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On distribution functions of ξ(3/2)n mod 1

by

Oto Strauch (Bratislava)

1. Preliminary remarks. The question about distribution of (3/2)n

mod 1 is most difficult. We present a selection of known conjectures:

(i) (3/2)n mod 1 is uniformly distributed in [0, 1].
(ii) (3/2)n mod 1 is dense in [0, 1].

(iii) (T. Vijayaraghavan [11])

lim sup
n→∞

{(3/2)n} − lim inf
n→∞

{(3/2)n} > 1/2,

where {x} is the fractional part of x.
(iv) (K. Mahler [6]) There exists no ξ ∈ R+ such that 0 ≤ {ξ(3/2)n} <

1/2 for n = 0, 1, 2, . . .
(v) (G. Choquet [2]) There exists no ξ ∈ R+ such that the closure of

{{ξ(3/2)n}; n = 0, 1, 2, . . .} is nowhere dense in [0, 1].

Few positive results are known. For instance, L. Flatto, J. C. Lagarias
and A. D. Pollington [3] showed that

lim sup
n→∞

{ξ(3/2)n} − lim inf
n→∞

{ξ(3/2)n} ≥ 1/3

for every ξ > 0.
G. Choquet [2] gave infinitely many ξ ∈ R for which

1/19 ≤ {ξ(3/2)n} ≤ 1− 1/19 for n = 0, 1, 2, . . .

R. Tijdeman [9] showed that for every pair of integers k and m with
k ≥ 2 and m ≥ 1 there exists ξ ∈ [m,m+ 1) such that

0 ≤ {ξ((2k + 1)/2)n} ≤ 1
2k − 1

for n = 0, 1, 2, . . .

The connection between (3/2)n mod 1 and Waring’s problem (cf. M. Ben-
nett [1]), and between Mahler’s conjecture (iv) and the 3x+ 1 problem (cf.
[3]) is also well known.
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In this paper we study the set of all distribution functions of sequences
ξ(3/2)n mod 1, ξ ∈ R. It is motivated by the fact that some conjectures
involving a distribution function g(x) of ξ(3/2)n mod 1 may be formulated
as in (i)–(iv). For example, the following conjecture implies Mahler’s con-
jecture: If g(x) = constant for all x ∈ I, where I is a subinterval of [0, 1],
then the length |I| < 1/2.

The study of the set of distribution functions of a sequence, still unsat-
isfactory today, was initiated by J. G. van der Corput [10]. The one-element
set corresponding to the notion of asymptotic distribution function of a se-
quence mod 1 was introduced by I. J. Schoenberg [8]. Many papers have
been devoted to the study of the asymptotic distribution function for expo-
nentially increasing sequences. H. Helson and J.-P. Kahane [4] established
the existence of uncountably many ξ such that the sequence ξθn does not
have an asymptotic distribution function mod 1, where θ is some fixed real
number > 1. I. I. Piatetski-Shapiro [7] characterizes the asymptotic distri-
bution function for the sequence ξqn mod 1, where q > 1 is an integer. For
a survey, see the monograph by L. Kuipers and H. Niederreiter [5].

In Section 2, we recall the definition of a distribution function g and
we define a mapping g → gϕ associated with a given measurable func-
tion ϕ : [0, 1] → [0, 1]. The formula defining g → gϕ was used implic-
itly by K. F. Gauss for ϕ(x) = 1/x mod 1 in his well-known problem of
the metric theory of continued fractions (gϕ is given e.g. in [5, Th. 7.6]).
The induced transformation between derivatives g′ → g′ϕ is the so-called
Frobenius–Perron operator.

In Section 3, choosing ϕ(x) as f(x) = 2x mod 1 and h(x) = 3x mod 1,
we derive a functional equation of the type gf = gh, for any distribution
function g of ξ(3/2)n mod 1. As a consequence we give some sets of unique-
ness for g, where X ⊂ [0, 1] is said to be a set of uniqueness if whenever
g1 = g2 on X, then g1 = g2 on [0, 1], for any two distribution functions g1, g2

of ξ(3/2)n mod 1 (different values of ξ ∈ R, for g1, g2, are also admissible).
From this fact we derive an example of a distribution function that is not
a distribution function of ξ(3/2)n mod 1 for any ξ ∈ R. We also conjecture
that every measurable set X ⊂ [0, 1] with measure |X| ≥ 2/3 is a set of
uniqueness. An integral criterion for g to satisfy gf = gh is also given.

In Section 4, we describe absolutely continuous solutions g of functional
equations of the form gf = g1 and gh = g2 for given absolutely continuous
distribution functions g1, g2.

In Section 5, we summarize the examples demonstrating all the above
mentioned results.

2. Definitions and basic facts. For the purposes of this paper a dis-
tribution function g(x) will be a real-valued, non-decreasing function of the
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real variable x, defined on the unit interval [0, 1], for which g(0) = 0 and
g(1) = 1. Let xn mod 1, n = 1, 2, . . . , be a given sequence. According to the
terminology introduced in [5], for a positive integer N and a subinterval I
of [0, 1], let the counting function A(I;N ;xn) be defined as the number of
terms xn, 1 ≤ n ≤ N , for which xn ∈ I.

A distribution function g is called a distribution function of a sequence
xn mod 1, n = 1, 2, . . . , if there exists an increasing sequence of positive
integers N1, N2, . . . such that

lim
k→∞

A([0, x);Nk;xn)
Nk

= g(x) for every x ∈ [0, 1].

If each term xn mod 1 is repeated only finitely many times, then the semi-
closed interval [0, x) can be replaced by the closed interval [0, x].

Every sequence has a non-empty set of distribution functions (cf. [5,
Th. 7.1]). A sequence xn mod 1 having a singleton set {g(x)} satisfies

lim
N→∞

A([0, x);N ;xn)
N

= g(x) for every x ∈ [0, 1]

and in this case g(x) is called the asymptotic distribution function of a given
sequence.

Let ϕ : [0, 1]→ [0, 1] be a function such that, for all x ∈ [0, 1], ϕ−1([0, x))
can be expressed as the union of finitely many pairwise disjoint subintervals
Ii(x) of [0, 1] with endpoints αi(x) ≤ βi(x). For any distribution function
g(x) we put

gϕ(x) =
∑

i

g(βi(x))− g(αi(x)).

The mapping g → gϕ is the main tool of the paper. A basic property is
expressed by the following statement:

Proposition. Let xn mod 1 be a sequence having g(x) as a distribu-
tion function associated with the sequence of indices N1, N2, . . . Suppose that
each term xn mod 1 is repeated only finitely many times. Then the sequence
ϕ({xn}) has the distribution function gϕ(x) for the same N1, N2, . . . , and
vice versa every distribution function of ϕ({xn}) has this form.

P r o o f. The form of gϕ(x) is a consequence of

A([0, x);Nk;ϕ({xn})) =
∑

i

A(Ii(x);Nk;xn)

and

A(Ii(x);Nk;xn) = A([0, βi(x));Nk;xn)−A([0, αi(x));Nk;xn) + o(Nk).

On the other hand, suppose that g̃(x) is a distribution function of ϕ({xn})
associated with N1, N2, . . . The Helly selection principle guarantees a suit-
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able subsequence Nn1 , Nn2 , . . . for which some g(x) is a distribution function
of xn mod 1. Thus g̃(x) = gϕ(x).

It should be noted that if all of the intervals Ii(x) are of the form
[αi(x), βi(x)), then o(Nk) = 0 and the assumption of finiteness of repeti-
tion is superfluous.

In this paper we take for ϕ(x) the functions

f(x) = 2x mod 1 and h(x) = 3x mod 1.

In this case, for every x ∈ [0, 1], we have

gf (x) = g(f−1
1 (x)) + g(f−1

2 (x))− g(1/2),

gh(x) = g(h−1
1 (x)) + g(h−1

2 (x)) + g(h−1
3 (x))− g(1/3)− g(2/3),

with inverse functions

f−1
1 (x) = x/2, f−1

2 (x) = (x+ 1)/2,

and

h−1
1 (x) = x/3, h−1

2 (x) = (x+ 1)/3, h−1
3 (x) = (x+ 2)/3.

3. Properties of distribution functions of ξ(3/2)n mod 1. Piatetski-
Shapiro [7], by means of ergodic theory, proved that a necessary and suf-
ficient condition that the sequence ξqn mod 1 with integer q > 1 has a
distribution function g(x) is that gϕ(x) = g(x) for all x ∈ [0, 1], where
ϕ(x) = qx mod 1. For ξ(3/2)n mod 1 we only prove the following similar
property.

Theorem 1. Every distribution function g(x) of ξ(3/2)n mod 1 satisfies
gf (x) = gh(x) for all x ∈ [0, 1].

P r o o f. Using {q{x}} = {qx} for any integer q, we have {2{ξ(3/2)n}} =
{3{ξ(3/2)n−1}}. Therefore f({ξ(3/2)n}) and h({ξ(3/2)n−1}) form the same
sequence and the rest follows from the Proposition.

The above theorem yields the following sets of uniqueness for distribution
functions of ξ(3/2)n mod 1.

Theorem 2. Let g1, g2 be any two distribution functions satisfying
(gi)f (x) = (gi)h(x) for i = 1, 2 and x ∈ [0, 1]. Set

I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1].

If g1(x) = g2(x) for x ∈ Ii ∪ Ij , 1 ≤ i 6= j ≤ 3, then g1(x) = g2(x) for all
x ∈ [0, 1].

P r o o f. Assume that a distribution function g satisfies gf = gh on [0, 1]
and let Ji, J ′j , J

′′
k be the intervals from [0, 1] described in Figure 1.
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There are three cases of Ii ∪ Ij .
1◦. Consider first the case I2 ∪ I3. Using the values of g on I2 ∪ I3, and

the equation gf = gh on J1, we can compute g(h−1
1 (x)) for x ∈ J1. Mapping

x ∈ J1 to x′ ∈ J2 by using h−1
1 (x) = f−1

1 (x′), we find g(f−1
1 (x)) for x ∈ J2.

Then, by the equation gf = gh on J2 we can compute g(h−1
1 (x)) for x ∈ J2;

hence we have g(f−1
1 (x)) for x ∈ J3, etc. Thus we have g(x) for x ∈ I1.

2◦. Similarly for the case I1 ∪ I2.
3◦. In the case I1 ∪ I3, first we compute g(1/2) by using gf (1/2) =

gh(1/2), and then we divide the infinite process of computation of g(x) for
x ∈ I2 into two parts:

In the first part, using g(y), for y ∈ I1 ∪ I3, and gf = gh on [0, 1], we
compute g(h−1

2 (x)) for x ∈ J ′1. Mapping x ∈ J ′1 → x′ ∈ J ′2 by h−1
2 (x) =

f−1
1 (x′) and employing gf = gh we find g(h−1

2 (x)) for x ∈ J ′2. In the same
way this leads to g(f−1

2 ) on J ′3, g(h−1
2 ) on J ′3, g(f−1

1 ) on J ′4, g(h−1
2 ) on J ′4,

and so on.
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Similarly, in the second part, from g on I1 ∪ I3 and gf = gh on [0, 1] we
find g(h−1) on J ′′1 , g(f−1

2 ) on J ′′2 , g(h−1
2 ) on J ′′2 , g(f−1

1 ) on J ′′3 , g(h−1
2 ) on

J ′′3 , etc.
In both parts these infinite processes do not cover the values g(2/5)

and g(3/5). The rest follows from the equations gf (1/5) = gh(1/5) and
gf (4/5) = gh(4/5).

Next we derive an integral formula for testing gf = gh. Define

F (x, y) = |{2x} − {3y}|+ |{2y} − {3x}| − |{2x} − {2y}| − |{3x} − {3y}|.
Theorem 3. A continuous distribution function g satisfies gf = gh on

[0, 1] if and only if
1\
0

1\
0

F (x, y) dg(x) dg(y) = 0.

P r o o f. Let xn, n = 1, 2, . . . , be an auxiliary sequence in [0, 1] such
that all (xm, xn) are points of continuity of F (x, y), and let cX(x) be the
characteristic function of a set X. Applying c[0,x)(xn) = c(xn,1](x), we can
compute

1\
0

(
1
N

N∑
n=1

cf−1([0,x))(xn)− 1
N

N∑
n=1

ch−1([0,x))(xn)
)2

dx

=
1
N2

N∑
m,n=1

Ff,h(xm, xn),

where

Ff,h(x, y) = max(f(x), h(y)) + max(f(y), h(x))

−max(f(x), f(y))−max(h(x), h(y))

= 1
2 (|f(x)− h(y)|+ |f(y)− h(x)| − |f(x)− f(y)| − |h(x)− h(y)|).

Applying the well-known Helly lemma we have
1\
0

(gf (x)− gh(x))2 dx =
1\
0

1\
0

Ff,h(x, y) dg(x) dg(y)

for any continuous distribution function g. Here 2Ff,h(x, y) = F (x, y).

4. Inverse mapping to g → (gf , gh)

Theorem 4. Let g1, g2 be two absolutely continuous distribution func-
tions satisfying (g1)h(x) = (g2)f (x) for x ∈ [0, 1]. Then an absolutely con-
tinuous distribution function g(x) satisfies gf (x) = g1(x) and gh(x) = g2(x)
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for x ∈ [0, 1] if and only if g(x) has the form

g(x ) =





Ψ(x) for x ∈ [0, 1/6],
Ψ(1/6) + Φ(x− 1/6) for x ∈ [1/6, 2/6],
Ψ(1/6) + Φ(1/6) + g1(1/3)− Ψ(x− 2/6)

+ Φ(x− 2/6)− g1(2x− 1/3) + g2(3x− 1) for x ∈ [2/6, 3/6],
2Φ(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

− Ψ(x− 3/6) + g1(2x− 1) for x ∈ [3/6, 4/6],
−Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

− Φ(x− 4/6) + g1(2x− 1) for x ∈ [4/6, 5/6],
−Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)

− Φ(x− 5/6)− g1(2x− 5/3) + g2(3x− 2) for x ∈ [5/6, 1],

where Ψ(x) =
Tx
0 ψ(t) dt, Φ(x) =

Tx
0 φ(t) dt for x ∈ [0, 1/6], and ψ(t), φ(t) are

Lebesgue integrable functions on [0, 1/6] satisfying

0 ≤ ψ(t) ≤ 2g′1(2t), 0 ≤ φ(t) ≤ 2g′1(2t+ 1/3),

2g′1(2t)− 3g′2(3t+ 1/2) ≤ ψ(t)− φ(t) ≤ −2g′1(2t+ 1/3) + 3g′2(3t),

for almost all t ∈ [0, 1/6].

P r o o f. We shall use a method which is applicable for any two commut-
ing f , h having finitely many inverse functions.

The starting point is the set of new variables xi(t):

x1(t) := f−1
1 ◦ h−1

1 ◦ h ◦ f(t) = h−1
1 ◦ f−1

1 ◦ f ◦ h(t),

x2(t) := f−1
1 ◦ h−1

2 ◦ h ◦ f(t) = h−1
1 ◦ f−1

2 ◦ f ◦ h(t),

x3(t) := f−1
1 ◦ h−1

3 ◦ h ◦ f(t) = h−1
2 ◦ f−1

2 ◦ f ◦ h(t),

x4(t) := f−1
2 ◦ h−1

1 ◦ h ◦ f(t) = h−1
2 ◦ f−1

1 ◦ f ◦ h(t),

x5(t) := f−1
2 ◦ h−1

2 ◦ h ◦ f(t) = h−1
3 ◦ f−1

1 ◦ f ◦ h(t),

x6(t) := f−1
2 ◦ h−1

3 ◦ h ◦ f(t) = h−1
3 ◦ f−1

2 ◦ f ◦ h(t).

Here the different expressions of xi(t) follow from the fact that f(h(x)) =
h(f(x)), x ∈ [0, 1]. For t ∈ [0, 1/6] we have xi(t) = t+ (i−1)/6, i = 1, . . . , 6.

Substituting x = h−1
j ◦ h ◦ f(t), j = 1, 2, 3, into gf (x) = g1(x), and

x = f−1
i ◦ f ◦ h(t), i = 1, 2, into gh(x) = g2(x) we have five linear equations

for g(xk(t)), k = 1, . . . , 6. Abbreviating the composition f−1
i ◦ h−1

j ◦ h ◦ f(t)
as f−1

1 h−1
2 hf(t), and xi(t) as xi, we can write

g(x1) + g(x4)− g(1/2) = g1(h−1
1 hf(t)),

g(x2) + g(x5)− g(1/2) = g1(h−1
2 hf(t)),

g(x3) + g(x6)− g(1/2) = g1(h−1
3 hf(t)),

g(x1) + g(x3) + g(x5)− g(1/3)− g(2/3) = g2(f−1
1 fh(t)),

g(x2) + g(x4) + g(x6)− g(1/3)− g(2/3) = g2(f−1
2 fh(t)).
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Summing up the first three equations and, respectively, the next two equa-
tions, we find the necessary condition

g1(1/3) + g1(2/3) + 3g(1/2) + (g1)h(hf(t))

= (g2)f (fh(t)) + g2(1/2) + 2(g(1/3) + g(2/3))

for t ∈ [0, 1/6], which is equivalent to

g1(1/3) + g1(2/3)− g2(1/2) = 2(g(1/3) + g(2/3))− 3g(1/2)

and

(g1)h(x) = (g2)f (x)

for x ∈ [0, 1]. Eliminating the fourth equation which depends on the others
we can compute g(x3), . . . , g(x6) by using g(x1), g(x2), g(1/3), g(1/2), and
g(2/3) as follows:

(1)

g(x3) = g(1/3) + g(2/3)− g(1/2)− g(x1) + g(x2)

− g1(h−1
2 hf(t)) + g2(f−1

1 fh(t)),

g(x4) = g(1/2)− g(x1) + g1(h−1
1 hf(t)),

g(x5) = g(1/2)− g(x2) + g1(h−1
2 hf(t)),

g(x6) = g(1/3) + g(2/3)− g(1/2) + g(x1)− g(x2)

− g1(h−1
1 hf(t)) + g2(f−1

2 fh(t)),

for all t ∈ [0, 1/6]. Putting t = 0 and t = 1/6, we find

g(1/2) = 2g(1/3)− 2g(1/6) + g1(1/3)− g1(2/3) + g2(1/2),

g(2/3) = 2g(1/3)− 3g(1/6) + 2g1(1/3)− g1(2/3) + g2(1/2).

These values satisfy the necessary condition g1(1/3) + g1(2/3) − g2(1/2) =
2(g(1/3) + g(2/3)) − 3g(1/2). Moreover, g(1/3) = g(x2(1/6)), g(1/6) =
g(x2(0)), and thus g(x3), . . . , g(x6) can be expressed by only using g(x1),
g(x2). Next, we simplify (1) by using

h−1
1 hf(t) = ff−1

2 h−1
1 hf(t) = f(x4) for g(x4),

h−1
2 hf(t) = ff−1

2 h−1
2 hf(t) = f(x5) for g(x5),

f−1
1 fh(t) = hh−1

2 f−1
1 fh(t) = h(x3) and

h−1
2 hf(t) = ff−1

1 h−1
2 hf(t) = f(x2) for g(x3),

f−1
2 fh(t) = hh−1

3 f−1
2 fh(t) = h(x6) and

h−1
1 hf(t) = ff−1

1 h−1
1 hf(t) = f(x1) for g(x6).

Now, each g(xi) can be expressed as g(x), x ∈ [(i− 1)/6, i/6]. To do this
we use the identity

xi(xj(t)) = xi(t) for t ∈ [0, 1] and 1 ≤ i, j ≤ 6,
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which immediately follows from the fact that

f−1
i h−1

j hff−1
k h−1

l hf(t) = f−1
i h−1

j hf(t).

For example,

g(x3) = g(1/3) + g(2/3)− g(1/2)− g(x1) + g(x2)

− g1(f(x2)) + g2(h(x3)),

for t ∈ [0, 1/6], which is the same as

g(x) = g(1/3) + g(2/3)− g(1/2)− g(x1(x)) + g(x2(x))

− g1(f(x2(x))) + g2(h(x))

for x ∈ [2/6, 3/6]. In our case x1(x) = x− i/6 and x2(x) = x+ 1/6− i/6 for
x ∈ [i/6, (i+ 1)/6] and i = 0, . . . , 5.

Now, assuming the absolute continuity of g(x1) and g(x2) we can write

g(x1(t)) =
t\
0

ψ(u) du,

g(x2(t)) =
1/6\
0

ψ(u) du+
t\
0

φ(u) du

for t ∈ [0, 1/6].
Summing up the above we find the expression g(x) in the theorem. For

the monotonicity of g(x) we can investigate g′(xi(t)) ≥ 0 for t ∈ [0, 1/6] and
i = 1, . . . , 6, which immediately leads to the inequalities for ψ and φ given
in our theorem.

5. Examples and concluding remarks

1. Define a one-jump distribution function cα : [0, 1] → [0, 1] such that
cα(0) = 0, cα(1) = 1, and

cα(x) =
{

0 if x ∈ [0, α),
1 if x ∈ (α, 1].

The distribution functions c0(x), c1(x), and x satisfy gf (x) = gh(x) for
every x ∈ [0, 1].

2. Taking g1(x) = g2(x) = x, further solutions of gf = gh follow from
Theorem 4. In this case

0 ≤ ψ(t) ≤ 2, 0 ≤ φ(t) ≤ 2, −1 ≤ ψ(t)− φ(t) ≤ 1,

for all t ∈ [0, 1/6]. Putting ψ(t) = φ(t) = 0, the resulting distribution
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function is

g3(x) =





0 for x ∈ [0, 2/6],
x− 1/3 for x ∈ [2/6, 3/6],
2x− 5/6 for x ∈ [3/6, 5/6],
x for x ∈ [5/6, 1].

Taking g1(x) = g2(x) = g3(x), this g3(x) can be used as a starting point for
a further application of Theorem 4 which gives another solution of gf = gh.

3. Computing
T(j+1)/6
j/6 (

T(i+1)/6
i/6 F (x, y) dx) dy for i, j = 1, . . . , 5 directly,

we can find
1\
0

1\
0

F (x, y) dg3(x) dg3(y) = 0,

which is also a consequence of Theorem 3 and (g3)f = (g3)h.
4. Since the mapping g → gφ is linear, the set of all solutions of gf = gh

is convex.
5. Since xf = xh, Theorem 2 leads to the fact that the following dis-

tribution function g4(x) is not a distribution function of ξ(3/2)n mod 1, for
any ξ ∈ R:

g4(x) =
{
x for x ∈ [0, 2/3],
x2 − (2/3)x+ 2/3 for x ∈ [2/3, 1].

6. By Figure 1, X = [2/9, 1/3] ∪ [1/2, 1] is also a set of uniqueness.
Moreover, |X| = 11/18 < 2/3. Similarly for [0, 1/2] ∪ [2/3, 7/9].

7. Since all the components of f−1([0, x)) and h−1([0, x)) are semiclosed
the fact that, for fixed ξ 6= 0 and m, {ξ(3/2)m} = {ξ(3/2)n} only for finitely
many n, was not used in the proof of Theorem 1.
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