On distribution functions of $\xi(3 / 2)^{n} \bmod 1$

by
Оto Strauch (Bratislava)

1. Preliminary remarks. The question about distribution of $(3 / 2)^{n}$ $\bmod 1$ is most difficult. We present a selection of known conjectures:
(i) $(3 / 2)^{n} \bmod 1$ is uniformly distributed in $[0,1]$.
(ii) $(3 / 2)^{n} \bmod 1$ is dense in $[0,1]$.
(iii) (T. Vijayaraghavan [11])

$$
\limsup _{n \rightarrow \infty}\left\{(3 / 2)^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{(3 / 2)^{n}\right\}>1 / 2
$$

where $\{x\}$ is the fractional part of x.
(iv) (K. Mahler [6]) There exists no $\xi \in \mathbb{R}^{+}$such that $0 \leq\left\{\xi(3 / 2)^{n}\right\}<$ $1 / 2$ for $n=0,1,2, \ldots$
(v) (G. Choquet [2]) There exists no $\xi \in \mathbb{R}^{+}$such that the closure of $\left\{\left\{\xi(3 / 2)^{n}\right\} ; n=0,1,2, \ldots\right\}$ is nowhere dense in $[0,1]$.

Few positive results are known. For instance, L. Flatto, J. C. Lagarias and A. D. Pollington [3] showed that

$$
\limsup _{n \rightarrow \infty}\left\{\xi(3 / 2)^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi(3 / 2)^{n}\right\} \geq 1 / 3
$$

for every $\xi>0$.
G. Choquet [2] gave infinitely many $\xi \in \mathbb{R}$ for which

$$
1 / 19 \leq\left\{\xi(3 / 2)^{n}\right\} \leq 1-1 / 19 \quad \text { for } n=0,1,2, \ldots
$$

R. Tijdeman [9] showed that for every pair of integers k and m with $k \geq 2$ and $m \geq 1$ there exists $\xi \in[m, m+1)$ such that

$$
0 \leq\left\{\xi((2 k+1) / 2)^{n}\right\} \leq \frac{1}{2 k-1} \quad \text { for } n=0,1,2, \ldots
$$

The connection between $(3 / 2)^{n} \bmod 1$ and Waring's problem (cf. M. Bennett [1]), and between Mahler's conjecture (iv) and the $3 x+1$ problem (cf. [3]) is also well known.

[^0]In this paper we study the set of all distribution functions of sequences $\xi(3 / 2)^{n} \bmod 1, \xi \in \mathbb{R}$. It is motivated by the fact that some conjectures involving a distribution function $g(x)$ of $\xi(3 / 2)^{n}$ mod 1 may be formulated as in (i)-(iv). For example, the following conjecture implies Mahler's conjecture: If $g(x)=$ constant for all $x \in I$, where I is a subinterval of $[0,1]$, then the length $|I|<1 / 2$.

The study of the set of distribution functions of a sequence, still unsatisfactory today, was initiated by J. G. van der Corput [10]. The one-element set corresponding to the notion of asymptotic distribution function of a sequence mod 1 was introduced by I. J. Schoenberg [8]. Many papers have been devoted to the study of the asymptotic distribution function for exponentially increasing sequences. H. Helson and J.-P. Kahane [4] established the existence of uncountably many ξ such that the sequence $\xi \theta^{n}$ does not have an asymptotic distribution function $\bmod 1$, where θ is some fixed real number >1. I. I. Piatetski-Shapiro [7] characterizes the asymptotic distribution function for the sequence $\xi q^{n} \bmod 1$, where $q>1$ is an integer. For a survey, see the monograph by L. Kuipers and H. Niederreiter [5].

In Section 2, we recall the definition of a distribution function g and we define a mapping $g \rightarrow g_{\varphi}$ associated with a given measurable function $\varphi:[0,1] \rightarrow[0,1]$. The formula defining $g \rightarrow g_{\varphi}$ was used implicitly by K. F. Gauss for $\varphi(x)=1 / x \bmod 1$ in his well-known problem of the metric theory of continued fractions (g_{φ} is given e.g. in [5, Th. 7.6]). The induced transformation between derivatives $g^{\prime} \rightarrow g_{\varphi}^{\prime}$ is the so-called Frobenius-Perron operator.

In Section 3, choosing $\varphi(x)$ as $f(x)=2 x \bmod 1$ and $h(x)=3 x \bmod 1$, we derive a functional equation of the type $g_{f}=g_{h}$, for any distribution function g of $\xi(3 / 2)^{n}$ mod 1 . As a consequence we give some sets of uniqueness for g, where $X \subset[0,1]$ is said to be a set of uniqueness if whenever $g_{1}=g_{2}$ on X, then $g_{1}=g_{2}$ on $[0,1]$, for any two distribution functions g_{1}, g_{2} of $\xi(3 / 2)^{n} \bmod 1$ (different values of $\xi \in \mathbb{R}$, for g_{1}, g_{2}, are also admissible). From this fact we derive an example of a distribution function that is not a distribution function of $\xi(3 / 2)^{n} \bmod 1$ for any $\xi \in \mathbb{R}$. We also conjecture that every measurable set $X \subset[0,1]$ with measure $|X| \geq 2 / 3$ is a set of uniqueness. An integral criterion for g to satisfy $g_{f}=g_{h}$ is also given.

In Section 4, we describe absolutely continuous solutions g of functional equations of the form $g_{f}=g_{1}$ and $g_{h}=g_{2}$ for given absolutely continuous distribution functions g_{1}, g_{2}.

In Section 5, we summarize the examples demonstrating all the above mentioned results.
2. Definitions and basic facts. For the purposes of this paper a distribution function $g(x)$ will be a real-valued, non-decreasing function of the
real variable x, defined on the unit interval $[0,1]$, for which $g(0)=0$ and $g(1)=1$. Let $x_{n} \bmod 1, n=1,2, \ldots$, be a given sequence. According to the terminology introduced in [5], for a positive integer N and a subinterval I of $[0,1]$, let the counting function $A\left(I ; N ; x_{n}\right)$ be defined as the number of terms $x_{n}, 1 \leq n \leq N$, for which $x_{n} \in I$.

A distribution function g is called a distribution function of a sequence $x_{n} \bmod 1, n=1,2, \ldots$, if there exists an increasing sequence of positive integers N_{1}, N_{2}, \ldots such that

$$
\lim _{k \rightarrow \infty} \frac{A\left([0, x) ; N_{k} ; x_{n}\right)}{N_{k}}=g(x) \quad \text { for every } x \in[0,1] .
$$

If each term $x_{n} \bmod 1$ is repeated only finitely many times, then the semiclosed interval $[0, x)$ can be replaced by the closed interval $[0, x]$.

Every sequence has a non-empty set of distribution functions (cf. [5, Th. 7.1]). A sequence $x_{n} \bmod 1$ having a singleton set $\{g(x)\}$ satisfies

$$
\lim _{N \rightarrow \infty} \frac{A\left([0, x) ; N ; x_{n}\right)}{N}=g(x) \quad \text { for every } x \in[0,1]
$$

and in this case $g(x)$ is called the asymptotic distribution function of a given sequence.

Let $\varphi:[0,1] \rightarrow[0,1]$ be a function such that, for all $x \in[0,1], \varphi^{-1}([0, x))$ can be expressed as the union of finitely many pairwise disjoint subintervals $I_{i}(x)$ of $[0,1]$ with endpoints $\alpha_{i}(x) \leq \beta_{i}(x)$. For any distribution function $g(x)$ we put

$$
g_{\varphi}(x)=\sum_{i} g\left(\beta_{i}(x)\right)-g\left(\alpha_{i}(x)\right) .
$$

The mapping $g \rightarrow g_{\varphi}$ is the main tool of the paper. A basic property is expressed by the following statement:

Proposition. Let $x_{n} \bmod 1$ be a sequence having $g(x)$ as a distribution function associated with the sequence of indices N_{1}, N_{2}, \ldots Suppose that each term $x_{n} \bmod 1$ is repeated only finitely many times. Then the sequence $\varphi\left(\left\{x_{n}\right\}\right)$ has the distribution function $g_{\varphi}(x)$ for the same N_{1}, N_{2}, \ldots, and vice versa every distribution function of $\varphi\left(\left\{x_{n}\right\}\right)$ has this form.

Proof. The form of $g_{\varphi}(x)$ is a consequence of

$$
A\left([0, x) ; N_{k} ; \varphi\left(\left\{x_{n}\right\}\right)\right)=\sum_{i} A\left(I_{i}(x) ; N_{k} ; x_{n}\right)
$$

and

$$
A\left(I_{i}(x) ; N_{k} ; x_{n}\right)=A\left(\left[0, \beta_{i}(x)\right) ; N_{k} ; x_{n}\right)-A\left(\left[0, \alpha_{i}(x)\right) ; N_{k} ; x_{n}\right)+o\left(N_{k}\right) .
$$

On the other hand, suppose that $\widetilde{g}(x)$ is a distribution function of $\varphi\left(\left\{x_{n}\right\}\right)$ associated with N_{1}, N_{2}, \ldots The Helly selection principle guarantees a suit-
able subsequence $N_{n_{1}}, N_{n_{2}}, \ldots$ for which some $g(x)$ is a distribution function of $x_{n} \bmod 1$. Thus $\widetilde{g}(x)=g_{\varphi}(x)$.

It should be noted that if all of the intervals $I_{i}(x)$ are of the form $\left[\alpha_{i}(x), \beta_{i}(x)\right)$, then $o\left(N_{k}\right)=0$ and the assumption of finiteness of repetition is superfluous.

In this paper we take for $\varphi(x)$ the functions

$$
f(x)=2 x \bmod 1 \quad \text { and } \quad h(x)=3 x \bmod 1 .
$$

In this case, for every $x \in[0,1]$, we have

$$
\begin{gathered}
g_{f}(x)=g\left(f_{1}^{-1}(x)\right)+g\left(f_{2}^{-1}(x)\right)-g(1 / 2), \\
g_{h}(x)=g\left(h_{1}^{-1}(x)\right)+g\left(h_{2}^{-1}(x)\right)+g\left(h_{3}^{-1}(x)\right)-g(1 / 3)-g(2 / 3),
\end{gathered}
$$

with inverse functions

$$
f_{1}^{-1}(x)=x / 2, \quad f_{2}^{-1}(x)=(x+1) / 2,
$$

and

$$
h_{1}^{-1}(x)=x / 3, \quad h_{2}^{-1}(x)=(x+1) / 3, \quad h_{3}^{-1}(x)=(x+2) / 3 .
$$

3. Properties of distribution functions of $\xi(3 / 2)^{n} \bmod 1$. PiatetskiShapiro [7], by means of ergodic theory, proved that a necessary and sufficient condition that the sequence $\xi q^{n} \bmod 1$ with integer $q>1$ has a distribution function $g(x)$ is that $g_{\varphi}(x)=g(x)$ for all $x \in[0,1]$, where $\varphi(x)=q x \bmod 1$. For $\xi(3 / 2)^{n} \bmod 1$ we only prove the following similar property.

Theorem 1. Every distribution function $g(x)$ of $\xi(3 / 2)^{n} \bmod 1$ satisfies $g_{f}(x)=g_{h}(x)$ for all $x \in[0,1]$.

Proof. Using $\{q\{x\}\}=\{q x\}$ for any integer q, we have $\left\{2\left\{\xi(3 / 2)^{n}\right\}\right\}=$ $\left\{3\left\{\xi(3 / 2)^{n-1}\right\}\right\}$. Therefore $f\left(\left\{\xi(3 / 2)^{n}\right\}\right)$ and $h\left(\left\{\xi(3 / 2)^{n-1}\right\}\right)$ form the same sequence and the rest follows from the Proposition.

The above theorem yields the following sets of uniqueness for distribution functions of $\xi(3 / 2)^{n} \bmod 1$.

Theorem 2. Let g_{1}, g_{2} be any two distribution functions satisfying $\left(g_{i}\right)_{f}(x)=\left(g_{i}\right)_{h}(x)$ for $i=1,2$ and $x \in[0,1]$. Set

$$
I_{1}=[0,1 / 3], \quad I_{2}=[1 / 3,2 / 3], \quad I_{3}=[2 / 3,1] .
$$

If $g_{1}(x)=g_{2}(x)$ for $x \in I_{i} \cup I_{j}, 1 \leq i \neq j \leq 3$, then $g_{1}(x)=g_{2}(x)$ for all $x \in[0,1]$.

Proof. Assume that a distribution function g satisfies $g_{f}=g_{h}$ on $[0,1]$ and let $J_{i}, J_{j}^{\prime}, J_{k}^{\prime \prime}$ be the intervals from $[0,1]$ described in Figure 1.

Fig. 1

There are three cases of $I_{i} \cup I_{j}$.
1°. Consider first the case $I_{2} \cup I_{3}$. Using the values of g on $I_{2} \cup I_{3}$, and the equation $g_{f}=g_{h}$ on J_{1}, we can compute $g\left(h_{1}^{-1}(x)\right)$ for $x \in J_{1}$. Mapping $x \in J_{1}$ to $x^{\prime} \in J_{2}$ by using $h_{1}^{-1}(x)=f_{1}^{-1}\left(x^{\prime}\right)$, we find $g\left(f_{1}^{-1}(x)\right)$ for $x \in J_{2}$. Then, by the equation $g_{f}=g_{h}$ on J_{2} we can compute $g\left(h_{1}^{-1}(x)\right)$ for $x \in J_{2}$; hence we have $g\left(f_{1}^{-1}(x)\right)$ for $x \in J_{3}$, etc. Thus we have $g(x)$ for $x \in I_{1}$.
2°. Similarly for the case $I_{1} \cup I_{2}$.
3°. In the case $I_{1} \cup I_{3}$, first we compute $g(1 / 2)$ by using $g_{f}(1 / 2)=$ $g_{h}(1 / 2)$, and then we divide the infinite process of computation of $g(x)$ for $x \in I_{2}$ into two parts:

In the first part, using $g(y)$, for $y \in I_{1} \cup I_{3}$, and $g_{f}=g_{h}$ on $[0,1]$, we compute $g\left(h_{2}^{-1}(x)\right)$ for $x \in J_{1}^{\prime}$. Mapping $x \in J_{1}^{\prime} \rightarrow x^{\prime} \in J_{2}^{\prime}$ by $h_{2}^{-1}(x)=$ $f_{1}^{-1}\left(x^{\prime}\right)$ and employing $g_{f}=g_{h}$ we find $g\left(h_{2}^{-1}(x)\right)$ for $x \in J_{2}^{\prime}$. In the same way this leads to $g\left(f_{2}^{-1}\right)$ on $J_{3}^{\prime}, g\left(h_{2}^{-1}\right)$ on $J_{3}^{\prime}, g\left(f_{1}^{-1}\right)$ on $J_{4}^{\prime}, g\left(h_{2}^{-1}\right)$ on J_{4}^{\prime}, and so on.

Similarly, in the second part, from g on $I_{1} \cup I_{3}$ and $g_{f}=g_{h}$ on $[0,1]$ we find $g\left(h^{-1}\right)$ on $J_{1}^{\prime \prime}, g\left(f_{2}^{-1}\right)$ on $J_{2}^{\prime \prime}, g\left(h_{2}^{-1}\right)$ on $J_{2}^{\prime \prime}, g\left(f_{1}^{-1}\right)$ on $J_{3}^{\prime \prime}, g\left(h_{2}^{-1}\right)$ on $J_{3}^{\prime \prime}$, etc.

In both parts these infinite processes do not cover the values $g(2 / 5)$ and $g(3 / 5)$. The rest follows from the equations $g_{f}(1 / 5)=g_{h}(1 / 5)$ and $g_{f}(4 / 5)=g_{h}(4 / 5)$.

Next we derive an integral formula for testing $g_{f}=g_{h}$. Define

$$
F(x, y)=|\{2 x\}-\{3 y\}|+|\{2 y\}-\{3 x\}|-|\{2 x\}-\{2 y\}|-|\{3 x\}-\{3 y\}| .
$$

Theorem 3. A continuous distribution function g satisfies $g_{f}=g_{h}$ on $[0,1]$ if and only if

$$
\int_{0}^{1} \int_{0}^{1} F(x, y) d g(x) d g(y)=0
$$

Proof. Let $x_{n}, n=1,2, \ldots$, be an auxiliary sequence in $[0,1]$ such that all $\left(x_{m}, x_{n}\right)$ are points of continuity of $F(x, y)$, and let $c_{X}(x)$ be the characteristic function of a set X. Applying $c_{[0, x)}\left(x_{n}\right)=c_{\left(x_{n}, 1\right]}(x)$, we can compute

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{1}{N} \sum_{n=1}^{N} c_{f^{-1}([0, x))}\left(x_{n}\right)-\frac{1}{N} \sum_{n=1}^{N} c_{h^{-1}([0, x))}\right. & \left.\left(x_{n}\right)\right)^{2} d x \\
& =\frac{1}{N^{2}} \sum_{m, n=1}^{N} F_{f, h}\left(x_{m}, x_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
F_{f, h}(x, y)= & \max (f(x), h(y))+\max (f(y), h(x)) \\
& -\max (f(x), f(y))-\max (h(x), h(y)) \\
= & \frac{1}{2}(|f(x)-h(y)|+|f(y)-h(x)|-|f(x)-f(y)|-|h(x)-h(y)|) .
\end{aligned}
$$

Applying the well-known Helly lemma we have

$$
\int_{0}^{1}\left(g_{f}(x)-g_{h}(x)\right)^{2} d x=\int_{0}^{1} \int_{0}^{1} F_{f, h}(x, y) d g(x) d g(y)
$$

for any continuous distribution function g. Here $2 F_{f, h}(x, y)=F(x, y)$.

4. Inverse mapping to $g \rightarrow\left(g_{f}, g_{h}\right)$

TheOrem 4. Let g_{1}, g_{2} be two absolutely continuous distribution functions satisfying $\left(g_{1}\right)_{h}(x)=\left(g_{2}\right)_{f}(x)$ for $x \in[0,1]$. Then an absolutely continuous distribution function $g(x)$ satisfies $g_{f}(x)=g_{1}(x)$ and $g_{h}(x)=g_{2}(x)$
for $x \in[0,1]$ if and only if $g(x)$ has the form

$$
g(x)= \begin{cases}\Psi(x) & \text { for } x \in[0,1 / 6], \\ \Psi(1 / 6)+\Phi(x-1 / 6) & \text { for } x \in[1 / 6,2 / 6], \\ \Psi(1 / 6)+\Phi(1 / 6)+g_{1}(1 / 3)-\Psi(x-2 / 6) & \text { for } x \in[2 / 6,3 / 6], \\ \quad+\Phi(x-2 / / 6)-g_{1}(2 x-1 / 3)+g_{2}(3 x-1) \\ 2 \Phi(1 / 6)+g_{1}(1 / 3)-g_{1}(2 / 3)+g_{2}(1 / 2) & \text { for } x \in[3 / 6,4 / 6], \\ -\Psi(x-3 / 6)+g_{1}(2 x-1), \\ -\Psi(1 / 6)+2 \Phi(1 / 6)+g_{1}(1 / 3)-g_{1}(2 / 3)+g_{2}(1 / 2) & \\ -\Psi(x-4 / 6)+g_{1}(2 x-1) & \text { for } x \in[4 / 6,5 / 6], \\ -\Psi(1 / 6)+\Phi(1 / 6)+g_{1}(1 / 3)+\Psi(x-5 / 6) & \text { for } x \in[5 / 6,1],\end{cases}
$$

where $\Psi(x)=\int_{0}^{x} \psi(t) d t, \Phi(x)=\int_{0}^{x} \phi(t) d t$ for $x \in[0,1 / 6]$, and $\psi(t), \phi(t)$ are Lebesgue integrable functions on $[0,1 / 6]$ satisfying

$$
\begin{gathered}
0 \leq \psi(t) \leq 2 g_{1}^{\prime}(2 t), \quad 0 \leq \phi(t) \leq 2 g_{1}^{\prime}(2 t+1 / 3), \\
2 g_{1}^{\prime}(2 t)-3 g_{2}^{\prime}(3 t+1 / 2) \leq \psi(t)-\phi(t) \leq-2 g_{1}^{\prime}(2 t+1 / 3)+3 g_{2}^{\prime}(3 t),
\end{gathered}
$$

for almost all $t \in[0,1 / 6]$.
Proof. We shall use a method which is applicable for any two commuting f, h having finitely many inverse functions.

The starting point is the set of new variables $x_{i}(t)$:

$$
\begin{aligned}
& x_{1}(t):=f_{1}^{-1} \circ h_{1}^{-1} \circ h \circ f(t)=h_{1}^{-1} \circ f_{1}^{-1} \circ f \circ h(t), \\
& x_{2}(t):=f_{1}^{-1} \circ h_{2}^{-1} \circ h \circ f(t)=h_{1}^{-1} \circ f_{2}^{-1} \circ f \circ h(t), \\
& x_{3}(t):=f_{1}^{-1} \circ h_{3}^{-1} \circ h \circ f(t)=h_{2}^{-1} \circ f_{2}^{-1} \circ f \circ h(t), \\
& x_{4}(t):=f_{2}^{-1} \circ h_{1}^{-1} \circ h \circ f(t)=h_{2}^{-1} \circ f_{1}^{-1} \circ f \circ h(t), \\
& x_{5}(t):=f_{2}^{-1} \circ h_{2}^{-1} \circ h \circ f(t)=h_{3}^{-1} \circ f_{1}^{-1} \circ f \circ h(t), \\
& x_{6}(t):=f_{2}^{-1} \circ h_{3}^{-1} \circ h \circ f(t)=h_{3}^{-1} \circ f_{2}^{-1} \circ f \circ h(t) .
\end{aligned}
$$

Here the different expressions of $x_{i}(t)$ follow from the fact that $f(h(x))=$ $h(f(x)), x \in[0,1]$. For $t \in[0,1 / 6]$ we have $x_{i}(t)=t+(i-1) / 6, i=1, \ldots, 6$.

Substituting $x=h_{j}^{-1} \circ h \circ f(t), j=1,2,3$, into $g_{f}(x)=g_{1}(x)$, and $x=f_{i}^{-1} \circ f \circ h(t), i=1,2$, into $g_{h}(x)=g_{2}(x)$ we have five linear equations for $g\left(x_{k}(t)\right), k=1, \ldots, 6$. Abbreviating the composition $f_{i}^{-1} \circ h_{j}^{-1} \circ h \circ f(t)$ as $f_{1}^{-1} h_{2}^{-1} h f(t)$, and $x_{i}(t)$ as x_{i}, we can write

$$
\begin{aligned}
& g\left(x_{1}\right)+g\left(x_{4}\right)-g(1 / 2)=g_{1}\left(h_{1}^{-1} h f(t)\right), \\
& g\left(x_{2}\right)+g\left(x_{5}\right)-g(1 / 2)=g_{1}\left(h_{2}^{-1} h f(t)\right), \\
& g\left(x_{3}\right)+g\left(x_{6}\right)-g(1 / 2)=g_{1}\left(h_{3}^{-1} h f(t)\right), \\
& g\left(x_{1}\right)+g\left(x_{3}\right)+g\left(x_{5}\right)-g(1 / 3)-g(2 / 3)=g_{2}\left(f_{1}^{-1} f h(t)\right), \\
& g\left(x_{2}\right)+g\left(x_{4}\right)+g\left(x_{6}\right)-g(1 / 3)-g(2 / 3)=g_{2}\left(f_{2}^{-1} f h(t)\right) .
\end{aligned}
$$

Summing up the first three equations and, respectively, the next two equations, we find the necessary condition

$$
\begin{aligned}
g_{1}(1 / 3)+g_{1}(2 / 3)+3 g & (1 / 2)+\left(g_{1}\right)_{h}(h f(t)) \\
& =\left(g_{2}\right)_{f}(f h(t))+g_{2}(1 / 2)+2(g(1 / 3)+g(2 / 3))
\end{aligned}
$$

for $t \in[0,1 / 6]$, which is equivalent to

$$
g_{1}(1 / 3)+g_{1}(2 / 3)-g_{2}(1 / 2)=2(g(1 / 3)+g(2 / 3))-3 g(1 / 2)
$$

and

$$
\left(g_{1}\right)_{h}(x)=\left(g_{2}\right)_{f}(x)
$$

for $x \in[0,1]$. Eliminating the fourth equation which depends on the others we can compute $g\left(x_{3}\right), \ldots, g\left(x_{6}\right)$ by using $g\left(x_{1}\right), g\left(x_{2}\right), g(1 / 3), g(1 / 2)$, and $g(2 / 3)$ as follows:

$$
\begin{aligned}
g\left(x_{3}\right)= & g(1 / 3)+g(2 / 3)-g(1 / 2)-g\left(x_{1}\right)+g\left(x_{2}\right) \\
& -g_{1}\left(h_{2}^{-1} h f(t)\right)+g_{2}\left(f_{1}^{-1} f h(t)\right), \\
g\left(x_{4}\right)= & g(1 / 2)-g\left(x_{1}\right)+g_{1}\left(h_{1}^{-1} h f(t)\right), \\
g\left(x_{5}\right)= & g(1 / 2)-g\left(x_{2}\right)+g_{1}\left(h_{2}^{-1} h f(t)\right), \\
g\left(x_{6}\right)= & g(1 / 3)+g(2 / 3)-g(1 / 2)+g\left(x_{1}\right)-g\left(x_{2}\right) \\
& -g_{1}\left(h_{1}^{-1} h f(t)\right)+g_{2}\left(f_{2}^{-1} f h(t)\right),
\end{aligned}
$$

for all $t \in[0,1 / 6]$. Putting $t=0$ and $t=1 / 6$, we find

$$
\begin{aligned}
& g(1 / 2)=2 g(1 / 3)-2 g(1 / 6)+g_{1}(1 / 3)-g_{1}(2 / 3)+g_{2}(1 / 2) \\
& g(2 / 3)=2 g(1 / 3)-3 g(1 / 6)+2 g_{1}(1 / 3)-g_{1}(2 / 3)+g_{2}(1 / 2)
\end{aligned}
$$

These values satisfy the necessary condition $g_{1}(1 / 3)+g_{1}(2 / 3)-g_{2}(1 / 2)=$ $2(g(1 / 3)+g(2 / 3))-3 g(1 / 2)$. Moreover, $g(1 / 3)=g\left(x_{2}(1 / 6)\right), g(1 / 6)=$ $g\left(x_{2}(0)\right)$, and thus $g\left(x_{3}\right), \ldots, g\left(x_{6}\right)$ can be expressed by only using $g\left(x_{1}\right)$, $g\left(x_{2}\right)$. Next, we simplify (1) by using

$$
\begin{array}{ll}
h_{1}^{-1} h f(t)=f f_{2}^{-1} h_{1}^{-1} h f(t)=f\left(x_{4}\right) & \text { for } g\left(x_{4}\right), \\
h_{2}^{-1} h f(t)=f f_{2}^{-1} h_{2}^{-1} h f(t)=f\left(x_{5}\right) & \text { for } g\left(x_{5}\right), \\
f_{1}^{-1} f h(t)=h h_{2}^{-1} f_{1}^{-1} f h(t)=h\left(x_{3}\right) & \text { and } \\
h_{2}^{-1} h f(t)=f f_{1}^{-1} h_{2}^{-1} h f(t)=f\left(x_{2}\right) & \text { for } g\left(x_{3}\right), \\
f_{2}^{-1} f h(t)=h h_{3}^{-1} f_{2}^{-1} f h(t)=h\left(x_{6}\right) & \text { and } \\
h_{1}^{-1} h f(t)=f f_{1}^{-1} h_{1}^{-1} h f(t)=f\left(x_{1}\right) & \text { for } g\left(x_{6}\right) .
\end{array}
$$

Now, each $g\left(x_{i}\right)$ can be expressed as $g(x), x \in[(i-1) / 6, i / 6]$. To do this we use the identity

$$
x_{i}\left(x_{j}(t)\right)=x_{i}(t) \quad \text { for } t \in[0,1] \text { and } 1 \leq i, j \leq 6
$$

which immediately follows from the fact that

$$
f_{i}^{-1} h_{j}^{-1} h f f_{k}^{-1} h_{l}^{-1} h f(t)=f_{i}^{-1} h_{j}^{-1} h f(t) .
$$

For example,

$$
\begin{aligned}
g\left(x_{3}\right)= & g(1 / 3)+g(2 / 3)-g(1 / 2)-g\left(x_{1}\right)+g\left(x_{2}\right) \\
& -g_{1}\left(f\left(x_{2}\right)\right)+g_{2}\left(h\left(x_{3}\right)\right),
\end{aligned}
$$

for $t \in[0,1 / 6]$, which is the same as

$$
\begin{aligned}
g(x)= & g(1 / 3)+g(2 / 3)-g(1 / 2)-g\left(x_{1}(x)\right)+g\left(x_{2}(x)\right) \\
& -g_{1}\left(f\left(x_{2}(x)\right)\right)+g_{2}(h(x))
\end{aligned}
$$

for $x \in[2 / 6,3 / 6]$. In our case $x_{1}(x)=x-i / 6$ and $x_{2}(x)=x+1 / 6-i / 6$ for $x \in[i / 6,(i+1) / 6]$ and $i=0, \ldots, 5$.

Now, assuming the absolute continuity of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ we can write

$$
\begin{aligned}
& g\left(x_{1}(t)\right)=\int_{0}^{t} \psi(u) d u \\
& g\left(x_{2}(t)\right)=\int_{0}^{1 / 6} \psi(u) d u+\int_{0}^{t} \phi(u) d u
\end{aligned}
$$

for $t \in[0,1 / 6]$.
Summing up the above we find the expression $g(x)$ in the theorem. For the monotonicity of $g(x)$ we can investigate $g^{\prime}\left(x_{i}(t)\right) \geq 0$ for $t \in[0,1 / 6]$ and $i=1, \ldots, 6$, which immediately leads to the inequalities for ψ and ϕ given in our theorem.

5. Examples and concluding remarks

1. Define a one-jump distribution function $c_{\alpha}:[0,1] \rightarrow[0,1]$ such that $c_{\alpha}(0)=0, c_{\alpha}(1)=1$, and

$$
c_{\alpha}(x)= \begin{cases}0 & \text { if } x \in[0, \alpha), \\ 1 & \text { if } x \in(\alpha, 1] .\end{cases}
$$

The distribution functions $c_{0}(x), c_{1}(x)$, and x satisfy $g_{f}(x)=g_{h}(x)$ for every $x \in[0,1]$.
2. Taking $g_{1}(x)=g_{2}(x)=x$, further solutions of $g_{f}=g_{h}$ follow from Theorem 4. In this case

$$
0 \leq \psi(t) \leq 2, \quad 0 \leq \phi(t) \leq 2, \quad-1 \leq \psi(t)-\phi(t) \leq 1,
$$

for all $t \in[0,1 / 6]$. Putting $\psi(t)=\phi(t)=0$, the resulting distribution
function is

$$
g_{3}(x)= \begin{cases}0 & \text { for } x \in[0,2 / 6] \\ x-1 / 3 & \text { for } x \in[2 / 6,3 / 6] \\ 2 x-5 / 6 & \text { for } x \in[3 / 6,5 / 6] \\ x & \text { for } x \in[5 / 6,1]\end{cases}
$$

Taking $g_{1}(x)=g_{2}(x)=g_{3}(x)$, this $g_{3}(x)$ can be used as a starting point for a further application of Theorem 4 which gives another solution of $g_{f}=g_{h}$.
3. Computing $\int_{j / 6}^{(j+1) / 6}\left(\int_{i / 6}^{(i+1) / 6} F(x, y) d x\right) d y$ for $i, j=1, \ldots, 5$ directly, we can find

$$
\int_{0}^{1} \int_{0}^{1} F(x, y) d g_{3}(x) d g_{3}(y)=0
$$

which is also a consequence of Theorem 3 and $\left(g_{3}\right)_{f}=\left(g_{3}\right)_{h}$.
4. Since the mapping $g \rightarrow g_{\phi}$ is linear, the set of all solutions of $g_{f}=g_{h}$ is convex.
5. Since $x_{f}=x_{h}$, Theorem 2 leads to the fact that the following distribution function $g_{4}(x)$ is not a distribution function of $\xi(3 / 2)^{n} \bmod 1$, for any $\xi \in \mathbb{R}$:

$$
g_{4}(x)= \begin{cases}x & \text { for } x \in[0,2 / 3] \\ x^{2}-(2 / 3) x+2 / 3 & \text { for } x \in[2 / 3,1]\end{cases}
$$

6. By Figure $1, X=[2 / 9,1 / 3] \cup[1 / 2,1]$ is also a set of uniqueness. Moreover, $|X|=11 / 18<2 / 3$. Similarly for $[0,1 / 2] \cup[2 / 3,7 / 9]$.
7. Since all the components of $f^{-1}([0, x))$ and $h^{-1}([0, x))$ are semiclosed the fact that, for fixed $\xi \neq 0$ and $m,\left\{\xi(3 / 2)^{m}\right\}=\left\{\xi(3 / 2)^{n}\right\}$ only for finitely many n, was not used in the proof of Theorem 1 .

References

[1] M. Bennett, Fractional parts of powers of rational numbers, Math. Proc. Cambridge Philos. Soc. 114 (1993), 191-201.
[2] G. Choquet, Construction effective de suites $\left(k(3 / 2)^{n}\right)$. Étude des mesures (3/2)stables, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A69-A74 (MR 82h:10062a-d).
[3] L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 70 (1995), 125-147.
[4] H. Helson and J.-P. Kahane, A Fourier method in diophantine problems, J. Analyse Math. 15 (1965), 245-262 (MR 31\#5856).
[5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
[6] K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313-321 (MR 37\#2694).
[7] I. I. Piatetski-Shapiro, On the laws of distribution of the fractional parts of an exponential function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 47-52 (MR 13, 213d) (in Russian).
[8] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
[9] R. Tijdeman, Note on Mahler's 3/2-problem, Norske Vid. Selsk. Skr. 16 (1972), 1-4.
[10] J. G. van der Corput, Verteilungsfunktionen I-VIII, Proc. Akad. Amsterdam 38 (1935), 813-821, 1058-1066; 39 (1936), 10-19, 19-26, 149-153, 339-344, 489-494, 579-590.
[11] T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc. 15 (1940), 159-160.

Mathematical Institute of the Slovak Academy of Sciences
Štefánikova ul. 49
81473 Bratislava, Slovakia
E-mail: strauch@mau.savba.sk

[^0]: 1991 Mathematics Subject Classification: 11K31.
 This research was supported by the Slovak Academy of Sciences Grant 1227.

