On distribution functions of $\xi(3/2)^n \mod 1$

by

OTO STRAUCH (Bratislava)

1. Preliminary remarks. The question about distribution of $(3/2)^n$ mod 1 is most difficult. We present a selection of known conjectures:

- (i) $(3/2)^n \mod 1$ is uniformly distributed in [0, 1].
- (ii) $(3/2)^n \mod 1$ is dense in [0, 1].
- (iii) (T. Vijayaraghavan [11])

$$\limsup_{n \to \infty} \{ (3/2)^n \} - \liminf_{n \to \infty} \{ (3/2)^n \} > 1/2$$

where $\{x\}$ is the fractional part of x.

(iv) (K. Mahler [6]) There exists no $\xi \in \mathbb{R}^+$ such that $0 \leq \{\xi(3/2)^n\} < 1/2$ for $n = 0, 1, 2, \ldots$

(v) (G. Choquet [2]) There exists no $\xi \in \mathbb{R}^+$ such that the closure of $\{\{\xi(3/2)^n\}; n = 0, 1, 2, ...\}$ is nowhere dense in [0, 1].

Few positive results are known. For instance, L. Flatto, J. C. Lagarias and A. D. Pollington [3] showed that

$$\limsup_{n \to \infty} \{\xi(3/2)^n\} - \liminf_{n \to \infty} \{\xi(3/2)^n\} \ge 1/3$$

for every $\xi > 0$.

G. Choquet [2] gave infinitely many $\xi \in \mathbb{R}$ for which

$$1/19 \le \{\xi(3/2)^n\} \le 1 - 1/19$$
 for $n = 0, 1, 2, \dots$

R. Tijdeman [9] showed that for every pair of integers k and m with $k \ge 2$ and $m \ge 1$ there exists $\xi \in [m, m+1)$ such that

$$0 \le \{\xi((2k+1)/2)^n\} \le \frac{1}{2k-1} \quad \text{for } n = 0, 1, 2, \dots$$

The connection between $(3/2)^n \mod 1$ and Waring's problem (cf. M. Bennett [1]), and between Mahler's conjecture (iv) and the 3x + 1 problem (cf. [3]) is also well known.

¹⁹⁹¹ Mathematics Subject Classification: 11K31.

This research was supported by the Slovak Academy of Sciences Grant 1227.

^[25]

In this paper we study the set of all distribution functions of sequences $\xi(3/2)^n \mod 1$, $\xi \in \mathbb{R}$. It is motivated by the fact that some conjectures involving a distribution function g(x) of $\xi(3/2)^n \mod 1$ may be formulated as in (i)–(iv). For example, the following conjecture implies Mahler's conjecture: If g(x) = constant for all $x \in I$, where I is a subinterval of [0, 1], then the length |I| < 1/2.

The study of the set of distribution functions of a sequence, still unsatisfactory today, was initiated by J. G. van der Corput [10]. The one-element set corresponding to the notion of asymptotic distribution function of a sequence mod 1 was introduced by I. J. Schoenberg [8]. Many papers have been devoted to the study of the asymptotic distribution function for exponentially increasing sequences. H. Helson and J.-P. Kahane [4] established the existence of uncountably many ξ such that the sequence $\xi\theta^n$ does not have an asymptotic distribution function mod 1, where θ is some fixed real number > 1. I. I. Piatetski-Shapiro [7] characterizes the asymptotic distribution function for the sequence $\xi q^n \mod 1$, where q > 1 is an integer. For a survey, see the monograph by L. Kuipers and H. Niederreiter [5].

In Section 2, we recall the definition of a distribution function g and we define a mapping $g \to g_{\varphi}$ associated with a given measurable function $\varphi : [0,1] \to [0,1]$. The formula defining $g \to g_{\varphi}$ was used implicitly by K. F. Gauss for $\varphi(x) = 1/x \mod 1$ in his well-known problem of the metric theory of continued fractions $(g_{\varphi} \text{ is given e.g. in [5, Th. 7.6]})$. The induced transformation between derivatives $g' \to g'_{\varphi}$ is the so-called Frobenius–Perron operator.

In Section 3, choosing $\varphi(x)$ as $f(x) = 2x \mod 1$ and $h(x) = 3x \mod 1$, we derive a functional equation of the type $g_f = g_h$, for any distribution function g of $\xi(3/2)^n \mod 1$. As a consequence we give some sets of uniqueness for g, where $X \subset [0,1]$ is said to be a set of uniqueness if whenever $g_1 = g_2$ on X, then $g_1 = g_2$ on [0,1], for any two distribution functions g_1, g_2 of $\xi(3/2)^n \mod 1$ (different values of $\xi \in \mathbb{R}$, for g_1, g_2 , are also admissible). From this fact we derive an example of a distribution function that is not a distribution function of $\xi(3/2)^n \mod 1$ for any $\xi \in \mathbb{R}$. We also conjecture that every measurable set $X \subset [0,1]$ with measure $|X| \ge 2/3$ is a set of uniqueness. An integral criterion for g to satisfy $g_f = g_h$ is also given.

In Section 4, we describe absolutely continuous solutions g of functional equations of the form $g_f = g_1$ and $g_h = g_2$ for given absolutely continuous distribution functions g_1, g_2 .

In Section 5, we summarize the examples demonstrating all the above mentioned results.

2. Definitions and basic facts. For the purposes of this paper a *distribution function* g(x) will be a real-valued, non-decreasing function of the

real variable x, defined on the unit interval [0, 1], for which g(0) = 0 and g(1) = 1. Let $x_n \mod 1$, $n = 1, 2, \ldots$, be a given sequence. According to the terminology introduced in [5], for a positive integer N and a subinterval I of [0, 1], let the *counting function* $A(I; N; x_n)$ be defined as the number of terms $x_n, 1 \le n \le N$, for which $x_n \in I$.

A distribution function g is called a *distribution function of a sequence* $x_n \mod 1, n = 1, 2, \ldots$, if there exists an increasing sequence of positive integers N_1, N_2, \ldots such that

$$\lim_{k \to \infty} \frac{A([0,x); N_k; x_n)}{N_k} = g(x) \quad \text{for every } x \in [0,1].$$

If each term $x_n \mod 1$ is repeated only finitely many times, then the semiclosed interval [0, x) can be replaced by the closed interval [0, x].

Every sequence has a non-empty set of distribution functions (cf. [5, Th. 7.1]). A sequence $x_n \mod 1$ having a singleton set $\{g(x)\}$ satisfies

$$\lim_{N \to \infty} \frac{A([0,x);N;x_n)}{N} = g(x) \quad \text{ for every } x \in [0,1]$$

and in this case g(x) is called the *asymptotic distribution function* of a given sequence.

Let $\varphi : [0,1] \to [0,1]$ be a function such that, for all $x \in [0,1]$, $\varphi^{-1}([0,x))$ can be expressed as the union of finitely many pairwise disjoint subintervals $I_i(x)$ of [0,1] with endpoints $\alpha_i(x) \leq \beta_i(x)$. For any distribution function g(x) we put

$$g_{\varphi}(x) = \sum_{i} g(\beta_{i}(x)) - g(\alpha_{i}(x)).$$

The mapping $g \to g_{\varphi}$ is the main tool of the paper. A basic property is expressed by the following statement:

PROPOSITION. Let $x_n \mod 1$ be a sequence having g(x) as a distribution function associated with the sequence of indices N_1, N_2, \ldots Suppose that each term $x_n \mod 1$ is repeated only finitely many times. Then the sequence $\varphi(\{x_n\})$ has the distribution function $g_{\varphi}(x)$ for the same N_1, N_2, \ldots , and vice versa every distribution function of $\varphi(\{x_n\})$ has this form.

Proof. The form of $g_{\varphi}(x)$ is a consequence of

$$A([0,x); N_k; \varphi(\{x_n\})) = \sum_i A(I_i(x); N_k; x_n)$$

and

$$A(I_i(x); N_k; x_n) = A([0, \beta_i(x)); N_k; x_n) - A([0, \alpha_i(x)); N_k; x_n) + o(N_k).$$

On the other hand, suppose that $\tilde{g}(x)$ is a distribution function of $\varphi(\{x_n\})$ associated with N_1, N_2, \ldots The Helly selection principle guarantees a suit-

O. Strauch

able subsequence N_{n_1}, N_{n_2}, \ldots for which some g(x) is a distribution function of $x_n \mod 1$. Thus $\tilde{g}(x) = g_{\varphi}(x)$.

It should be noted that if all of the intervals $I_i(x)$ are of the form $[\alpha_i(x), \beta_i(x))$, then $o(N_k) = 0$ and the assumption of finiteness of repetition is superfluous.

In this paper we take for $\varphi(x)$ the functions

 $f(x) = 2x \mod 1$ and $h(x) = 3x \mod 1$.

In this case, for every $x \in [0, 1]$, we have

$$g_f(x) = g(f_1^{-1}(x)) + g(f_2^{-1}(x)) - g(1/2),$$

$$g_h(x) = g(h_1^{-1}(x)) + g(h_2^{-1}(x)) + g(h_3^{-1}(x)) - g(1/3) - g(2/3).$$

with inverse functions

$$f_1^{-1}(x) = x/2, \quad f_2^{-1}(x) = (x+1)/2,$$

and

$$h_1^{-1}(x) = x/3, \quad h_2^{-1}(x) = (x+1)/3, \quad h_3^{-1}(x) = (x+2)/3.$$

3. Properties of distribution functions of $\xi(3/2)^n \mod 1$. Piatetski-Shapiro [7], by means of ergodic theory, proved that a necessary and sufficient condition that the sequence $\xi q^n \mod 1$ with integer q > 1 has a distribution function g(x) is that $g_{\varphi}(x) = g(x)$ for all $x \in [0,1]$, where $\varphi(x) = qx \mod 1$. For $\xi(3/2)^n \mod 1$ we only prove the following similar property.

THEOREM 1. Every distribution function g(x) of $\xi(3/2)^n \mod 1$ satisfies $g_f(x) = g_h(x)$ for all $x \in [0, 1]$.

Proof. Using $\{q\{x\}\} = \{qx\}$ for any integer q, we have $\{2\{\xi(3/2)^n\}\} = \{3\{\xi(3/2)^{n-1}\}\}$. Therefore $f(\{\xi(3/2)^n\})$ and $h(\{\xi(3/2)^{n-1}\})$ form the same sequence and the rest follows from the Proposition. ■

The above theorem yields the following sets of uniqueness for distribution functions of $\xi(3/2)^n \mod 1$.

THEOREM 2. Let g_1 , g_2 be any two distribution functions satisfying $(g_i)_f(x) = (g_i)_h(x)$ for i = 1, 2 and $x \in [0, 1]$. Set

$$I_1 = [0, 1/3], \quad I_2 = [1/3, 2/3], \quad I_3 = [2/3, 1]$$

If $g_1(x) = g_2(x)$ for $x \in I_i \cup I_j$, $1 \le i \ne j \le 3$, then $g_1(x) = g_2(x)$ for all $x \in [0, 1]$.

Proof. Assume that a distribution function g satisfies $g_f = g_h$ on [0, 1] and let J_i, J'_j, J''_k be the intervals from [0, 1] described in Figure 1.

There are three cases of $I_i \cup I_j$.

1°. Consider first the case $I_2 \cup I_3$. Using the values of g on $I_2 \cup I_3$, and the equation $g_f = g_h$ on J_1 , we can compute $g(h_1^{-1}(x))$ for $x \in J_1$. Mapping $x \in J_1$ to $x' \in J_2$ by using $h_1^{-1}(x) = f_1^{-1}(x')$, we find $g(f_1^{-1}(x))$ for $x \in J_2$. Then, by the equation $g_f = g_h$ on J_2 we can compute $g(h_1^{-1}(x))$ for $x \in J_2$; hence we have $g(f_1^{-1}(x))$ for $x \in J_3$, etc. Thus we have g(x) for $x \in I_1$.

2°. Similarly for the case $I_1 \cup I_2$.

3°. In the case $I_1 \cup I_3$, first we compute g(1/2) by using $g_f(1/2) = g_h(1/2)$, and then we divide the infinite process of computation of g(x) for $x \in I_2$ into two parts:

In the first part, using g(y), for $y \in I_1 \cup I_3$, and $g_f = g_h$ on [0,1], we compute $g(h_2^{-1}(x))$ for $x \in J'_1$. Mapping $x \in J'_1 \to x' \in J'_2$ by $h_2^{-1}(x) = f_1^{-1}(x')$ and employing $g_f = g_h$ we find $g(h_2^{-1}(x))$ for $x \in J'_2$. In the same way this leads to $g(f_2^{-1})$ on J'_3 , $g(h_2^{-1})$ on J'_3 , $g(f_1^{-1})$ on J'_4 , $g(h_2^{-1})$ on J'_4 , and so on.

Similarly, in the second part, from g on $I_1 \cup I_3$ and $g_f = g_h$ on [0, 1] we find $g(h^{-1})$ on J''_1 , $g(f_2^{-1})$ on J''_2 , $g(h_2^{-1})$ on J''_2 , $g(f_1^{-1})$ on J''_3 , $g(h_2^{-1})$ on J''_3 , etc.

In both parts these infinite processes do not cover the values g(2/5) and g(3/5). The rest follows from the equations $g_f(1/5) = g_h(1/5)$ and $g_f(4/5) = g_h(4/5)$.

Next we derive an integral formula for testing $g_f = g_h$. Define

$$F(x,y) = |\{2x\} - \{3y\}| + |\{2y\} - \{3x\}| - |\{2x\} - \{2y\}| - |\{3x\} - \{3y\}|.$$

THEOREM 3. A continuous distribution function g satisfies $g_f = g_h$ on [0,1] if and only if

$$\iint_{0}^{1} F(x,y) \, dg(x) \, dg(y) = 0.$$

Proof. Let x_n , n = 1, 2, ..., be an auxiliary sequence in [0, 1] such that all (x_m, x_n) are points of continuity of F(x, y), and let $c_X(x)$ be the characteristic function of a set X. Applying $c_{[0,x)}(x_n) = c_{(x_n,1]}(x)$, we can compute

$$\begin{split} \int_{0}^{1} \left(\frac{1}{N} \sum_{n=1}^{N} c_{f^{-1}([0,x])}(x_n) - \frac{1}{N} \sum_{n=1}^{N} c_{h^{-1}([0,x])}(x_n)\right)^2 dx \\ &= \frac{1}{N^2} \sum_{m,n=1}^{N} F_{f,h}(x_m,x_n), \end{split}$$

where

$$F_{f,h}(x,y) = \max(f(x), h(y)) + \max(f(y), h(x)) - \max(f(x), f(y)) - \max(h(x), h(y)) = \frac{1}{2}(|f(x) - h(y)| + |f(y) - h(x)| - |f(x) - f(y)| - |h(x) - h(y)|).$$

Applying the well-known Helly lemma we have

$$\int_{0}^{1} (g_f(x) - g_h(x))^2 \, dx = \int_{0}^{1} \int_{0}^{1} F_{f,h}(x,y) \, dg(x) \, dg(y)$$

for any continuous distribution function g. Here $2F_{f,h}(x,y) = F(x,y)$.

4. Inverse mapping to $g \rightarrow (g_f, g_h)$

THEOREM 4. Let g_1 , g_2 be two absolutely continuous distribution functions satisfying $(g_1)_h(x) = (g_2)_f(x)$ for $x \in [0,1]$. Then an absolutely continuous distribution function g(x) satisfies $g_f(x) = g_1(x)$ and $g_h(x) = g_2(x)$ for $x \in [0,1]$ if and only if g(x) has the form

$$g(x) = \begin{cases} \Psi(x) & \text{for } x \in [0, 1/6], \\ \Psi(1/6) + \Phi(x - 1/6) & \text{for } x \in [1/6, 2/6], \\ \Psi(1/6) + \Phi(1/6) + g_1(1/3) - \Psi(x - 2/6) & \\ + \Phi(x - 2/6) - g_1(2x - 1/3) + g_2(3x - 1) & \text{for } x \in [2/6, 3/6], \\ 2\Phi(1/6) + g_1(1/3) - g_1(2/3) + g_2(1/2) & \\ - \Psi(x - 3/6) + g_1(2x - 1) & \text{for } x \in [3/6, 4/6], \\ -\Psi(1/6) + 2\Phi(1/6) + g_1(1/3) - g_1(2/3) + g_2(1/2) & \\ - \Phi(x - 4/6) + g_1(2x - 1) & \text{for } x \in [4/6, 5/6], \\ -\Psi(1/6) + \Phi(1/6) + g_1(1/3) + \Psi(x - 5/6) & \\ - \Phi(x - 5/6) - g_1(2x - 5/3) + g_2(3x - 2) & \text{for } x \in [5/6, 1], \end{cases}$$

where $\Psi(x) = \int_0^x \psi(t) dt$, $\Phi(x) = \int_0^x \phi(t) dt$ for $x \in [0, 1/6]$, and $\psi(t)$, $\phi(t)$ are Lebesgue integrable functions on [0, 1/6] satisfying

$$0 \le \psi(t) \le 2g'_1(2t), \quad 0 \le \phi(t) \le 2g'_1(2t+1/3), 2g'_1(2t) - 3g'_2(3t+1/2) \le \psi(t) - \phi(t) \le -2g'_1(2t+1/3) + 3g'_2(3t),$$

for almost all $t \in [0, 1/6]$.

Proof. We shall use a method which is applicable for any two commuting f, h having finitely many inverse functions.

The starting point is the set of new variables $x_i(t)$:

$$\begin{aligned} x_1(t) &:= f_1^{-1} \circ h_1^{-1} \circ h \circ f(t) = h_1^{-1} \circ f_1^{-1} \circ f \circ h(t), \\ x_2(t) &:= f_1^{-1} \circ h_2^{-1} \circ h \circ f(t) = h_1^{-1} \circ f_2^{-1} \circ f \circ h(t), \\ x_3(t) &:= f_1^{-1} \circ h_3^{-1} \circ h \circ f(t) = h_2^{-1} \circ f_2^{-1} \circ f \circ h(t), \\ x_4(t) &:= f_2^{-1} \circ h_1^{-1} \circ h \circ f(t) = h_2^{-1} \circ f_1^{-1} \circ f \circ h(t), \\ x_5(t) &:= f_2^{-1} \circ h_2^{-1} \circ h \circ f(t) = h_3^{-1} \circ f_1^{-1} \circ f \circ h(t), \\ x_6(t) &:= f_2^{-1} \circ h_3^{-1} \circ h \circ f(t) = h_3^{-1} \circ f_2^{-1} \circ f \circ h(t). \end{aligned}$$

Here the different expressions of $x_i(t)$ follow from the fact that $f(h(x)) = h(f(x)), x \in [0, 1]$. For $t \in [0, 1/6]$ we have $x_i(t) = t + (i-1)/6, i = 1, ..., 6$.

Substituting $x = h_j^{-1} \circ h \circ f(t)$, j = 1, 2, 3, into $g_f(x) = g_1(x)$, and $x = f_i^{-1} \circ f \circ h(t)$, i = 1, 2, into $g_h(x) = g_2(x)$ we have five linear equations for $g(x_k(t))$, $k = 1, \ldots, 6$. Abbreviating the composition $f_i^{-1} \circ h_j^{-1} \circ h \circ f(t)$ as $f_1^{-1}h_2^{-1}hf(t)$, and $x_i(t)$ as x_i , we can write

$$\begin{split} g(x_1) + g(x_4) - g(1/2) &= g_1(h_1^{-1}hf(t)), \\ g(x_2) + g(x_5) - g(1/2) &= g_1(h_2^{-1}hf(t)), \\ g(x_3) + g(x_6) - g(1/2) &= g_1(h_3^{-1}hf(t)), \\ g(x_1) + g(x_3) + g(x_5) - g(1/3) - g(2/3) &= g_2(f_1^{-1}fh(t)), \\ g(x_2) + g(x_4) + g(x_6) - g(1/3) - g(2/3) &= g_2(f_2^{-1}fh(t)). \end{split}$$

Summing up the first three equations and, respectively, the next two equations, we find the necessary condition

$$g_1(1/3) + g_1(2/3) + 3g(1/2) + (g_1)_h(hf(t))$$

= $(g_2)_f(fh(t)) + g_2(1/2) + 2(g(1/3) + g(2/3))$

for $t \in [0, 1/6]$, which is equivalent to

$$g_1(1/3) + g_1(2/3) - g_2(1/2) = 2(g(1/3) + g(2/3)) - 3g(1/2)$$

and

$$(g_1)_h(x) = (g_2)_f(x)$$

for $x \in [0, 1]$. Eliminating the fourth equation which depends on the others we can compute $g(x_3), \ldots, g(x_6)$ by using $g(x_1), g(x_2), g(1/3), g(1/2)$, and g(2/3) as follows:

(1)

$$g(x_{3}) = g(1/3) + g(2/3) - g(1/2) - g(x_{1}) + g(x_{2}) - g_{1}(h_{2}^{-1}hf(t)) + g_{2}(f_{1}^{-1}fh(t)),$$

$$g(x_{4}) = g(1/2) - g(x_{1}) + g_{1}(h_{1}^{-1}hf(t)),$$

$$g(x_{5}) = g(1/2) - g(x_{2}) + g_{1}(h_{2}^{-1}hf(t)),$$

$$g(x_{6}) = g(1/3) + g(2/3) - g(1/2) + g(x_{1}) - g(x_{2}) - g_{1}(h_{1}^{-1}hf(t)) + g_{2}(f_{2}^{-1}fh(t)),$$

for all $t \in [0, 1/6]$. Putting t = 0 and t = 1/6, we find

$$g(1/2) = 2g(1/3) - 2g(1/6) + g_1(1/3) - g_1(2/3) + g_2(1/2),$$

$$g(2/3) = 2g(1/3) - 3g(1/6) + 2g_1(1/3) - g_1(2/3) + g_2(1/2).$$

These values satisfy the necessary condition $g_1(1/3) + g_1(2/3) - g_2(1/2) = 2(g(1/3) + g(2/3)) - 3g(1/2)$. Moreover, $g(1/3) = g(x_2(1/6))$, $g(1/6) = g(x_2(0))$, and thus $g(x_3), \ldots, g(x_6)$ can be expressed by only using $g(x_1)$, $g(x_2)$. Next, we simplify (1) by using

$$\begin{split} h_1^{-1}hf(t) &= ff_2^{-1}h_1^{-1}hf(t) = f(x_4) & \text{for } g(x_4), \\ h_2^{-1}hf(t) &= ff_2^{-1}h_2^{-1}hf(t) = f(x_5) & \text{for } g(x_5), \\ f_1^{-1}fh(t) &= hh_2^{-1}f_1^{-1}fh(t) = h(x_3) & \text{and} \\ h_2^{-1}hf(t) &= ff_1^{-1}h_2^{-1}hf(t) = f(x_2) & \text{for } g(x_3), \\ f_2^{-1}fh(t) &= hh_3^{-1}f_2^{-1}fh(t) = h(x_6) & \text{and} \\ h_1^{-1}hf(t) &= ff_1^{-1}h_1^{-1}hf(t) = f(x_1) & \text{for } g(x_6). \end{split}$$

Now, each $g(x_i)$ can be expressed as $g(x), x \in [(i-1)/6, i/6]$. To do this we use the identity

$$x_i(x_j(t)) = x_i(t)$$
 for $t \in [0, 1]$ and $1 \le i, j \le 6$,

which immediately follows from the fact that

$$f_i^{-1}h_j^{-1}hff_k^{-1}h_l^{-1}hf(t) = f_i^{-1}h_j^{-1}hf(t)$$

For example,

$$g(x_3) = g(1/3) + g(2/3) - g(1/2) - g(x_1) + g(x_2) - g_1(f(x_2)) + g_2(h(x_3)),$$

for $t \in [0, 1/6]$, which is the same as

$$g(x) = g(1/3) + g(2/3) - g(1/2) - g(x_1(x)) + g(x_2(x)) - g_1(f(x_2(x))) + g_2(h(x))$$

for $x \in [2/6, 3/6]$. In our case $x_1(x) = x - i/6$ and $x_2(x) = x + 1/6 - i/6$ for $x \in [i/6, (i+1)/6]$ and $i = 0, \dots, 5$.

Now, assuming the absolute continuity of $g(x_1)$ and $g(x_2)$ we can write

$$g(x_1(t)) = \int_0^t \psi(u) \, du,$$

$$g(x_2(t)) = \int_0^{1/6} \psi(u) \, du + \int_0^t \phi(u) \, du$$

for $t \in [0, 1/6]$.

Summing up the above we find the expression g(x) in the theorem. For the monotonicity of g(x) we can investigate $g'(x_i(t)) \ge 0$ for $t \in [0, 1/6]$ and $i = 1, \ldots, 6$, which immediately leads to the inequalities for ψ and ϕ given in our theorem.

5. Examples and concluding remarks

1. Define a one-jump distribution function $c_{\alpha} : [0,1] \to [0,1]$ such that $c_{\alpha}(0) = 0, c_{\alpha}(1) = 1$, and

$$c_{\alpha}(x) = \begin{cases} 0 & \text{if } x \in [0, \alpha), \\ 1 & \text{if } x \in (\alpha, 1]. \end{cases}$$

The distribution functions $c_0(x)$, $c_1(x)$, and x satisfy $g_f(x) = g_h(x)$ for every $x \in [0, 1]$.

2. Taking $g_1(x) = g_2(x) = x$, further solutions of $g_f = g_h$ follow from Theorem 4. In this case

$$0 \le \psi(t) \le 2, \quad 0 \le \phi(t) \le 2, \quad -1 \le \psi(t) - \phi(t) \le 1,$$

for all $t \in [0, 1/6]$. Putting $\psi(t) = \phi(t) = 0$, the resulting distribution

O. Strauch

function is

$$g_3(x) = \begin{cases} 0 & \text{for } x \in [0, 2/6], \\ x - 1/3 & \text{for } x \in [2/6, 3/6], \\ 2x - 5/6 & \text{for } x \in [3/6, 5/6], \\ x & \text{for } x \in [5/6, 1]. \end{cases}$$

Taking $g_1(x) = g_2(x) = g_3(x)$, this $g_3(x)$ can be used as a starting point for

a further application of Theorem 4 which gives another solution of $g_f = g_h$. 3. Computing $\int_{j/6}^{(j+1)/6} (\int_{i/6}^{(i+1)/6} F(x, y) \, dx) \, dy$ for $i, j = 1, \dots, 5$ directly, we can find

$$\iint_{0}^{1} F(x,y) \, dg_3(x) \, dg_3(y) = 0,$$

which is also a consequence of Theorem 3 and $(g_3)_f = (g_3)_h$.

4. Since the mapping $g \to g_{\phi}$ is linear, the set of all solutions of $g_f = g_h$ is convex.

5. Since $x_f = x_h$, Theorem 2 leads to the fact that the following distribution function $g_4(x)$ is not a distribution function of $\xi(3/2)^n \mod 1$, for any $\xi \in \mathbb{R}$:

$$g_4(x) = \begin{cases} x & \text{for } x \in [0, 2/3], \\ x^2 - (2/3)x + 2/3 & \text{for } x \in [2/3, 1]. \end{cases}$$

6. By Figure 1, $X = \lfloor 2/9, 1/3 \rfloor \cup \lfloor 1/2, 1 \rfloor$ is also a set of uniqueness. Moreover, |X| = 11/18 < 2/3. Similarly for $[0, 1/2] \cup [2/3, 7/9]$.

7. Since all the components of $f^{-1}([0,x))$ and $h^{-1}([0,x))$ are semiclosed the fact that, for fixed $\xi \neq 0$ and m, $\{\xi(3/2)^m\} = \{\xi(3/2)^n\}$ only for finitely many n, was not used in the proof of Theorem 1.

References

- M. Bennett, Fractional parts of powers of rational numbers, Math. Proc. Cam-[1]bridge Philos. Soc. 114 (1993), 191-201.
- G. Choquet, Construction effective de suites $(k(3/2)^n)$. Étude des mesures (3/2)-[2]stables, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A69–A74 (MR 82h:10062a-d).
- L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional [3] parts $\{\xi(p/q)^n\}$, Acta Arith. 70 (1995), 125–147.
- [4]H. Helson and J.-P. Kahane, A Fourier method in diophantine problems, J. Analyse Math. 15 (1965), 245-262 (MR 31#5856).
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New [5]York, 1974.
- K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 [6] (1968), 313–321 (MR 37#2694).
- I. I. Piatetski-Shapiro, On the laws of distribution of the fractional parts of an [7]exponential function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 47–52 (MR 13, 213d) (in Russian).

34

- [8] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
- [9] R. Tijdeman, Note on Mahler's 3/2-problem, Norske Vid. Selsk. Skr. 16 (1972), 1-4.
- [10] J. G. van der Corput, Verteilungsfunktionen I-VIII, Proc. Akad. Amsterdam 38 (1935), 813-821, 1058-1066; 39 (1936), 10-19, 19-26, 149-153, 339-344, 489-494, 579-590.
- T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc. 15 (1940), 159–160.

Mathematical Institute of the Slovak Academy of Sciences Štefánikova ul. 49 814 73 Bratislava, Slovakia E-mail: strauch@mau.savba.sk

> Received on 27.12.1995 and in revised form on 3.12.1996

(2908)