . . . , α) (r times).

Lemma 9. Let B = {a ∈ A : aV ⊆ V } be the algebra of scalars of V .
Suppose that n ≥ 2 and that the quotient group O∗B,S/O∗S is finite. Then
there are proper K-linear subspaces Y1, . . . , Yt2 of V such that

V ∩ x0O∗A,S ⊆ Y1 ∪ . . . ∪ Yt2 with t2 ≤ (266r4)
n2s

.

P r o o f. We assume that x0 = 1; this is no loss of generality since if
x0 6= 1, we may prove Lemma 9 with x−1

0 V ∩ O∗A,S replacing V ∩ x0O∗A,S .
We want to apply Lemma 16 of [4] and for this purpose we must introduce
some notation.

For i = 1, . . . , t, let τi,1, . . . , τi,ri (ri = [Mi : K]) be the K-isomorphic
embeddings of Mi into K and define the map f : A 7→ K

r
by

f(x) := (τ1,1(ξ1), . . . , τ1,r1(ξ1), . . . , τt,1(ξt), . . . , τt,rt(ξt))

for x = (ξ1, . . . , ξt) ∈ A.
Thus, f(x) = (x1, . . . , xr) ∈ K

r
. Let G denote the Galois group of K/K.

Clearly, for σ ∈ G, i = 1, . . . , t, σ ◦ τi,1, . . . , σ ◦ τi,ri is a permutation
of τi,1, . . . , τi,ri . This implies that there is an action by G on {1, . . . , r}
attaching to each σ ∈ G a permutation (σ(1), . . . , σ(r)) of (1, . . . , r) such
that for x ∈ A we have

σ(xi) = xσ(i) for i = 1, . . . , r, σ ∈ G,
where (x1, . . . , xr) = f(x). Define the K-algebra

Λ = {x = (x1, . . . , xr) ∈ Kr
: σ(xi) = xσ(i) for i = 1, . . . , r, σ ∈ G}.

Then f is an injective K-homomorphism from A to Λ. For instance from
Lemma 2 of [4] it follows that K-linearly independent vectors of Λ are also
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K-linearly independent; so dimK Λ ≤ r = dimK A. It follows that f is also
surjective, i.e. a K-algebra isomorphism from A to Λ. Let OS denote the
integral closure of OS in K, O∗S the unit group of OS , and O∗rS the r-fold
cartesian product of this unit group. It is easy to verify that

(4.2) f(O∗A,S) = Λ ∩ (O∗rS ).

A symmetric partition of {1, . . . , r} is a collection of sets P = {P1, . . . , Pq}
such that P1 ∪ . . .∪Pq = {1, . . . , r}, Pi ∩Pj = ∅ for 1 ≤ i < j ≤ q and such
that for each P ∈ P, σ ∈ G, the set σ(P ) = {σ(k) : k ∈ P} belongs also to
P. To a symmetric partition P we attach the K-subalgebra of Λ,

ΛP = {x = (x1, . . . , xr) ∈ Λ : xi = xj for each pair of indices i, j

belonging to the same set of P}.
Let W := f(V ) and let P be a symmetric partition of {1, . . . , r} such that

(4.3) xW ⊆W for x ∈ ΛP .
Let B̃ := f−1(ΛP). Then B̃ is a K-subalgebra of B. Hence O∗

B̃,S
/O∗S (with

ε ∈ O∗S identified with (ε, . . . , ε) (t times)) is finite. Now (4.2) implies that
f maps O∗

B̃,S
to O∗P,S := ΛP ∩ (O∗S)r. Further, f maps O∗S to f(O∗S) :=

{(ε, . . . , ε) (r times) : ε ∈ O∗S}. Hence

(4.4) O∗P,S/f(O∗S) is finite.

Now let P be the symmetric partition specified in the statement of Lemma
16 of [4]. This P satisfies (4.3), hence (4.4) and so the condition of Lemma 16
of [4] is satisfied. Therefore, according to Lemma 16 of [4], the set W ∩(O∗S)r

is contained in some union W1 ∪ . . . ∪Wt2 of proper linear subspaces of W

with t2 ≤ (266r4)n
2s. By (4.2) we have V ∩ O∗A,S = f−1(W ∩ (O∗S)r). Hence

V ∩ O∗A,S ⊆ Y1 ∩ . . . ∩ Yt2 with Yi = f−1(Wi) for i = 1, . . . , t2. This proves
Lemma 9.

We want to relax the condition of Lemma 9 that O∗B,S/O∗S be finite and
for this, we need some preparations.

We recall that a K-subalgebra B of A is said to be S-minimal if 1A ∈ B,
and if B has no proper K-subalgebra B′ with 1A ∈ B′ for which O∗B,S/O∗B′,S
is finite. Every K-subalgebra B of A with 1A ∈ B has an S-minimal K-
subalgebra B′ for which O∗B,S/O∗B′,S is finite. Namely, let B′ be the inter-
section of all K-subalgebras B1 of B with 1A ∈ B1 for which O∗B,S/O∗B1,S

is finite. Then O∗B′,S is the intersection of all groups O∗B1,S
. Furthermore, B

has only finitely many K-subalgebras. Hence O∗B,S/O∗B′,S is finite. If B′′ is
a K-subalgebra of B′ with 1A ∈ B′′ such that O∗B′,S/O∗B′′,S is finite, then
O∗B,S/O∗B′′,S is finite, and therefore B′′ ⊇ B′. Hence B′ is S-minimal.
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In what follows, let

B = {x ∈ A : xV ⊆ V }
be the algebra of scalars of A, and let B′ be an S-minimal K-subalgebra of
B for which O∗B,S/O∗B′,S is finite. Every K-subalgebra of A is semisimple,
i.e. isomorphic to a direct sum of finite extension fields of K. So in particular
we have

B′ ∼= L′1 ⊕ . . .⊕ L′q
for certain finite extension fields L′1, . . . , L

′
q ofK. ThenB′ hasK-subalgebras

L′′1 , . . . , L
′′
q such that

B′ = L′′1 + . . .+ L′′q as vector space,

L′′i · L′′j = (0) for 1 ≤ i < j ≤ q,(4.5)

L′′i ∼= L′i for i = 1, . . . , q.

For i = 1, . . . , q, denote by 1i the unit element of L′′i . Then (4.5) and 1A ∈ B′
imply that

(4.6) 1A = 11 + . . .+ 1q, 1i · 1j = 0 for 1 ≤ i < j ≤ q.
Let 1i = (ξi1, . . . , ξit) with ξij ∈ Mj for j = 1, . . . , t. Since 12

i = 1i, we
have ξ2

ij = ξij , whence ξij ∈ {0, 1} for j = 1, . . . , t. Together with (4.6) this
implies that there are subsets P1, . . . , Pq of {1, . . . , t} such that

1i = (ξi1, . . . , ξit) with ξij = 1 for j ∈ Pi, ξij = 0 for j 6∈ Pi,(4.7)

P1 ∪ . . . ∪ Pq = {1, . . . , t}, Pi ∩ Pj = ∅ for 1 ≤ i < j ≤ q.(4.8)

Define the K-algebras

Ai = ⊕
j∈Pi

Mj for i = 1, . . . , q,

the projections

Πi : A→ Ai : (ξ1, . . . , ξt) 7→ (ξj : j ∈ Pi) for i = 1, . . . , q,

and

Π = (Π1, . . . ,Πq) : A→ A1 ⊕ . . .⊕Aq : x 7→ (Π1(x), . . . , Πq(x)).

Π is merely a permutation of coordinates, so Π is a K-algebra isomorphism
from A to A1 ⊕ . . .⊕Aq. Further define

Bi := Πi(B), Li := Πi(B′), Vi := Πi(V ) for i = 1, . . . , q,

where Bi, Li are K-subalgebras, and Vi is a subspace of Ai. Then we have:

Lemma 10. (i) Π(B) = B1 ⊕ . . .⊕Bq, Π(B′) = L1 ⊕ . . .⊕ Lq, Π(V ) =
V1 ⊕ . . .⊕ Vq.

(ii) For i = 1, . . . , q, Li is isomorphic to a finite extension field of K.
(iii) Bi = {x ∈ Ai : xVi ⊆ Vi} for i = 1, . . . , q.
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P r o o f. (i) We prove only that Π(V ) = V1 ⊕ . . . ⊕ Vq; the proofs that
Π(B) = B1 ⊕ . . . ⊕ Bq and Π(B′) = L1 ⊕ . . . ⊕ Lq are entirely similar.
It is obvious that Π(V ) ⊆ V1 ⊕ . . . ⊕ Vq. Conversely, let x = (x1, . . . , xq)
with xj ∈ Vj for j = 1, . . . , q. Choose yj ∈ V such that Πj(yj) = xj for
j = 1, . . . , q and put y :=

∑q
j=1 1j · yj . Since 1j ∈ L′′j ⊆ B′ ⊆ B we

have 1jV ⊆ V for j = 1, . . . , q; hence y ∈ V . Now (4.7) and (4.8) imply
that for j = 1, . . . , q, the coordinates of y with indices in Pj are equal
to the corresponding coordinates of yj . Hence Πj(y) = Πj(yj) = xj for
j = 1, . . . , q. Therefore, Π(y) = x. We infer that indeed Π(V ) = V1⊕. . .⊕Vq.

(ii) Let i ∈ {1, . . . , q}. We first show that Πi(L′′i ) = Πi(B′). Now L′′i is a
K-subalgebra of B′, hence Πi(L′′i ) ⊆ Πi(B′). Conversely, let x ∈ B′. Then
x = x1 + . . .+xq with xj ∈ L′′j for j = 1, . . . , q. Now Πi(1i) = (1, . . . , 1) and
by (4.5) we have 1ixj = 0 for j 6= i. Hence

Πi(x) = Πi(1ix) = Πi(1ixi) = Πi(xi) ∈ Πi(L′′i ).

This shows that indeed Πi(L′′i ) = Πi(B′). Now Πi is non-trivial as its image
contains (1, . . . , 1) and L′′i is a field, hence Li = Πi(L′′i ) is a field.

(iii) Let i ∈ {1, . . . , q}. Put B̃i := {x ∈ Ai : xVi ⊆ Vi}. For x ∈ Bi
we have x = Πi(y) for some y ∈ B, whence xVi = Πi(yV ) ⊆ Πi(V ) = Vi.
Therefore, Bi ⊆ B̃i. To prove the opposite inclusion, consider B̃ = Π−1(B̃1⊕
. . . ⊕ B̃q). Then B̃ is a K-subalgebra of A and for x ∈ B̃ we have, by (i),
xV = Π−1(Π(x) · (V1 ⊕ . . . ⊕ Vq)) ⊆ Π−1(V1 ⊕ . . . ⊕ Vq) = V ; therefore,
B̃ ⊆ B. It follows that B̃i ⊆ Πi(B̃) ⊆ Πi(B) = Bi, which completes the
proof.

Fix again i ∈ {1, . . . , q}. We have Li ⊆ Bi ⊆ Ai, so that Ai may be
viewed as an Li-algebra and Bi as an Li-subalgebra of Ai. Further, the unit
element 1Ai of Ai is just the unit element of Li, and so 1Ai ∈ Bi. Lastly,
by Lemma 10(iii), Vi is an Li-vector space. Note that OAi,S = ⊕j∈PiOMj ,S ,
OBi,S = OAi,S ∩ Bi, OLi,S = OAi,S ∩ Li are the integral closures of OS
in Ai, Bi, Li, respectively. Clearly, O∗Bi,S/O∗Li,S is a homomorphic image of
O∗B,S/O∗B′,S , so

(4.9) O∗Bi,S/O∗Li,S is finite.

We are now ready to prove the following generalisation of Lemma 9:

Lemma 11. Either V = yB′ for some y ∈ A, or there are proper K-linear
subspaces Y1, . . . , Yt3 of V such that

V ∩ x0O∗A,S ⊆ Y1 ∪ . . . ∪ Yt3 with t3 ≤ (266r4)
n2s

.

P r o o f. As mentioned before, for i = 1, . . . , q, Vi may be viewed as
an Li-vector space. First assume that dimLi Vi = 1 for i = 1, . . . , q. Then
for i = 1, . . . , q there is an yi ∈ Ai, such that Vi = yiLi. Together with
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Lemma 10(i) this implies that V = Π−1(y1L1 ⊕ . . . ⊕ yqLq) = yB′ with
y = Π−1((y1, . . . , yq)).

Now assume that dimL1 V1 ≥ 2, say. Put n1 := dimL1 V1, r1 := dimL1 A1,
let S1 be the set of places lying above those in S, and s1 the cardinality of
S1. Then since V1 is a K-linear subspace of Π(V ) ∼= V , and A1 of Π(A) ∼= A,
we have

n1[L1 : K] = dimK V1 ≤ n, r1[L1 : K] = dimK A1 ≤ r,
s1 ≤ s[L1 : K].

Further, putting x′0 := Π1(x0), we have

Π1(V ∩ x0O∗A,S) ⊆ V1 ∩ x′0O∗A,S .
In view of Lemma 10(iii) and of (4.9), we may apply Lemma 9 with L1,
A1, B1, V1, S1 replacing K,A,B, V, S. Thus, there are proper L1-linear
subspaces Z1, . . . , Zt3 of V1 with

t3 ≤ (266r4
1)
n2

1s1 ≤ (266r4)
n2s

such that V1∩x′0O∗A1,S
⊆ Z1∪. . .∪Zt3 . But each of these subspaces Zj is a K-

linear subspace of V1. Hence it follows that V ∩x0O∗A,S ⊆ Y1∪ . . .∪Yt3 where
Yj = Π−1

1 (Zj) is a proper K-linear subspace of V . This proves Lemma 11.

We recall that e(n) is defined by e(n) = 1
3n(n+ 1)(2n+ 1)− 2.

Lemma 12. There are y1, . . . , yt4 ∈ A∗ and S-minimal K-subalgebras
B1, . . . , Bt4 of A such that

yiBi ⊆ V for i = 1, . . . , t4,

V ∩ x0O∗A,S ⊆ y1O∗B1,S ∪ . . . ∪ yt4O∗Bt4 ,S with t4 ≤ (233r2)
e(n)s

.

P r o o f. We first deal with the special case where V = yB1 for some y ∈ A
and some S-minimal K-subalgebra B1 of A. Assume that V ∩ x0O∗A,S 6= ∅
and let y1 ∈ V ∩ x0O∗A,S . Then x0O∗A,S = y1O∗A,S . By assumption we have
x0 ∈ A∗, hence y1 ∈ A∗. Further, y1 = yz for some z ∈ B1, and so z ∈ B∗1 .
Therefore, V = yB1 = y1B1. It follows that

V ∩ x0O∗A,S = y1B1 ∩ y1O∗A,S = y1O∗B1,S ,

which implies Lemma 12 for V = yB1.
We prove Lemma 12 in full generality by induction on n = dimK V .

If n = 1, then V = yK for some y ∈ A and we are done since K is an
S-minimal subalgebra of A. Suppose that n ≥ 2, and that V is not equal
to yB for some y ∈ A and some S-minimal K-subalgebra B of A. Then

by Lemma 11 we have V ∩ x0O∗A,S ⊆ Y1 ∪ . . . ∪ Yt3 with t3 ≤ (266r4)n
2s,

where Y1, . . . , Yt3 are proper K-linear subspaces of V . Now by the induction
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hypothesis we have for i = 1, . . . , t3,

Yi ∩ x0O∗A,S ⊆ yi,1O∗Bi,1,S ∪ . . . ∪ yi,t5O∗Bi,t5 ,S with t5 ≤ (233r2)
e(n−1)s

where yi,j ∈ A∗, and Bi,j is an S-minimal K-subalgebra of A with yi,jBi,j ⊆
Yi for j = 1, . . . , t5. It follows that

V ∩ x0O∗A,S ⊆
t3⋃

i=1

t5⋃

j=1

yi,jO∗Bi,j ,S with yi,jBi,j ⊆ V.

Since t3t5 ≤ (233r2){2n
2+e(n−1)}s = (233r2)e(n)s, this proves Lemma 12.

Before finishing the proof of Theorem 1, we prove the following lemma:

Lemma 13. Let B be an S-minimal K-subalgebra of A, and x0UM,B

an (M, B)-family of solutions of (1.7) with x0 ∈ MB. Then x0UM,B is
irreducible.

P r o o f. Suppose that x0UM,B is reducible. Then there are proper sub-
families x1UM,B1 , . . . , xwUM,Bw of x0UM,B such that

(4.10) x0UM,B = x1UM,B1 ∪ . . . ∪ xwUM,Bw .

Further, there is no loss of generality to assume that

(4.11) xi ∈MBi , Bi $ B for i = 1, . . . , w.

Namely, if for instance B1 is not a K-subalgebra of B then by Lemma 3,
x1UM,B1 = xUM,B ∩ x1UM,B1 is the union of finitely many (M, B ∩ B1)-
families and, in (4.10), we may replace x1UM,B1 by this union. Further, if
B1 = B then x1UM,B1 is not a proper subfamily of x0UM,B .

Put %B := rankO∗B,S/O∗S , % := maxi=1,...,w{rankO∗Bi,S/O∗S}. From
(4.11) and the fact that B is S-minimal, it follows that % < %B . On the
other hand, letting NF (X) be the quantity in the statement of Lemma 2, it
follows from Lemma 2 and (4.10) that

Nx0UM,B (X) = γ(logX)%B +O((logX)%B−1) as X →∞ with γ > 0,

Nx0UM,B (X) = N⋃w
i=1 xiUM,Bi

(X) = O((logX)%) as X →∞.
Thus, the assumption that x0UM,B is reducible leads to a contradiction.
This proves Lemma 13.

P r o o f o f T h e o r e m 1. By Lemma 4, the set of solutions of (1.7) is
contained in some union

⋃t1
j=1{V ∩ xjO∗A,S} with xj ∈ A∗ for j = 1, . . . , t1

and t1 ≤ ψ2(β). By Lemma 12, for j = 1, . . . , t1, V ∩ xjO∗A,S is a subset of

some finite union
⋃t4j
h=1 yjhO∗Bjh,S with t4j ≤ (233r2)e(n)s, where yjh ∈ A∗

and Bjh is an S-minimal K-subalgebra of A with yjhBjh ⊆ V , h = 1, . . . , t4j .
It follows that the set of solutions of (1.7) is contained in

⋃w
h=1 yhO∗Bh,S with
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w ≤ (233r2)e(n)s
ψ2(β), where yh ∈ A∗ and Bh is an S-minimal K-subalgebra

of A with yhBh ⊆ V , h = 1, . . . , w.
We recall that if B is an S-minimal K-subalgebra of A, then, by Lemma

13, any (M, B)-family of solutions is automatically irreducible. Hence the
proof of Theorem 1 is complete once we show that the set of solutions of
(1.7) belonging to some coset yO∗B,S with y ∈ A∗, yB ⊆ V is the union of
at most I := [O∗B,S : UM,B ] (M, B)-families of solutions. Clearly, yO∗B,S is
the union of I cosets zUM,B with z ∈ A∗. Suppose that zUM,B contains a
solution, say z0, of (1.7). Then zUM,B = z0UM,B . We have z0 ∈ M and
also z0B = zB = yB ⊆ V , so z0 ∈ V B ∩M = MB , which implies that
z ∈MB . This proves that zUM,B is an (M, B)-family of solutions of (1.7).
This completes the proof of Theorem 1.

5. Proof of Theorem 2. We will prove Theorem 2 more generally,
for arbitrary fields K of characteristic 0. Thus, let K be any field of char-
acteristic 0, A = M1 ⊕ . . . ⊕ Mt where M1, . . . ,Mt are finite extension
fields of K with dimK A =

∑t
i=1[Mi : K] = r, and V is an n-dimensional

K-linear subspace of A. It is our purpose to prove that there are at most
{nmax(r − n, 2)}n K-subalgebras of A with

(1.16) 1A ∈ B, V B ∩A∗ 6= ∅.
We make some reductions. Let K be the algebraic closure of K and A =

K
r

with coordinatewise addition and multiplication. For x = (ξ1, . . . , ξt) ∈
A, put f(x) := (τ1,1(ξ1), . . . , τ1,r1(ξ1), . . . , τt,1(ξt), . . . , τt,rt(ξt)), where for
i = 1, . . . , t, τi,1, . . . , τi,ri (ri = [Mi : K]) are the K-isomorphic embeddings
of Mi into K. Then f is an injective K-algebra homomorphism from A into
A. It is easy to check that f maps K-linearly independent elements of A to
K-linearly independent elements of A. Hence, if for a K-linear subspace W
of A we define W to be the K-vector space generated by f(W ), we see that
dimKW = dimKW and that W is uniquely determined by W . Finally, if B
is a K-subalgebra of A then B is a K-subalgebra of A: namely, if x, y ∈ B,
then x =

∑
ξif(xi), y =

∑
ηjf(yj) with ξi, ηj ∈ K, xi, yj ∈ B and therefore,

xy =
∑
ξiηjf(xiyj) ∈ B. Note that 1 = (1, . . . , 1) (r times) is the element

of A and that A
∗

= {(ξ1, . . . , ξr) ∈ Kr
: ξ1 . . . ξr 6= 0}. For K-subalgebras B

of A with (1.16) we have

(5.1) 1 ∈ B, V
B ∩A∗ 6= ∅.

Namely, it is clear that 1 ∈ B. Further, if x ∈ V B ∩ A∗, we have f(x) ∈ A∗

and also xB ⊆ V , whence f(x)B ⊆ V , i.e. f(x) ∈ V
B ∩ A∗. Since B is

uniquely determined by B, it follows that the number of K-subalgebras B
of A with (1.16) is at most the number of K-subalgebras B of A with (5.1).
Hence it suffices to prove the following:
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Lemma 14. A has at most {nmax(r − n, 2)}n K-subalgebras B with
(5.1).

P r o o f. LetB be aK-subalgebra ofA with (5.1). Then, for some q ≤ r,B
is isomorphic to K

q
with coordinatewise operations. This implies that B has

K-subalgebras L′′1 , . . . , L
′′
q such that L′′i ∼= K for i = 1, . . . , q, L′′1 + . . .+L′′q =

B, and L′′i ·L′′q = (0) for 1 ≤ i < j ≤ q. Letting 1i be the unit element of L′′i
for i = 1, . . . , q, we find, completely similarly to (4.7) and (4.8), that there
are non-empty subsets P1, . . . , Pq of {1, . . . , r} such that

1i = (ξi1, . . . , ξir) with ξij = 1 for j ∈ Pi, ξij = 0 for j 6∈ Pi,(5.2)

P1 ∪ . . . ∪ Pq = {1, . . . , r}, P1 ∩ Pj = ∅ for 1 ≤ i < j ≤ r.(5.3)

First suppose that r > n. On noting that dimK V = n, after a permuta-
tion of coordinates if necessary, we may assume that V is the set of solutions
(ξ1, . . . , ξr) of a system of linear equations

(5.4) ξk =
n∑

j=1

ckjξj for k = n+ 1, . . . , r,

with ckj ∈ K. Let (ξ1, . . . , ξr) ∈ V B ∩ A∗. Then 1ix ∈ V for i = 1, . . . , q.
(5.2) implies that the coordinates of 1ix with indices in Pi are the same
as those of x, while the coordinates of 1ix with indices outside Pi are 0.
Together with (5.4) this implies

(5.5)





ξk =
∑
j∈Qi

ckjξj for k ∈ Ri, i = 1, . . . , q,

0 =
∑
j∈Qi

ckjξj for k ∈ R̃i := {n+ 1, . . . , r} \Ri, i = 1, . . . , q,

where Qi := Pi ∩ {1, . . . , n}, Ri := Pi ∩ {n + 1, . . . , r}, i = 1, . . . , q. Note
that

(5.6)




Q1 ∪ . . . ∪Qq = {1, . . . , n}, Qi ∩Qj = ∅ for 1 ≤ i < j ≤ q,
R1 ∪ . . . ∪Rq = {n+ 1, . . . , r}, Ri ∩Rj = ∅ for 1 ≤ i < j ≤ q,
Qi ∩Rj 6= ∅ for i, j = 1, . . . , q.

Further, by (5.2) and the fact that B = L′′1 + . . .+ L′′q = 11K + . . .+ 1qK,
we see that B is determined uniquely by P1, . . . , Pq, whence by Q1, . . . , Qq,
R1, . . . , Rq. Recalling that x ∈ A∗ we infer that it suffices to prove

(5.7) there are at most {nmax(r − n, 2)}n collections {Q1, . . . , Qq, R1, . . .
. . . , Rq} with (5.6) such that (5.5) has a solution with ξ1 . . . ξr 6= 0.

For the moment, we fix Q1, . . . , Qq and determine an upper bound for
the number of collections {R1, . . . , Rq} for which (5.5) has a solution with
ξ1 . . . ξr 6= 0. Let ni := #Qi for i = 1, . . . , q. Take i ∈ {1, . . . , q}. We have
Qi 6= ∅ since otherwise Ri 6= ∅ and each solution of (5.5) has ξk = 0 for
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k ∈ Ri. Define the vectors ck = (ckj : j ∈ Qi) (k = n + 1, . . . , r). We
have rank{ck : k ∈ R̃i} ≤ ni − 1, since otherwise each solution of (5.5)
has ξj = 0 for j ∈ Qi. Further, for each l ∈ Ri the vector cl is linearly
independent of {ck : k ∈ R̃i}, since otherwise the equations

∑
j∈Qi ckjξj = 0

for k ∈ R̃i imply
∑
j∈Qi cljξj = 0 for some l ∈ Ri and so each solution

of (5.5) has ξl = 0. It follows that {ck : k ∈ R̃i} consists of all vectors
in {ck : k = n + 1, . . . , r} that are linear combinations of some linearly
independent subset of {ck : k ∈ R̃i}. But then, this linearly independent
subset uniquely determines Ri. Recalling that rank{ck : k ∈ R̃i} ≤ ni − 1,
we infer that the number of possibilities for Ri is at most the number of
linearly independent subsets of {ck : k = n+1, . . . , r} of cardinality ≤ ni−1,
and the latter is at most(

r − n
0

)
+
(
r − n

1

)
+ . . .+

(
r − n
ni − 1

)
≤ {max(r − n, 2)}ni .

Therefore, for given Q1, . . . , Qq, the number of possibilities for {R1, . . . , Rq}
is at most

{max(r − n, 2)}n1+...+nq = {max(r − n, 2)}n.
The number of possibilities for {Q1, . . . , Qq} is at most the number of parti-
tions of {1, . . . , n} into disjoint sets, which is ≤ nn. This implies (5.7), hence
Lemma 14 for r > n. If r = n, then the sets R1, . . . , Rq do not occur and
we only have to estimate the number of possibilities for {Q1, . . . , Qq}. So in
that case, Lemma 14 follows also.
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[10] D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties,
Proc. Cambridge Philos. Soc. 45 (1949), 502–509.

[11] —, A further inequality in the theory of arithmetic on algebraic varieties, ibid.,
510–518.
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