Exact m-covers and the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$

by
Zhi-Wei Sun (Nanjing)

1. Introduction. For $a, n \in \mathbb{Z}$ with $n>0$, we let

$$
a+n \mathbb{Z}=\{\ldots, a-2 n, a-n, a, a+n, a+2 n, \ldots\}
$$

and call it an arithmetic sequence. Given a finite system

$$
\begin{equation*}
A=\left\{a_{s}+n_{s} \mathbb{Z}\right\}_{s=1}^{k} \tag{1}
\end{equation*}
$$

of arithmetic sequences, we assign to each $x \in \mathbb{Z}$ the corresponding covering multiplicity $\sigma(x)=\left|\left\{1 \leq s \leq k: x \in a_{s}+n_{s} \mathbb{Z}\right\}\right|(|S|$ means the cardinality of a set S), and call $m(A)=\inf _{x \in \mathbb{Z}} \sigma(x)$ the covering multiplicity of A. Apparently

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{1}{n_{s}}=\frac{1}{N} \sum_{x=0}^{N-1} \sigma(x) \geq m(A) \tag{2}
\end{equation*}
$$

where N is the least common multiple of those common differences (or moduli) n_{1}, \ldots, n_{k}. For a positive integer m, (1) is said to be an m-cover of \mathbb{Z} if its covering multiplicity is not less than m, and an exact m-cover of \mathbb{Z} if $\sigma(x)=m$ for all $x \in \mathbb{Z}$. Note that $k \geq m$ if (1) forms an m-cover of \mathbb{Z}. Clearly the covering function $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ is constant if and only if (1) forms an exact m-cover of \mathbb{Z} for some $m=1,2, \ldots$ An exact 1 -cover of \mathbb{Z} is a partition of \mathbb{Z} into residue classes.
P. Erdős ([E]) proposed the concept of cover (i.e., 1-cover) of \mathbb{Z} in the 1930's, Š. Porubský ([P]) introduced the notion of exact m-cover of \mathbb{Z} in the 1970's, and the author ([Su3]) studied m-covers of \mathbb{Z} for the first time. The most challenging problem in this field is to describe those n_{1}, \ldots, n_{k} in an m-cover (or exact m-cover) (1) of $\mathbb{Z}(c f .[G u])$. In [Su2, Su3, Su4] the author revealed some connections between (exact) m-covers of \mathbb{Z} and

[^0]Egyptian fractions. Here we concentrate on exact m-covers of \mathbb{Z}. In [Su3, Su4] results for exact m-covers of \mathbb{Z} were obtained by studying general m-covers of \mathbb{Z} and noting that an exact m-cover (1) of \mathbb{Z} is an m-cover of \mathbb{Z} with $\sum_{s=1}^{k} 1 / n_{s}=m$. In Section 4 of the present paper we shall directly characterize exact m-covers of \mathbb{Z} in various ways. (Note that in the famous book [Gu] R. K. Guy wrote that characterizing exact 1 -covers of \mathbb{Z} is a main outstanding unsolved problem in the area.) This enables us to make further progress. With the help of the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$ (studied in the next section), we will provide some new properties of exact m-covers of \mathbb{Z} (see Section 3). The fifth section is devoted to proofs of the main theorems stated in Section 3.

For a complex number x and nonnegative integer n, as usual,

$$
\binom{x}{n}:=\frac{1}{n!} \prod_{j=0}^{n-1}(x-j)
$$

$\binom{x}{0}$ is 1$)$. For real x we use $[x]$ and $\{x\}$ to represent the integral part and the fractional part of x respectively. For two integers a, b not both zero, (a, b) denotes the greatest common divisor of a and b.

Now we state our central results for an exact m-cover (1) of \mathbb{Z} :
(I) For $a=0,1,2, \ldots$ and $t=1, \ldots, k$ there are at least $\binom{m-1}{\left[a / n_{t}\right]}$ subsets I of $\{1, \ldots, k\}$ for which $t \notin I$ and $\sum_{s \in I} 1 / n_{s}=a / n_{t}$, where the lower bounds are best possible.
(II) If $\emptyset \neq I \subseteq\{1, \ldots, k\}$ and $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$, then

$$
\left\{\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}: J \subseteq\{1, \ldots, k\} \backslash I\right\} \supseteq\left\{\frac{r}{\left[n_{s}\right]_{s \in I}}: r=0,1, \ldots,\left[n_{s}\right]_{s \in I}-1\right\}
$$

where $\left[n_{s}\right]_{s \in I}$ is the least common multiple of those n_{s} with $s \in I$.
(III) For any rational c, the number of solutions of the equation $\sum_{s=1}^{k} x_{s} / n_{s}=c$ with $x_{s} \in\left\{0,1, \ldots, n_{s}-1\right\}$ for $s=1, \ldots, k$, is the sum of finitely many (not necessarily distinct) prime factors of n_{1}, \ldots, n_{k} if $c \neq 0,1,2, \ldots$, and at least $\binom{k-m}{n}$ if c equals a nonnegative integer n.
2. On the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$. In this section we shall say something general about the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$ where n_{1}, \ldots, n_{k} are positive integers.

Let us first introduce more notations. For x, y in the rational field \mathbb{Q}, if $x-y \in \mathbb{Z}$ then we write $x \equiv y(\bmod 1)$. For $n=1,2, \ldots$ we set $R(n)=$ $\{0, \ldots, n-1\}$. When we deal with a finite collection $\left\{n_{s}\right\}_{s \in I}$ of positive integers, the least common multiple $\left[n_{s}\right]_{s \in I}$ and the product $\prod_{s \in I} n_{s}$ will be regarded as 1 if I is empty.

Definition. Two (finite) sequences $\left\{n_{s}\right\}_{s=1}^{k}$ and $\left\{m_{t}\right\}_{t=1}^{l}$ of positive integers are said to be equivalent if $k=l$ and $\left(n_{s}, n_{t}\right)=\left(m_{s}, m_{t}\right)$ for all $s, t=1, \ldots, k$ with $s \neq t$. We call $\left\{n_{s}\right\}_{s=1}^{k}$ a normal sequence if n_{t} divides $\left[n_{s}\right]_{s=1, s \neq t}^{k}$ for every $t=1, \ldots, k$.

Proposition 2.1. Let n_{1}, \ldots, n_{k} be arbitrary positive integers. Then $\left\{\left(n_{t},\left[n_{s}\right\}_{s=1, s \neq t}^{k}\right)\right\}_{t=1}^{k}$ is the only normal sequence equivalent to $\left\{n_{s}\right\}_{s=1}^{k}$.

Proof. For each $t=1, \ldots, k$ we let

$$
n_{t}^{\prime}=\left(n_{t},\left[n_{s}\right]_{s=1, s \neq t}^{k}\right)=\left[\left(n_{s}, n_{t}\right)\right]_{s=1, s \neq t}^{k} .
$$

Clearly n_{t}^{\prime} divides $\left[n_{s}^{\prime}\right]_{s=1, s \neq t}^{k}$ because $\left(n_{s}, n_{t}\right) \mid n_{s}^{\prime}$ for all $s=1, \ldots, k$ with $s \neq t$. For $i, j=1, \ldots, k$ with $i \neq j,\left(n_{i}^{\prime}, n_{j}^{\prime}\right)=\left(n_{i}, n_{j}\right)$ since $n_{i} \mid\left[n_{s}\right]_{s=1, s \neq j}^{k}$ and $n_{j} \mid\left[n_{s}\right\}_{s=1, s \neq i}^{k}$. Hence $\left\{n_{s}^{\prime}\right\}_{s=1}^{k}$ is normal and equivalent to $\left\{n_{s}\right\}_{s=1}^{k}$. If so is $\left\{m_{s}\right\}_{s=1}^{k}$ where m_{1}, \ldots, m_{k} are positive integers, then

$$
m_{t}=\left(m_{t},\left[m_{s}\right]_{s=1, s \neq t}^{k}\right)=\left[\left(m_{s}, m_{t}\right)\right]_{s=1, s \neq t}^{k}=\left[\left(n_{s}, n_{t}\right)\right]_{s=1, s \neq t}^{k}=n_{t}^{\prime}
$$

for every $t=1, \ldots, k$. We are done.
Proposition 2.2. Let n_{1}, \ldots, n_{k} be positive integers. For $\theta \in \mathbb{Q}$ the equation

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{x_{s}}{n_{s}} \equiv \theta(\bmod 1) \quad \text { with } x_{s} \in R\left(n_{s}\right) \text { for } s=1, \ldots, k \tag{3}
\end{equation*}
$$

is solvable if and only if $\left[n_{1}, \ldots, n_{k}\right] \theta \in \mathbb{Z}$, and in the solvable case the number of solutions is $n_{1} \ldots n_{k} /\left[n_{1}, \ldots, n_{k}\right]$, which does not change if we replace $\left\{n_{s}\right\}_{s=1}^{k}$ by an equivalent sequence.

Proof. We argue by induction. The case $k=1$ is trivial. Let $k>1$ and assume Proposition 2.2 for smaller values of k. Observe that

$$
\frac{1}{\left[n_{1}, \ldots, n_{k}\right]} \mathbb{Z}=\frac{\left(\left[n_{1}, \ldots, n_{k-1}\right], n_{k}\right)}{\left[n_{1}, \ldots, n_{k-1}\right] n_{k}} \mathbb{Z}=\frac{1}{n_{k}} \mathbb{Z}+\frac{1}{\left[n_{1}, \ldots, n_{k-1}\right]} \mathbb{Z} .
$$

So $\left[n_{1}, \ldots, n_{k}\right] \theta \in \mathbb{Z}$ if and only if $\left[n_{1}, \ldots, n_{k-1}\right]\left(\theta-x / n_{k}\right) \in \mathbb{Z}$ for some $x \in \mathbb{Z}$. For any $a \in \mathbb{Z}$ with $0 \leq a<n_{k}$, the congruence

$$
\sum_{s=1}^{k-1} \frac{x_{s}}{n_{s}} \equiv \theta-\frac{a}{n_{k}}(\bmod 1)
$$

is solvable if and only if

$$
\left[n_{1}, \ldots, n_{k-1}\right]\left(\theta-\frac{a}{n_{k}}\right) \in \mathbb{Z}
$$

i.e.

$$
\left[n_{1}, \ldots, n_{k-1}\right] a \equiv\left[n_{1}, \ldots, n_{k-1}\right] n_{k} \theta\left(\bmod n_{k}\right)
$$

Hence (3) is solvable if and only if $\left[n_{1}, \ldots, n_{k}\right] \theta \in \mathbb{Z}$. In the solvable case there are exactly $\left(\left[n_{1}, \ldots, n_{k-1}\right], n_{k}\right)=\left[\left(n_{1}, n_{k}\right), \ldots,\left(n_{k-1}, n_{k}\right)\right]$ numbers $a \in R\left(n_{k}\right)$ satisfying the last congruence, thus by the induction hypothesis (3) has exactly

$$
\frac{n_{1} \ldots n_{k-1}}{\left[n_{1}, \ldots, n_{k-1}\right]}\left(\left[n_{1}, \ldots, n_{k-1}\right], n_{k}\right)=\frac{n_{1} \ldots n_{k}}{\left[n_{1}, \ldots, n_{k}\right]}
$$

solutions. As $n_{1} \ldots n_{k-1} /\left[n_{1}, \ldots, n_{k-1}\right]$ depends only on those $\left(n_{i}, n_{j}\right)$ with $1 \leq i<j<k$, the number $n_{1} \ldots n_{k} /\left[n_{1}, \ldots, n_{k}\right]$ depends only on the $\left(n_{s}, n_{t}\right), 1 \leq s<t \leq k$. This ends the proof.

Corollary 2.1. Let a be an integer and n_{1}, \ldots, n_{k} positive integers. Then $a /\left[n_{1}, \ldots, n_{k}\right]$ can be written uniquely in the form $q+\sum_{s=1}^{k} x_{s} / n_{s}$ with $q \in \mathbb{Z}$ and $x_{s} \in R\left(n_{s}\right)$ for $s=1, \ldots, k$ if and only if $\left(n_{s}, n_{t}\right)=1$ for all $s, t=1, \ldots, k$ with $s \neq t$.

Proof. By Proposition 2.2, equation (3) with $\theta=a /\left[n_{1}, \ldots, n_{k}\right]$ has a unique solution if and only if $n_{1} \ldots n_{k}=\left[n_{1}, \ldots, n_{k}\right]$. So the desired result follows.

Corollary 2.2. Let n_{1}, \ldots, n_{k} be positive integers. Then the number of solutions of the equation
(4) $\sum_{s=1}^{k} \frac{x_{s}}{n_{s}} \equiv 0(\bmod 1) \quad$ with $x_{s} \in \mathbb{Z}$ and $0<x_{s}<n_{s}$ for $s=1, \ldots, k$
equals

$$
(-1)^{k}+\sum_{t=1}^{k}(-1)^{k-t} \sum_{1 \leq i_{1}<\ldots<i_{t} \leq k} \frac{n_{i_{1}} \ldots n_{i_{t}}}{\left[n_{i_{1}}, \ldots, n_{i_{t}}\right]}
$$

which depends only on those $\left(n_{s}, n_{t}\right)$ with $1 \leq s<t \leq k$.
Proof. For $I \subseteq\{1, \ldots, k\}$ let $\# I$ denote the number of solutions of the diophantine equation $\sum_{s \in I} x_{s} / n_{s} \equiv 0(\bmod 1)$ with $x_{s} \in\left\{1, \ldots, n_{s}-1\right\}$ for $s \in I$, and consider $\# \emptyset$ to be 1. By Proposition 2.2, $\sum_{J \subseteq I} \# J=$ $\prod_{s \in I} n_{s} /\left[n_{s}\right]_{s \in I}$ for all $I \subseteq\{1, \ldots, k\}$, therefore $\#\{1, \ldots, k\}$ coincides with

$$
\begin{aligned}
& \sum_{J \subseteq\{1, \ldots, k\}} \sum_{s=0}^{k-|J|}(-1)^{k-|J|-s}\binom{k-|J|}{s} \# J \\
&=\sum_{J \subseteq\{1, \ldots, k\}} \sum_{J \subseteq I \subseteq\{1, \ldots, k\}}(-1)^{k-|I|} \# J
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{I \subseteq\{1, \ldots, k\}}(-1)^{k-|I|} \sum_{J \subseteq I} \# J=\sum_{I \subseteq\{1, \ldots, k\}}(-1)^{k-|I|} \frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}} \\
& =(-1)^{k}+\sum_{t=1}^{k}(-1)^{k-t} \sum_{1 \leq i_{1}<\ldots<i_{t} \leq k} \frac{n_{i_{1}} \ldots n_{i_{t}}}{\left[n_{i_{1}}, \ldots, n_{i_{t}}\right]} .
\end{aligned}
$$

In view of Proposition 2.2, the number $\#\{1, \ldots, k\}$ remains the same if an equivalent sequence is substituted for $\left\{n_{s}\right\}_{s=1}^{k}$. The proof is now complete.

Remark 1. Equation (4) is closely related to diagonal hypersurfaces over a finite field. The formula for the number of solutions of (4) was obtained by R. Lidl and H. Niederreiter [LN], R. Stanly (cf. C. Small [Sm]), Q. Sun, D.-Q. Wan and D.-G. Ma [SWM] with much more complicated methods. The fact that the number does not vary if we replace $\left\{n_{s}\right\}_{s=1}^{k}$ by the corresponding normal sequence, was recently noted by A. Granville, S.-G. Li and Q. Sun [GLS]. For necessary and sufficient conditions for the solvability of (4), the reader is referred to [SW] where the authors determined when (4) has a unique solution.

Corollary 2.3. Let (1) be a system of arithmetic sequences with $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t=1, \ldots, k$. Then for any $\theta \in \mathbb{Q}$ with $0 \leq \theta<1$ we have

$$
\begin{align*}
& \left|\sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s=1, \ldots, k \\
\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=\theta}} e^{2 \pi i \sum_{s=1}^{k} a_{s} x_{s} / n_{s}}\right| \tag{5}\\
& = \begin{cases}\frac{n_{1} \ldots n_{k}}{\left[n_{1}, \ldots, n_{k}\right]} & \text { if }\left[n_{1}, \ldots, n_{k}\right] \theta \in \mathbb{Z}, \\
0 & \text { otherwise. }\end{cases}
\end{align*}
$$

Proof. By the Chinese Remainder Theorem in general form, the intersection $\bigcap_{s=1}^{k} a_{s}+n_{s} \mathbb{Z}$ is nonempty if and only if $a_{s}+n_{s} \mathbb{Z} \cap a_{t}+n_{t} \mathbb{Z} \neq \emptyset$ for all $s, t=1, \ldots, k$. (For a proof see, e.g., [Su1].) Since $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for $s, t=1, \ldots, k, \bigcap_{s=1}^{k} a_{s}+n_{s} \mathbb{Z}$ must contain an integer x. With the help of Proposition 2.2,

$$
\sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s=1, \ldots, k \\\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=\theta}} e^{2 \pi i \sum_{s=1}^{k} a_{s} x_{s} / n_{s}}=\sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s=1, \ldots, k \\\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=\theta}} e^{2 \pi i x \theta}
$$

vanishes if $\left[n_{1}, \ldots, n_{k}\right] \theta \notin \mathbb{Z}$, and otherwise equals $\frac{n_{1} \ldots n_{k}}{\left[n_{1}, \ldots, n_{k}\right]} e^{2 \pi i x \theta}$. So (5) holds.

To conclude this section we make a few comments. For system (1), $M(A)=\sup _{x \in \mathbb{Z}} \sigma(x)$ does not change if an equivalent sequence takes the place of $\left\{n_{s}\right\}_{s=1}^{k}$, because for $\emptyset \neq I \subseteq\{1, \ldots, k\}$ the set $\bigcap_{s \in I} a_{s}+n_{s} \mathbb{Z}$ is nonempty if and only if $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$. Observe that (1)
forms an exact m-cover of \mathbb{Z} if and only if $\sum_{s=1}^{k} 1 / n_{s}=m \geq M(A)$. So whether n_{1}, \ldots, n_{k} are the moduli of an exact m-cover of \mathbb{Z} only depends on $\sum_{s=1}^{k} 1 / n_{s}$ and the $k(k-1) / 2$ numbers $\left(n_{s}, n_{t}\right), 1 \leq s<t \leq k$. For a given exact m-cover (1) of \mathbb{Z}, replacing $\left\{n_{s}\right\}_{s=1}^{k}$ by the unique normal sequence $\left\{n_{s}^{\prime}\right\}_{s=1}^{k}$ equivalent to it we find that

$$
\sum_{s=1}^{k} \frac{1}{n_{s}^{\prime}} \leq M(A) \leq m=\sum_{s=1}^{k} \frac{1}{n_{s}} .
$$

As $n_{s}^{\prime} \leq n_{s}$ for $s=1, \ldots, k$, the sequence $\left\{n_{s}\right\}_{s=1}^{k}$ must be identical with $\left\{n_{s}^{\prime}\right\}_{s=1}^{k}$ and hence normal. In the light of the above, the reader should not be surprised by connections between the exact m-cover (1) of \mathbb{Z} and the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$.
3. Main theorems and their consequences. In this section we let (1) be an exact m-cover of \mathbb{Z}; we also let $I \subseteq\{1, \ldots, k\}$ and $\bar{I}=\{1, \ldots, k\} \backslash I$. For any rational c, we let $I^{*}(c)$ be the number of solutions $\left\langle x_{s}\right\rangle_{s \in I}$ to the diophantine equation

$$
\begin{equation*}
\sum_{s \in I} \frac{x_{s}}{n_{s}}=c \quad \text { with } x_{s} \in R\left(n_{s}\right) \text { for all } s \in I, \tag{6}
\end{equation*}
$$

and $I_{*}(c)=\left|\left\{J \subseteq I: \sum_{s \in J} 1 / n_{s}=c\right\}\right|$ be the number of solutions $\left\langle\delta_{s}\right\rangle_{s \in I}$ to the equation

$$
\begin{equation*}
\sum_{s \in I} \frac{\delta_{s}}{n_{s}}=c \quad \text { with } \delta_{s} \in R(2)=\{0,1\} \text { for all } s \in I \tag{7}
\end{equation*}
$$

(When $I=\emptyset$ and $c=0$ we view each of (6) and (7) as having only the zero solution.) We also set

$$
\begin{equation*}
\left.I_{*}^{(0)}(c)=\left\lvert\,\left\{J \subseteq I: 2| | J \mid \text { and } \sum_{s \in J} \frac{1}{n_{s}}=c\right\}\right. \right\rvert\, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.I_{*}^{(1)}(c)=\left\lvert\,\left\{J \subseteq I: 2 \nmid|J| \text { and } \sum_{s \in J} \frac{1}{n_{s}}=c\right\}\right. \right\rvert\, . \tag{9}
\end{equation*}
$$

Let us present our main theorems whose proofs will be given later, and derive a number of interesting corollaries from them.

Theorem 3.1. Let c be a rational number.
(i) When $|I| \leq m$, if $I^{*}(c-n)=1$ for a nonnegative integer n then

$$
\begin{equation*}
\bar{I}_{*}(c)+\sum_{\substack{l=0 \\ l \neq n}}^{m-|I|}\binom{m-|I|}{l} I^{*}(c-l) \geq\binom{ m-|I|}{n} ; \tag{10}
\end{equation*}
$$

in particular, if c can be uniquely written in the form $n+\sum_{s \in I} x_{s} / n_{s}$ where n and x_{s} lie in $\{0,1, \ldots, m-|I|\}$ and $\left\{0,1, \ldots, n_{s}-1\right\}$ respectively, then

$$
\bar{I}_{*}(c) \geq\binom{ m-|I|}{n} .
$$

(ii) When $|I| \geq m$, if $\bar{I}_{*}(c-n)=1$ for a nonnegative integer n then

$$
\begin{equation*}
I^{*}(c)+\sum_{\substack{l=0 \\ l \neq n}}^{|I|-m}\binom{|I|-m}{l} \bar{I}_{*}(c-l) \geq\binom{|I|-m}{n} ; \tag{11}
\end{equation*}
$$

in particular, if c can be uniquely expressed in the form $n+\sum_{s \in J} 1 / n_{s}$ where $J \subseteq \bar{I}$ and $n \in\{0,1, \ldots,|I|-m\}$, then

$$
I^{*}(c) \geq\binom{|I|-m}{n}
$$

Below there are corollaries involving the cases $|I| \leq m,|I|=m$ and $|I| \geq m$.

Corollary 3.1. Assume that those n_{s} with $s \in I$ are pairwise relatively prime. Then $|I| \leq m$ and

$$
\begin{equation*}
\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=n+\sum_{s \in I} \frac{x_{s}}{n_{s}}\right\}\right| \geq\binom{ m-|I|}{n} \tag{12}
\end{equation*}
$$

for all $n=0,1,2, \ldots$ and $x_{s} \in R\left(n_{s}\right)$ with $s \in I$; in particular,

$$
\begin{equation*}
\left\{\sum_{s \in J} \frac{1}{n_{s}}: J \subseteq \bar{I}\right\} \supseteq\left\{\frac{a}{\left[n_{s}\right]_{s \in I}}: a \in \mathbb{Z} \&|I| \leq \frac{a}{\left[n_{s}\right]_{s \in I}} \leq m-|I|\right\} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}} \equiv \frac{a}{\prod_{s \in I} n_{s}}(\bmod 1)\right\}\right| \geq 2^{m-|I|} \quad \text { for every } a \in \mathbb{Z} \tag{14}
\end{equation*}
$$

Proof. By the Chinese Remainder Theorem, $\bigcap_{s \in I} a_{s}+n_{s} \mathbb{Z} \neq \emptyset$ if $I \neq \emptyset$. Since any integer lies in exactly m members of (1), $|I|$ does not exceed m. Let $N=\left[n_{s}\right]_{s \in I}=\prod_{s \in I} n_{s}$. By Corollary 2.1, for each $a \in \mathbb{Z}$ the number a / N can be expressed uniquely in the form $q+\sum_{s \in I} x_{s} / n_{s}$ with $q \in \mathbb{Z}$ and $x_{s} \in R\left(n_{s}\right)$ for $s \in I$. Whenever $x_{s} \in R\left(n_{s}\right)$ for all $s \in I$, by Theorem 3.1, (12) holds for every nonnegative integer n. If $|I| N \leq a \leq(m-|I|) N$ then the corresponding integer $q=a / N-\sum_{s \in I} x_{s} / n_{s}$ lies in the interval $[0, m-|I|]$ and hence

$$
\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=\frac{a}{N}=q+\sum_{s \in I} \frac{x_{s}}{n_{s}}\right\}\right| \geq\binom{ m-|I|}{q}>0
$$

This yields (13). For (14) we observe that

$$
\begin{aligned}
&\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}} \equiv \frac{a}{N}(\bmod 1)\right\}\right| \\
& \geq \sum_{n=0}^{m-|I|}\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=n+\sum_{s \in I} \frac{x_{s}}{n_{s}}\right\}\right| \\
& \geq \sum_{n=0}^{m-|I|}\binom{m-|I|}{n}=2^{m-|I|}
\end{aligned}
$$

This concludes the proof.
Applying Corollary 3.1 with $I=\emptyset$ we immediately get the theorem of Sun [Su2].

Putting $I=\{t\}(1 \leq t \leq k)$ in Corollary 3.1 we then obtain result (I) stated in the first section. In the case $m=1$, result (I) was first observed by the author in [Su4]. When $m>1$, we noted in [Su4] that, providing $n_{1}<\ldots<n_{k-l}<n_{k-l+1}=\ldots=n_{k}$, for every $r=0,1, \ldots, n_{k}-1$ there exists a $J \subseteq\{1, \ldots, k-1\}$ with $\sum_{s \in J} 1 / n_{s} \equiv r / n_{k}(\bmod 1)$. In [Su4] we even conjectured that, if (1) forms an m-cover of \mathbb{Z} with $\sigma(x)=m$ for all $x \equiv a_{t}\left(\bmod n_{t}\right)$ where $1 \leq t \leq k$, then

$$
\begin{align*}
\left\{\left\{\sum_{s \in I} \frac{1}{n_{s}}\right\}: I \subseteq\{1, \ldots, k\} \backslash\{t\}\right\} & \cap \frac{1}{n_{t}} \mathbb{Z} \tag{15}\\
& =\left\{\frac{r}{n_{t}}: r=0, \ldots, n_{t}-1\right\}
\end{align*}
$$

Result (I) confirms the conjecture for exact m-covers of \mathbb{Z}. The lower bounds are best possible as is shown by the following example.

EXAMPLE. Let $k>m>0$ be integers. Let $a_{s}=0$ and $n_{s}=1$ for $s=1, \ldots, m-1, a_{s}=2^{s-m}$ and $n_{s}=2^{s-m+1}$ for $s=m, \ldots, k-1$, also $a_{k}=0$ and $n_{k}=2^{k-m}$. It is clear that $A=\left\{a_{s}+n_{s} \mathbb{Z}\right\}_{s=1}^{k}$ forms an exact m-cover of \mathbb{Z}. As each nonnegative integer can be expressed uniquely in the binary form, the reader can easily check that for $a=0,1,2, \ldots$ and $t=1, \ldots, k$ we always have

$$
\left|\left\{J \subseteq\{1, \ldots, k\} \backslash\{t\}: \sum_{s \in J} \frac{1}{n_{s}}=\frac{a}{n_{t}}\right\}\right|=\binom{m-1}{\left[a / n_{t}\right]}
$$

Corollary 3.2. Suppose that $|I|=m$. Then no number occurs exactly once among the $2^{k-m} n_{1} \ldots n_{m}$ rationals

$$
\begin{equation*}
\sum_{s \in I} \frac{x_{s}}{n_{s}}, \quad x_{s} \in R\left(n_{s}\right) \text { for } s \in I ; \quad \sum_{s \in J} \frac{1}{n_{s}}, \quad J \subseteq \bar{I} \tag{16}
\end{equation*}
$$

Proof. If $I^{*}\left(\sum_{s \in I} x_{s} / n_{s}\right)=1$ where $x_{s} \in R\left(n_{s}\right)$ for $s \in I$ then $\left.\bar{I}_{*}\left(\sum_{s \in I} x_{s} / n_{s}\right) \geq \underset{\substack{m-|I| \\ 0}}{ }\right)=1$ by Theorem 3.1(i). If $J \subseteq \bar{I}$ and $\bar{I}_{*}\left(\sum_{s \in J} 1 / n_{s}\right)=1$, then $I^{*}\left(\sum_{s \in J} 1 / n_{s}\right) \geq\binom{|I|-m}{0}=1$ by Theorem 3.1(ii). We are done.

Corollary 3.3. Assume that $|I| \geq m$. For any $J \subseteq \bar{I}$, if

$$
\begin{equation*}
\left|\sum_{s \in J^{\prime}} \frac{1}{n_{s}}-\sum_{s \in J} \frac{1}{n_{s}}\right| \in\{0,1, \ldots,|I|-m\} \quad \text { for no } J^{\prime} \subseteq \bar{I} \text { with } J^{\prime} \neq J, \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
I^{*}\left(n+\sum_{s \in J} \frac{1}{n_{s}}\right) \geq\binom{|I|-m}{n} \quad \text { for } n=0,1,2, \ldots \tag{18}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\prod_{s \in I} n_{s} \geq 2^{|I|-m}\left[n_{s}\right]_{s \in I} \tag{19}
\end{equation*}
$$

Proof. Let J be a subset of \bar{I} which satisfies (17). Note that $\left({ }_{|l| l \mid}^{|I|-m}\right)=0$ for every integer $n>|I|-m$. For $n \in \mathbb{Z}$ with $0 \leq n \leq|I|-m$, if $J^{\prime} \subseteq \bar{I}$ and $n^{\prime} \in\{0,1, \ldots,|I|-m\}$ then by (17),

$$
n+\sum_{s \in J} \frac{1}{n_{s}}=n^{\prime}+\sum_{s \in J^{\prime}} \frac{1}{n_{s}} \Rightarrow J=J^{\prime} \text { and } n=n^{\prime}
$$

So (18) holds in view of the latter part of Theorem 3.1, and thus by Proposition 2.2,

$$
\begin{aligned}
\frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}} & \left.\geq \left\lvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I \& \sum_{s \in I} \frac{x_{s}}{n_{s}} \equiv \sum_{s \in J} \frac{1}{n_{s}}(\bmod 1)\right\}\right. \right\rvert\, \\
& \geq \sum_{n=0}^{|I|-m} I^{*}\left(n+\sum_{s \in J} \frac{1}{n_{s}}\right) \geq \sum_{n=0}^{|I|-m}\binom{|I|-m}{n}=2^{|I|-m} .
\end{aligned}
$$

Putting $I=\{1, \ldots, k\}$ and $J=\emptyset$ in Corollary 3.3 we obtain the second half of result (III). When $1 \leq t \leq k$ and $n_{t}>1$, Corollary 3.3 in the case $I=\{1, \ldots, k\} \backslash\{t\}$ and $J=\{t\}$ also yields an interesting result.

Let $p(1)=1$ and $p(n)$ denote the smallest (positive) prime factor of n for $n=2,3, \ldots$ For a positive integer n we also put
(20) $\quad D(n)=\left\{\sum_{p \backslash n} p m_{p}\right.$: all the m_{p} are nonnegative integers $\}$.

Theorem 3.2. Let c be a rational number.
(i) If $|I| \leq m$, then either

$$
\begin{equation*}
\bar{I}_{*}(c)+\sum_{n=0}^{m-|I|} I^{*}(c-n) \geq p\left(\left[n_{1}, \ldots, n_{k}\right]\right) \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{I}_{*}^{(0)}(c)-\bar{I}_{*}^{(1)}(c)=\sum_{n=0}^{m-|I|}(-1)^{n}\binom{m-|I|}{n} I^{*}(c-n) ; \tag{22}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\bar{I}_{*}(c)+\sum_{n=0}^{m-|I|}\binom{m-|I|}{n} I^{*}(c-n) \in D\left(\left[n_{1}, \ldots, n_{k}\right]\right) \tag{23}
\end{equation*}
$$

if $|S|,|T| \leq 1$ and $S \cap T=\emptyset$ where

$$
S=\left\{n \bmod 2: n \in \mathbb{Z}, 0 \leq n \leq m-|I| \text { and } I^{*}(c-n) \neq 0\right\}
$$

and

$$
T=\left\{|J| \bmod 2: J \subseteq \bar{I} \text { and } \sum_{s \in J} \frac{1}{n_{s}}=c\right\} .
$$

(ii) If $|I| \geq m$, then either

$$
\begin{equation*}
I^{*}(c)+\sum_{n=0}^{|I|-m} \bar{I}_{*}(c-n) \geq p\left(\left[n_{1}, \ldots, n_{k}\right]\right) \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
I^{*}(c)=\sum_{n=0}^{|I|-m}(-1)^{n}\binom{|I|-m}{n}\left(\bar{I}_{*}^{(0)}(c-n)-\bar{I}_{*}^{(1)}(c-n)\right) ; \tag{25}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
I^{*}(c)+\sum_{n=0}^{|I|-m}\binom{|I|-m}{n} \bar{I}_{*}(c-n) \in D\left(\left[n_{1}, \ldots, n_{k}\right]\right) \tag{26}
\end{equation*}
$$

if $c \neq n+\sum_{s \in J} 1 / n_{s}$ for any $n=0,1, \ldots,|I|-m$ and $J \subseteq \bar{I}$ with $n \equiv|J|$ $(\bmod 2)$.

Corollary 3.4. Let $|I| \leq m$ and $J \subseteq \bar{I}$. Suppose that $\sum_{s \in J} 1 / n_{s}$ cannot be expressed in the form $n+\sum_{s \in I} x_{s} / n_{s}$ where $n \in\{0,1, \ldots, m-|I|\}$ and $x_{s} \in R\left(n_{s}\right)$ for $s \in I$. Put

$$
\mathcal{J}=\left\{J^{\prime} \subseteq \bar{I}: \sum_{s \in J^{\prime}} \frac{1}{n_{s}}=\sum_{s \in J} \frac{1}{n_{s}}\right\} .
$$

Then either $|\mathcal{J}| \geq p\left(\left[n_{1}, \ldots, n_{k}\right]\right)$ or $|\mathcal{J}| \equiv 0(\bmod 2)$; either $\left|J^{\prime}\right| \not \equiv|J|$ (mod 2) for some $J^{\prime} \in \mathcal{J}$, or $|\mathcal{J}|$ can be expressed as the sum of some (not necessarily distinct) prime divisors of $\left[n_{1}, \ldots, n_{k}\right]$.

Proof. Let $c=\sum_{s \in J} 1 / n_{s}$. As $\bar{I}_{*}(c)=\bar{I}_{*}^{(0)}(c)+\bar{I}_{*}^{(1)}(c)$, and $I^{*}(c-n)$ $=0$ for every $n=0,1, \ldots, m-|I|$, the desired results follow from Theorem 3.2(i).

Remark 2. In the case $I=\emptyset$ Corollary 3.4 was obtained by the author in [Su4].

Corollary 3.5. Assume that $|I|=m$. Let l be the total number of ways in which the rational c is expressed in the form $\sum_{s \in I} x_{s} / n_{s}$ or $\sum_{s \in \bar{I}} \delta_{s} / n_{s}$ where $x_{s} \in R\left(n_{s}\right)$ for $s \in I$ and $\delta_{s} \in\{0,1\}$ for $s \in \bar{I}$. Then we have

$$
\begin{equation*}
l \geq p\left(\left[n_{1}, \ldots, n_{k}\right]\right) \quad \text { or } \quad l=2\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=c\right\}\right|, \tag{27}
\end{equation*}
$$

and l can be written as the sum of finitely many (not necessarily distinct) prime divisors of n_{1}, \ldots, n_{k} providing $\sum_{s \in J} 1 / n_{s}=c$ for no $J \subseteq \bar{I}$ with $|J| \equiv 0(\bmod 2)$.

Proof. Obviously $l=I^{*}(c)+\bar{I}_{*}(c)$, and (22) or (25) says that $\bar{I}_{*}^{(0)}(c)-$ $\bar{I}_{*}^{(1)}(c)=I^{*}(c)$, i.e. $l=2 \bar{I}_{*}^{(0)}(c)$. Therefore Theorem 3.2 yields Corollary 3.5.

Corollary 3.6. Let $|I| \geq m$. Suppose that $\sum_{s \in I} m_{s} / n_{s}$ cannot be expressed in the form $n+\sum_{s \in J} 1 / n_{s}$ with $n \in\{0,1, \ldots,|I|-m\}$ and $J \subseteq \bar{I}$, where $m_{s} \in R\left(n_{s}\right)$ for each $s \in I$. Then

$$
\begin{equation*}
\left.\left\lvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I \text { and } \sum_{s \in I} \frac{x_{s}}{n_{s}}=\sum_{s \in I} \frac{m_{s}}{n_{s}}\right\}\right. \right\rvert\, \tag{28}
\end{equation*}
$$

must be a finite sum of (not necessarily distinct) prime divisors of $\left[n_{1}, \ldots, n_{k}\right]$.

Proof. Let $c=\sum_{s \in I} m_{s} / n_{s}$. Note that $\bar{I}_{*}(c-n)=0$ for each $n=$ $0,1, \ldots,|I|-m$. By Theorem 3.2(ii), $I^{*}(c)$ belongs to $D\left(\left[n_{1}, \ldots, n_{k}\right]\right)$.

Clearly Corollary 3.6 in the case $I=\{1, \ldots, k\}$ gives the first half of result (III).

Theorem 3.3. (i) If $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$, then

$$
\begin{align*}
\sum_{n=0}^{m-1} \bar{I}_{*}\left(n+\frac{r}{\left[n_{s}\right]_{s \in I}}\right) & =\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\frac{r}{\left[n_{s}\right]_{s \in I}}\right\}\right| \tag{29}\\
& \geq \frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}}
\end{align*}
$$

for each $r=0,1, \ldots,\left[n_{s}\right]_{s \in I}-1$.
(ii) Assume $|I|=m, 0 \leq \theta<1$, and $\left[n_{s}\right]_{s \in I} \theta \notin \mathbb{Z}$ or $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for some $i, j \in I$. Then either

$$
\begin{equation*}
\sum_{n=0}^{m-1} \bar{I}_{*}(n+\theta)=\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\}\right| \geq p\left(\left[n_{s}\right]_{s \in \bar{I}}\right) \tag{30}
\end{equation*}
$$

or
$\left|\left\{J \subseteq \bar{I}: 2| | J \left\lvert\, \&\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right.\right\}\right|=\left|\left\{J \subseteq \bar{I}: 2 \nmid|J| \&\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\}\right|$
and hence

$$
\begin{equation*}
\sum_{n=0}^{m-1} \bar{I}_{*}(n+\theta)=\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\}\right| \equiv 0(\bmod 2) \tag{31}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
\sum_{n=0}^{m-1} \bar{I}_{*}(n+\theta)=\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\}\right| \in D\left(\left[n_{s}\right]_{s \in \bar{I}}\right) \tag{32}
\end{equation*}
$$

if all the $|J| \bmod 2$ with $J \subseteq \bar{I}$ and $\left\{\sum_{s \in J} 1 / n_{s}\right\}=\theta$ are the same.
Remark 3. When those n_{s} with $s \in I$ are pairwise relatively prime, Theorem 3.3 (i) yields the lower bound 1 in (29) while (14) gives the bound $2^{m-|I|}$.

Corollary 3.7. If $I \neq \emptyset$ and $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$, then

$$
\begin{equation*}
\prod_{s \in I} n_{s} \leq 2^{k-|I|}, \quad\left[n_{s}\right]_{s \in I} \mid\left[n_{s}\right]_{s \in \bar{I}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}: J \subseteq \bar{I}\right\} \supseteq\left\{0, \frac{1}{\left[n_{s}\right]_{s \in I}}, \ldots, \frac{\left[n_{s}\right]_{s \in I}-1}{\left[n_{s}\right]_{s \in I}}\right\} \tag{34}
\end{equation*}
$$

Proof. (34) follows immediately from Theorem 3.3(i). Since $\sum_{s \in J} 1 / n_{s}$ $\equiv 1 /\left[n_{s}\right]_{s \in I}(\bmod 1)$ for some $J \subseteq \bar{I},\left[n_{s}\right]_{s \in I}$ must divide $\left[n_{s}\right]_{s \in \bar{I}}$. For the inequality in (33) we notice that

$$
\begin{aligned}
2^{k-|I|} & \geq\left|\bigcup_{r=0}^{\left[n_{s}\right]_{s \in I}-1}\left\{J \subseteq \bar{I}:\left\{\sum_{s \in I} \frac{1}{n_{s}}\right\}=\frac{r}{\left[n_{s}\right]_{s \in I}}\right\}\right| \\
& =\sum_{r=0}^{\left[n_{s}\right]_{s \in I}-1}\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in I} \frac{1}{n_{s}}\right\}=\frac{r}{\left[n_{s}\right]_{s \in I}}\right\}\right| \\
& \geq \sum_{r=0}^{\left[n_{s}\right]_{s \in I}-1} \frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}}=\prod_{s \in I} n_{s}
\end{aligned}
$$

Remark 4. By checking (33) and (34) with I taken to be $K=\{1, \ldots$, $m-1, k\}$ and $K \cup\{k-1\}$ in the previous example, we find that Corollary 3.7 is sharp. When (1) forms an exact 1 -cover of \mathbb{Z} and $I \subseteq\{1, \ldots, k\}$ contains at least two elements, we cannot have $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$ with $s \neq t$, and (34) fails to hold because for all $J \subseteq \bar{I}$ we have

$$
\sum_{s \in J} \frac{1}{n_{s}} \leq \sum_{s \in \bar{I}} \frac{1}{n_{s}}=1-\sum_{s \in I} \frac{1}{n_{s}}<1-\frac{1}{\left[n_{s}\right]_{s \in I}}=\frac{\left[n_{s}\right]_{s \in I}-1}{\left[n_{s}\right]_{s \in I}}
$$

For any $a, n \in \mathbb{Z}$ with $n>0$, each integer in $a+n \mathbb{Z}$ belongs to exactly m members of (1) and hence

$$
A_{a(n)}=\left\{b_{s}+\frac{n_{s}}{\left(n, n_{s}\right)} \mathbb{Z}\right\}_{s \in J}
$$

also forms an exact m-cover of \mathbb{Z} where $J=\left\{1 \leq s \leq k:\left(n, n_{s}\right) \mid a-a_{s}\right\}$, $b_{s} \in \mathbb{Z}$ and $a+b_{s} n \equiv a_{s}\left(\bmod n_{s}\right)$ for $s \in J$. Instead of $A=A_{0(1)}$ we may apply our results to $A_{a(n)}$ so as to get more general ones. See [Su4] for examples of such transformations.

4. Characterizations of exact m-covers of \mathbb{Z}

Theorem 4.1. Let (1) be a system of arithmetic sequences. Let $I \subseteq$ $\{1, \ldots, k\}$ and $\bar{I}=\{1, \ldots, k\} \backslash I$. If $|I| \leq m$ then (1) is an exact m-cover of \mathbb{Z} if and only if

$$
\begin{align*}
& \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} / n_{s}=c}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} \tag{35}\\
&=\sum_{n=0}^{m-|I|}(-1)^{n}\binom{m-|I|}{n} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c-n}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}}
\end{align*}
$$

is valid for all rational $c \geq 0$. If $|I| \geq m$, then (1) forms an exact m-cover of \mathbb{Z} if and only if

$$
\begin{align*}
& \sum_{\substack{x_{s} \in R\left(n_{s}\right) f o r \\
\sum_{s \in I} x_{s} / n_{s}=c}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} \tag{36}\\
& =\sum_{n=0}^{|I|-m}(-1)^{n}\binom{|I|-m}{n} \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} 1 / n_{s}=c-n}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}
\end{align*}
$$

holds for all rational $c \geq 0$.

Proof. Put $N=\left[n_{1}, \ldots, n_{k}\right]$. We assert that (1) forms an exact m-cover of \mathbb{Z} if and only if we have the identity

$$
\begin{equation*}
\prod_{s=1}^{k}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)=\left(1-z^{N}\right)^{m} \tag{37}
\end{equation*}
$$

Apparently any zero of the left hand side of (37) is an N th root of unity. Observe that for every integer x the number $e^{-2 \pi i x / N}$ is a zero of the left hand side of (37) with multiplicity m if and only if x lies in $a_{s}+n_{s} \mathbb{Z}$ for exact m of $s=1, \ldots, k$. So the assertion follows from Viète's theorem.

Now consider the case $|I| \leq m$. Clearly the following identities are equivalent:

$$
\begin{aligned}
& \prod_{s=1}^{k}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)=\left(1-z^{N}\right)^{m-|I|} \prod_{s \in I}\left(1-\left(z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)^{n_{s}}\right), \\
& \prod_{s \in \bar{I}}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)=\left(1-z^{N}\right)^{m-|I|} \prod_{s \in I} \sum_{m_{s}=0}^{n_{s}-1} z^{m_{s} N / n_{s}} e^{2 \pi i m_{s} a_{s} / n_{s}}, \\
& \sum_{J \subseteq \bar{I}}(-1)^{|J|} z^{\sum_{s} \in J} N / n_{s} \\
& e \\
& \quad=\sum_{n=0}^{m-|I|}(-1)^{n}\binom{m-|I|}{n} z^{n N} \prod_{s \in I} \sum_{m_{s}=0}^{n_{s}-1} z^{m_{s} N / n_{s}} e^{2 \pi i a_{s} m_{s} / n_{s}}
\end{aligned}
$$

By the assertion the first one holds if and only if (1) forms an exact m-cover of \mathbb{Z}. Since the third one is valid if and only if (35) is true for every rational $c \geq 0$, we get the desired result.

For the case $|I| \geq m$, that (1) forms an exact m-cover of \mathbb{Z} is equivalent to any of the identities given below:

$$
\begin{aligned}
& \prod_{s \in \bar{I}}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right) \cdot \prod_{s \in I}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)=\left(1-z^{N}\right)^{m}, \\
& \prod_{s \in \bar{I}}\left(1-z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right) \cdot \prod_{s \in I}\left(1-\left(z^{N / n_{s}} e^{2 \pi i a_{s} / n_{s}}\right)^{n_{s}}\right) \\
& =\left(1-z^{N}\right)^{m} \prod_{s \in I} \sum_{m_{s}=0}^{n_{s}-1} z^{m_{s} N / n_{s}} e^{2 \pi i a_{s} m_{s} / n_{s}}, \\
& =\prod_{s \in I} \sum_{m_{s}=0}^{n_{s}-1} z^{|I|-m}(-1)^{n}\binom{|I|-m}{n} z^{n N} \sum_{J \subseteq \bar{I}}(-1)^{|J| z_{s} \sum_{s \in J} N / n_{s}} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}
\end{aligned}
$$

As the last one holds if and only if (36) does for all rational $c \geq 0$, we are done.

Remark 5 . In the case $I=\emptyset$ and $c \in\{1, \ldots, m\}$, that (35) holds for any exact m-cover (1) of \mathbb{Z} was first observed by the author in [Su2] with the help of the Riemann zeta function.

The characterization of exact m-cover (1) of \mathbb{Z} given in Theorem 4.1 involves a fixed subset I of $\{1, \ldots, k\}$. Now we present a new one which depends on all the $I \subseteq\{1, \ldots, k\}$ with $|I|=m$.

THEOREM 4.2. Let (1) be a system of arithmetic sequences. Then (1) forms an exact m-cover of \mathbb{Z} if and only if the relation

$$
\begin{align*}
& \sum_{\substack{J \subseteq\{1, \ldots, k\} \backslash I \\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=\theta}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} \tag{38}\\
& =\sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=\theta}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}}
\end{align*}
$$

holds for all $\theta \in[0,1)$ and $I \subseteq\{1, \ldots, k\}$ with $|I|=m$.
Proof. Let $N=\left[n_{1}, \ldots, n_{k}\right]$ and $\bar{I}=\{1, \ldots, k\} \backslash I$ for all $I \subseteq\{1, \ldots, k\}$. First suppose that (1) forms an m-cover of \mathbb{Z}. Let x be any integer and I a subset of $\{1, \ldots, k\}$ with $|I|=m$. By taking $z=r^{1 / N} e^{2 \pi i x / N}$ in (37), we get the equality

$$
\prod_{s=1}^{k}\left(1-r^{1 / n_{s}} e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right)=(1-r)^{m}
$$

for all $r \geq 0$. If $I=\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}$, then

$$
\begin{aligned}
& \prod_{s \in \bar{I}}\left(1-e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right) / \prod_{s \in I} \sum_{x_{s}=0}^{n_{s}-1} e^{2 \pi i\left(x+a_{s}\right) x_{s} / n_{s}} \\
& \quad=\lim _{r \rightarrow 1} \prod_{s \in \bar{I}}\left(1-r^{1 / n_{s}} e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right) / \prod_{s \in I} \lim _{\bar{r} \rightarrow e^{2 \pi i\left(x+a_{s}\right) / n_{s}}} \frac{1-\bar{r}^{n_{s}}}{1-\left(\bar{r}^{n_{s}}\right)^{1 / n_{s}}} \\
& \quad=\lim _{r \rightarrow 1} \prod_{s \in \bar{I}}\left(1-r^{1 / n_{s}} e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right) \cdot \prod_{s \in I} \frac{1-r^{1 / n_{s}}}{1-r} \\
& \quad=\lim _{r \rightarrow 1}(1-r)^{-|I|} \prod_{s=1}^{k}\left(1-r^{1 / n_{s}} e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right) \\
& \quad=\lim _{r \rightarrow 1}(1-r)^{-|I|}(1-r)^{m}=1 .
\end{aligned}
$$

If $I \neq\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}$, then $n_{s} \mid x+a_{s}$ for some $s \in \bar{I}$ and $n_{t} \nmid x+a_{t}$ for some $t \in I$, therefore

$$
\prod_{s \in \bar{I}}\left(1-e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right)=0=\prod_{t \in I} \sum_{x_{t}=0}^{n_{t}-1} e^{2 \pi i\left(x+a_{t}\right) x_{t} / n_{t}}
$$

So we always have the identity

$$
\begin{equation*}
\prod_{s \in \bar{I}}\left(1-e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right)=\prod_{s \in I} \sum_{x_{s}=0}^{n_{s}-1} e^{2 \pi i\left(x+a_{s}\right) x_{s} / n_{s}} \tag{39}
\end{equation*}
$$

Next assume (39) for all $x \in \mathbb{Z}$ and $I \subseteq\{1, \ldots, k\}$ with $|I|=m$. For each integer x, if $\left|\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}\right|>m$, then we can choose a proper subset I of $\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}$ with cardinality m for which the left hand side of (39) is zero but the right hand side of (39) is nonzero; if $\left|\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}\right|<m$, then we can select an $I \supset\left\{1 \leq s \leq k: n_{s} \mid x+a_{s}\right\}$ with $|I|=m$ for which the left hand side of (39) is nonzero while the right hand side of (39) is zero. So (1) forms an exact m-cover of \mathbb{Z}.

Now let I be any subset of $\{1, \ldots, k\}$ with $|I|=m$. For every $x \in \mathbb{Z}$,

$$
\begin{aligned}
\prod_{s \in \bar{I}}\left(1-e^{2 \pi i\left(x+a_{s}\right) / n_{s}}\right) & =\sum_{J \subseteq \bar{I}}(-1)^{|J|} e^{2 \pi i\left(\sum_{s \in J} a_{s} / n_{s}+x \sum_{s \in J} 1 / n_{s}\right)} \\
& =\sum_{r=0}^{N-1} e^{2 \pi i r x / N} \sum_{\substack{J \subseteq \bar{I} \\
\\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=r / N}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}
\end{aligned}
$$

while $\prod_{s \in I} \sum_{x_{s}=0}^{n_{s}-1} e^{2 \pi i\left(x+a_{s}\right) x_{s} / n_{s}}$ coincides with

$$
\begin{aligned}
& \sum_{x_{s} \in R\left(n_{s}\right) \text { for } s \in I} e^{2 \pi i\left(\sum_{s \in I} a_{s} x_{s} / n_{s}+x \sum_{s \in I} x_{s} / n_{s}\right)} \\
&=\sum_{r=0}^{N-1} e^{2 \pi i r x / N} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=r / N}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} .
\end{aligned}
$$

If (38) holds for all $\theta \in[0,1)$ then (39) follows from the above for each $x \in \mathbb{Z}$. Conversely, providing (39) for all $x \in \mathbb{Z}$, for any $a=0,1, \ldots, N-1$ we have

$$
\begin{aligned}
& N \sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=a / N}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} \\
&= \sum_{r=0}^{N-1} \sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J}^{1 / n_{s}}\right\}=r / N}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} \sum_{x=0}^{N-1} e^{2 \pi i(r-a) x / N}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=0}^{N-1} e^{-2 \pi i a x / N}\left(\sum_{r=0}^{N-1} e^{2 \pi i r x / N} \sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=r / N}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}\right) \\
& =\sum_{x=0}^{N-1} e^{-2 \pi i a x / N}\left(\sum_{r=0}^{N-1} e^{2 \pi i r x / N} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=r / N}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}}\right) \\
& =\sum_{r=0}^{N-1} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=r / N}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} \sum_{x=0}^{N-1} e^{2 \pi i(r-a) x / N} \\
& =N \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=a / N}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s},}
\end{aligned}
$$

therefore (38) is valid for every $\theta \in[0,1)$.
Combining the above we obtain the desired result.

5. Proofs of Theorems 3.1-3.3

Proof of Theorem 3.1. (i) Assume $|I| \leq m$ and $I^{*}(c-n)=1$ where n is a nonnegative integer. Let $\left\langle m_{s}\right\rangle_{s \in I}$ be the unique tuple for which $\sum_{s \in I} m_{s} / n_{s}=c-n$ and $m_{s} \in R\left(n_{s}\right)$ for all $s \in I$. Since $\binom{m-|I|}{n}=0$ if $n>m-|I|$, by (35) we have

$$
\begin{aligned}
& \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} \overline{1} / n_{s}=c}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}-(-1)^{n}\binom{m-|I|}{n} e^{2 \pi i \sum_{s \in I} a_{s} m_{s} / n_{s}} \\
&=\sum_{\substack{l=0 \\
l \neq n}}^{m-|I|}(-1)^{l}\binom{m-|I|}{l} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c-l}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} .
\end{aligned}
$$

Therefore $\bar{I}_{*}(c)+\sum_{l=0, l \neq n}^{m-|I|}\binom{m-|I|}{l} I^{*}(c-l)$ is greater than or equal to

$$
\mid \sum_{\substack{J \subseteq \bar{I} \\ \sum_{s \in J} \subseteq 1 / n_{s}=c}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}
$$

$$
\begin{aligned}
& \left.\quad-\sum_{\substack{l=0 \\
l \neq n}}^{m-|I|}(-1)^{l}\binom{m-|I|}{l} \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c-l}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} \right\rvert\, \\
& =\left|(-1)^{n}\binom{m-|I|}{n} e^{2 \pi i \sum_{s \in I} a_{s} m_{s} / n_{s}}\right|=\binom{m-|I|}{n} .
\end{aligned}
$$

(ii) Now we suppose $|I| \geq m$ and $\bar{I}_{*}(c-n)=1$ where n is a nonnegative integer. Let I^{\prime} be the unique subset of \bar{I} such that $\sum_{s \in I^{\prime}} 1 / n_{s}=c-n$. By (36) we have

$$
\begin{aligned}
& \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}}-(-1)^{n}\binom{|I|-m}{n}(-1)^{\left|I^{\prime}\right|} e^{2 \pi i \sum_{s \in I^{\prime}} a_{s} / n_{s}} \\
&=\sum_{\substack{l=0 \\
l \neq n}}^{|I|-m}(-1)^{l}\binom{|I|-m}{l} \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} 1 / n_{s}=c-l}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} .
\end{aligned}
$$

Thus (11) follows.
Lemma. Let c_{1}, \ldots, c_{k} be nonnegative integers and d_{1}, \ldots, d_{l} positive integers. Assume that there exist nonzero numbers z_{1}, \ldots, z_{k} for which $\sum_{s=1}^{k} c_{s} z_{s}^{t}=0$ for those positive integers t not divisible by any of d_{1}, \ldots, d_{l}. Then $c_{1}+\ldots+c_{k}$ is the sum of some (not necessarily distinct) numbers among d_{1}, \ldots, d_{l}.

This is Lemma 9 of [Su4] and the initial idea is due to Y.-G. Chen.
Proof of Theorem 3.2. Let d be an integer prime to $N=$ $\left[n_{1}, \ldots, n_{k}\right]$. Since any integer can be written in the form $d x+N y$ where $x, y \in \mathbb{Z}$, and $d x+N y \equiv d a_{s}\left(\bmod n_{s}\right)$ if and only if $x \equiv a_{s}\left(\bmod n_{s}\right)$, it follows that $A_{d}=\left\{d a_{s}+n_{s} \mathbb{Z}\right\}_{s=1}^{k}$ also forms an exact m-cover of \mathbb{Z}. When $|I| \leq m$, by applying Theorem 4.1 to A_{d} we get

$$
\begin{aligned}
\sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} 1 / n_{s}=c}} & (-1)^{|J|} e^{2 \pi i d \sum_{s \in J} a_{s} / n_{s}} \\
& =\sum_{n=0}^{m-|I|}(-1)^{n}\binom{m-|I|}{n} \sum_{\substack{\left.x_{s} \in \mathcal{R} n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c-n}} e^{2 \pi i d \sum_{s \in I} a_{s} x_{s} / n_{s}},
\end{aligned}
$$

that is, $\sum_{w \in W_{1}} B_{1}(c, w) e^{2 \pi i d w}$ is zero, where W_{1} is the union of the sets

$$
\left\{\left\{\sum_{s \in J} \frac{a_{s}}{n_{s}}\right\}: J \subseteq \bar{I} \& \sum_{s \in J} \frac{1}{n_{s}}=c\right\}
$$

and

$$
\left\{\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I, c-\sum_{s \in I} \frac{x_{s}}{n_{s}} \in\{0,1, \ldots, m-|I|\}\right\}
$$

and

$$
\begin{aligned}
B_{1}(c, w)= & \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J}=n_{s}=c \\
\left\{\sum_{s \in J} a_{s} / n_{s}\right\}=w}}(-1)^{|J|} \\
- & \left.\sum_{n=0}^{m-|I|}(-1)^{n}\binom{m-|I|}{n} \right\rvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I,\right. \\
& \left.\sum_{s \in I} \frac{x_{s}}{n_{s}}=c-n \&\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}=w\right\} \mid
\end{aligned}
$$

for $w \in W_{1}$. If $|I| \geq m$, then by applying Theorem 4.1 to A_{d} we obtain the equality

$$
\begin{aligned}
& \sum_{\substack{x_{s} \in R\left(n_{s}\right) \text { for } s \in I \\
\sum_{s \in I} x_{s} / n_{s}=c}} e^{2 \pi i d \sum_{s \in I} a_{s} x_{s} / n_{s}} \\
& \quad=\sum_{n=0}^{|I|-m}(-1)^{n}\binom{|I|-m}{n} \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} 1 / n_{s}=c-n}}(-1)^{|J|} e^{2 \pi i d \sum_{s \in J} a_{s} / n_{s}},
\end{aligned}
$$

i.e., $\sum_{w \in W_{2}} B_{2}(c, w) e^{2 \pi i d w}=0$, where W_{2} is the union of

$$
\left\{\left\{\sum_{s \in J} \frac{a_{s}}{n_{s}}\right\}: J \subseteq \bar{I} \text { and } \sum_{s \in J} \frac{1}{n_{s}}=c-n \text { for some } n=0,1, \ldots,|I|-m\right\}
$$

and

$$
\left\{\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I \text { and } \sum_{s \in I} \frac{x_{s}}{n_{s}}=c\right\}
$$

and

$$
\begin{aligned}
& B_{2}(c, w) \\
&= \left.\left\lvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I, \sum_{s \in I} \frac{x_{s}}{n_{s}}=c \&\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}=w\right\}\right. \right\rvert\, \\
&-\sum_{n=0}^{|I|-m}(-1)^{n}\binom{|I|-m}{n} \sum_{\substack{J \subseteq \bar{I} \\
\sum_{s \in J} 1 / n_{s}=c-n \\
\left\{\sum_{s \in J} a_{s} / n_{s}\right\}=w}}(-1)^{|J|}
\end{aligned}
$$

for $w \in W_{2}$.

Case 1: $|I| \leq m$. In this case (22) and (23) are obvious if $W_{1}=\emptyset$. Suppose that W_{1} is nonempty. If the inequality

$$
\bar{I}_{*}(c)+\sum_{n=0}^{m-|I|} I^{*}(c-n) \geq\left|W_{1}\right| \geq p(N)
$$

fails or $N=1$, then $\sum_{w \in W_{1}} B_{1}(c, w) e^{2 \pi i d w}=0$ for every $d=1, \ldots,\left|W_{1}\right|$. Since

$$
\left|\left(e^{2 \pi i d w}\right)_{1 \leq d \leq\left|W_{1}\right|, w \in W_{1}}\right| / \prod_{w \in W_{1}} e^{2 \pi i w}
$$

is a determinant of Vandermonde's type, $B_{1}(c, w)=0$ for all $w \in W_{1}$ and hence (22) follows. When $|S|,|T| \leq 1$ and $S \cap T=\emptyset$ where S and T are as in Theorem 3.2, there is an $\varepsilon \in\{1,-1\}$ such that

$$
\begin{aligned}
\varepsilon B_{1}(c, w)= & \left|B_{1}(c, w)\right| \\
= & \left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=c \&\left\{\sum_{s \in J} \frac{a_{s}}{n_{s}}\right\}=w\right\}\right| \\
& \left.+\sum_{n=0}^{m-|I|}\binom{m-|I|}{n} \right\rvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I,\right. \\
& \left.\sum_{s \in I} \frac{x_{s}}{n_{s}}=c-n \&\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}=w\right\} \mid
\end{aligned}
$$

for every $w \in W_{1}$. If $N \neq 1$ then $\sum_{w \in W_{1}}\left|B_{1}(c, w)\right|\left(e^{2 \pi i w}\right)^{d}=0$ for all positive integers d divisible by none of prime divisors of N and therefore by the Lemma

$$
\bar{I}_{*}(c)+\sum_{n=0}^{m-|I|}\binom{m-|I|}{n} I^{*}(c-n)=\sum_{w \in W_{1}}\left|B_{1}(c, w)\right| \in D(N) .
$$

If $N=1$ then the last equality also holds because $B_{1}(c, w)=0$ for every $w \in W_{1}$.

Case 2: $|I| \geq m$. Apparently (25) and (26) are valid if $W_{2}=\emptyset$. Now assume $\left|W_{2}\right| \geq 1$. If the equality

$$
I^{*}(c)+\sum_{n=0}^{|I|-m} \bar{I}_{*}(c-n) \geq\left|W_{2}\right| \geq p(N)
$$

fails or N equals one, then $\sum_{w \in W_{2}} B_{2}(c, w) e^{2 \pi i d w}=0$ for every $d=$ $1, \ldots,\left|W_{2}\right|$, hence $B_{2}(c, w)=0$ for all $w \in W_{2}$ and so we have (25). If $c \neq n+\sum_{s \in J} 1 / n_{s}$ for each $n=0,1, \ldots,|I|-m$ and $J \subseteq \bar{I}$ with $n \equiv|J|$ $(\bmod 2)$, then

$$
\begin{aligned}
& B_{2}(c, w) \\
& \left.=\left\lvert\,\left\{\left\langle x_{s}\right\rangle_{s \in I}: x_{s} \in R\left(n_{s}\right) \text { for } s \in I, \sum_{s \in I} \frac{x_{s}}{n_{s}}=c \&\left\{\sum_{s \in I} \frac{a_{s} x_{s}}{n_{s}}\right\}=w\right\}\right. \right\rvert\, \\
& \quad+\sum_{n=0}^{|I|-m}\binom{|I|-m}{n}\left|\left\{J \subseteq \bar{I}: \sum_{s \in J} \frac{1}{n_{s}}=c-n \&\left\{\sum_{s \in J} \frac{a_{s}}{n_{s}}\right\}=w\right\}\right|
\end{aligned}
$$

for all $w \in W_{2}$, so with the help of the Lemma, whether $N=1$ or not, (26) always holds.

Proof of Theorem 3.3. (i) First suppose $|I|=m$. Let $r \in R\left(\left[n_{s}\right]_{s \in I}\right)$. In the light of Theorem 4.2,

$$
\begin{aligned}
& \sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=r /\left[n_{s}\right]_{s \in I}}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}} \\
&=\sum_{\substack{x_{s} \in \in\left(n_{s}\right) \text { for } s \in I \\
\left\{\sum_{s \in I} x_{s} / n_{s}\right\}=r /\left[n_{s}\right]_{s \in I}}} e^{2 \pi i \sum_{s \in I} a_{s} x_{s} / n_{s}} .
\end{aligned}
$$

As $\left(n_{s}, n_{t}\right) \mid a_{s}-a_{t}$ for all $s, t \in I$, by Corollary 2.3 the absolute value of the right hand side is $\prod_{s \in I} n_{s} /\left[n_{s}\right]_{s \in I}$. So

$$
\begin{aligned}
\sum_{n=0}^{m-1} \bar{I}_{*}\left(n+\frac{r}{\left[n_{s}\right]_{s \in I}}\right) & =\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\frac{r}{\left[n_{s}\right]_{s \in I}}\right\}\right| \\
& \geq\left|\sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J} 1 / n_{s}\right\}=r /\left[n_{s}\right]_{s \in I}}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}\right| \\
& =\frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}} .
\end{aligned}
$$

Next we handle the case where $|I| \neq m$. Choose an integer x such that $x \in \bigcap_{s \in I} a_{s}+n_{s} \mathbb{Z}$ if $I \neq \emptyset$. Let

$$
I^{\prime}=\left\{1 \leq s \leq k: x \equiv a_{s}\left(\bmod n_{s}\right)\right\} .
$$

Then $\left|I^{\prime}\right|=m$ and $I^{\prime} \supset I$. By the previous argument,

$$
\left|\left\{J \subseteq\{1, \ldots, k\} \backslash I^{\prime}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\frac{a}{\left[n_{s}\right]_{s \in I^{\prime}}}\right\}\right| \geq \frac{\prod_{s \in I^{\prime}} n_{s}}{\left[n_{s}\right]_{s \in I^{\prime}}}
$$

for every $a \in R\left(\left[n_{s}\right]_{s \in I^{\prime}}\right)$. So, for any $r \in R\left(\left[n_{s}\right]_{s \in I}\right)$, we have

$$
\begin{aligned}
\mid\{J \subseteq \bar{I}: & \left.\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\frac{r}{\left[n_{s}\right]_{s \in I}}\right\} \mid \\
& \geq\left|\left\{J \subseteq\{1, \ldots, k\} \backslash I^{\prime}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\frac{r\left[n_{s}\right]_{s \in I^{\prime}} /\left[n_{s}\right]_{s \in I}}{\left[n_{s}\right]_{s \in I^{\prime}}}\right\}\right| \\
& \geq \frac{\prod_{s \in I^{\prime}} n_{s}}{\left[n_{s}\right]_{s \in I^{\prime}}}=\frac{\prod_{s \in I} n_{s} \cdot \prod_{s \in I^{\prime} \backslash I} n_{s}}{\left[\left[n_{s}\right]_{s \in I},\left[n_{s}\right]_{s \in I^{\prime} \backslash I}\right]} \geq \frac{\prod_{s \in I} n_{s}}{\left[n_{s}\right]_{s \in I}} .
\end{aligned}
$$

(ii) If $\left[n_{s}\right]_{s \in I} \theta \notin \mathbb{Z}$, then $\left\{\sum_{s \in I} x_{s} / n_{s}\right\} \neq \theta$ whenever $x_{s} \in R\left(n_{s}\right)$ for all $s \in I$, and thus by Theorem 4.2,
(*) $\sum_{w \in W} e^{2 \pi i w} \sum_{J \subseteq \bar{I}}(-1)^{|J|}$

$$
\begin{aligned}
& \substack{\left\{\sum_{s \in J} \overline{1} / n_{s}\right\}=\theta \\
\left\{\sum_{s \in J} a_{s} / n_{s}\right\}=w} \\
&=\sum_{\substack{J \subseteq \bar{I} \\
\left\{\sum_{s \in J} \overline{1} / n_{s}\right\}=\theta}}(-1)^{|J|} e^{2 \pi i \sum_{s \in J} a_{s} / n_{s}}=0
\end{aligned}
$$

where

$$
W=\left\{\left\{\sum_{s \in J} \frac{a_{s}}{n_{s}}\right\}: J \subseteq \bar{I} \text { and }\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\} .
$$

If $\left(n_{s_{1}}, n_{s_{2}}\right) \nmid a_{s_{1}}-a_{s_{2}}$ for some $s_{1}, s_{2} \in I$, then $\left\{a_{s}+n_{s} \mathbb{Z}\right\}_{s \in I}$ covers each integer at most $m-1$ times because $a_{s_{1}}+n_{s_{1}} \mathbb{Z} \cap a_{s_{2}}+n_{s_{2}} \mathbb{Z}=\emptyset$, therefore system $\left\{a_{s}+n_{s} \mathbb{Z}\right\}_{s \in \bar{I}}$ forms a cover of \mathbb{Z} and (*) holds by Theorem 1 of [Su3]. For each integer a prime to $\left[n_{s}\right]_{s \in \bar{I}}$, by applying the automorphism σ_{a} of the cyclotomic field $\mathbb{Q}\left(e^{2 \pi i /\left[n_{s}\right]_{s \in I}}\right)$ with $\sigma_{a}\left(e^{2 \pi i /\left[n_{s}\right]_{s \in I}}\right)=e^{2 \pi i a /\left[n_{s}\right]_{s \in I}}$ we obtain from (*) the equality

$$
\begin{equation*}
\sum_{w \in W}\left(e^{2 \pi i w}\right)^{a} \sum_{\substack{J \subseteq \bar{I} \\\left\{\sum_{s \in J}^{\left.1 / n_{s}\right\}=\theta} \\\left\{\sum_{s \in J} a_{s} / n_{s}\right\}=w\right.}}(-1)^{|J|}=0 . \tag{a}
\end{equation*}
$$

Observe that

$$
|W| \leq\left|\left\{J \subseteq \bar{I}:\left\{\sum_{s \in J} \frac{1}{n_{s}}\right\}=\theta\right\}\right|=\sum_{n=0}^{m-1} \bar{I}_{*}(n+\theta)
$$

If $0<|W|<p\left(\left[n_{s}\right]_{s \in \bar{I}}\right)$, then $\left(*_{a}\right)$ holds for every $a=1, \ldots,|W|$, hence

$$
\sum_{\substack{J \subseteq \bar{I} \\\left\{\sum _ { s \in J } ^ { 1 / n _ { s } \} = \theta } \\ \left\{\sum_{\left.s \in J J a_{s} / n_{s}\right\}=w}\right.\right.}}(-1)^{|J|}=0 \quad \text { for all } w \in W
$$

and in particular

$$
\sum_{\substack{J \subseteq \bar{I}, 2| | J \mid \\\left\{\sum_{s \in J} 1 / n_{s}\right\}=\theta}} 1-\sum_{\substack{J \subseteq \bar{I}, 2 \nmid|J| \\\left\{\sum_{s \in J} 1 / n_{s}\right\}=\theta}} 1=\sum_{\substack{J \subseteq \bar{I} \\\left\{\sum_{s \in J} \overline{1} / n_{s}\right\}=\theta}}(-1)^{|J|}=0,
$$

for the determinant of the matrix $\left(\left(e^{2 \pi i w}\right)^{a}\right)_{1 \leq a \leq|W|, w \in W}$ is nonzero. In the case $W=\emptyset$ we obviously have the last equality and (32). Assume $W \neq \emptyset$ below. Provided that all the $|J| \bmod 2$ with $J \subseteq \bar{I}$ and $\left\{\sum_{s \in J} 1 / n_{s}\right\}=\theta$ are the same, if $\left[n_{s}\right]_{s \in \bar{I}}=1$ then $\theta=0$ and we must have $\bar{I}=\emptyset$, i.e. $k=|I|=m$, which contradicts the fact that $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for some $i, j \in I$; if $\left[n_{s}\right]_{s \in \bar{I}}>1$, then (32) follows from the Lemma and the validity of $\left(*_{a}\right)$ for all integers a prime to $\left[n_{s}\right]_{s \in \bar{I}}$. This ends the proof.

Acknowledgments. The author is indebted to Professor R. K. Guy for his sending the related sections from the new edition of his book $[\mathrm{Gu}]$. The paper was written during the author's visit in Italy; he is grateful to Trento University for financial support. He also thanks the referee for his valuable advice.

References

[E] P. Erdős, On integers of the form $2^{k}+p$ and some related problems, Summa Brasil. Math. 2 (1950), 113-123. MR 13, 437.
[GLS] A. Granville, S.-G. Li and Q. Sun, On the number of solutions of the equation $\sum_{i=1}^{n} x_{i} / d_{i} \equiv 0(\bmod 1)$, and of diagonal equations in finite fields, J. Sichuan Univ. (Nat. Sci. Ed.) 32 (3) (1995), 243-248.
[Gu] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994, Sections F13 and F14.
[LN] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., 20, Addison-Wesley, 1983, 291-293. MR 86c:11106.
[P] Š. Porubský, On m times covering systems of congruences, Acta Arith. 29 (1976), 159-169. MR 53\#2884.
[Sm] C. Small, Diagonal equations over large finite fields, Canad. J. Math. 36 (1984), 249-262. MR 86e:11094.
[SW] Q. Sun and D.-Q. Wan, On the Diophantine equation $\sum_{i=1}^{n} x_{i} / d_{i} \equiv 0(\bmod 1)$, Proc. Amer. Math. Soc. 112 (1991), 25-29. MR 91h:11017.
$[\mathrm{SWM}]$ Q. Sun, D.-Q. W an and D.-G. Ma, On the equation $\sum_{i=1}^{n} y_{i} / d_{i} \equiv 0(\bmod 1)$, J. Sichuan Univ. (Nat. Sci. Ed.) 23 (4) (1986), 25-30. MR 88e:11121.
[Su1] Z. W. Sun, A necessary and sufficient condition for two linear diophantine equations to have a common solution, J. Nanjing Univ. (Nat. Sci. Ed.) 25 (1) (1989), 10-17. MR 90i:11026.
[Su2] -, On exactly m times covers, Israel J. Math. 77 (1992), 345-348. MR 93k : 11007.
[Su3] -, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109129.
[Su4] Z. W. Sun, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348 (1996), 4279-4320.

Department of Mathematics
Nanjing University
Nanjing 210093
People's Republic of China
E-mail: (care of) zhengch@public1.ptt.js.cn

Received on 9.5.1996 and in revised form on 8.1.1997

[^0]: 1991 Mathematics Subject Classification: Primary 11B25; Secondary 11A07, 11B75, 11D68.

 This research is supported by the National Natural Science Foundation of P.R. China.

