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Cyclic coverings of an elliptic curve
with two branch points and the gap sequences

at the ramification points

by

Jiryo Komeda (Atsugi)

1. Introduction. Let C be a complete non-singular irreducible alge-
braic curve of genus g ≥ 2 defined over an algebraically closed field k of
characteristic 0, which is called a curve in this paper. Let P be its point. A
positive integer γ is called a gap at P if there exists a regular 1-form ω on C
such that ordP (ω) = γ − 1. We denote by G(P ) the set of gaps at P . Then
the cardinality of G(P ) is equal to g. Now the sequence {γ1, . . . , γg} = G(P )
with γi < γj for i < j is called the gap sequence at P .

Let π : C → C ′ be a cyclic covering of curves of degree d with total
ramification points P . It is well known that in the case of C ′ = P1 and
d = 2 we have G(P ) = {1, 3, . . . , 2g − 1}. In the case of C ′ = P1 and
d = 3 (resp. 4) the gap sequences G(P ) are known (see [1], [2], [3] (resp. [4],
Prop. 4.5)). If C ′ = P1 and d is a prime number ≥ 5, we can also determine
the gap sequences G(P ) (for example, see [5], Prop. 1). In this paper we
shall consider the case C ′ = E where E is an elliptic curve. If d = 2, then
G(P ) are known ([4], Prop. 2.9, 3.10). However, for d ≥ 3 there are only
a few results on the gap sequences G(P ). For example, I. Kuribayashi and
K. Komiya ([8], Th. 5) showed the following: If π : C → E is a cyclic
covering of an elliptic curve of degree 6 which is branched over three points
P ′i (i = 1, 2, 3) such that ]π−1(P ′i ) = i, then the gap sequence G(P1) can
be determined, where P1 denotes the point of C over P ′1. Moreover, the
author ([6], Lemma 4.6) showed the following: Let E be an elliptic curve
with the origin Q′. Let P ′1 (resp. P ′2) be a point of E such that P ′1 6= Q′

and 2[P ′1] = [Q′] (resp. P ′2 6= Q′ and 3[P ′2] = [Q′]), where for any positive
integer m and any point P ′ of the elliptic curve E the multiplication of
P ′ by m is denoted by m[P ′]. Then there is an element z of K(E) such
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that div(z) = 4P ′1 + 3P ′2 − 7Q′ where K(E) denotes the function field of E.
Let π : C → E be the surjective morphism of curves corresponding to the
inclusion K(E) ⊂ K(E)(z1/7) = K(C). If P2 denotes the point of C over
P ′2, then the gap sequence G(P2) is equal to {1, 2, 3, 4, 5, 7, 13}. In this paper
we shall prove the generalization of the above statement for the degree of
the covering π : C → E, which is the following:

Main Theorem. Let g ≥ 7. We can construct cyclic coverings π : C →
E of an elliptic curve E of degree g which have only two ramification points
P1 and P2, which are totally ramified , such that

G(P1) = G(P2) = {1, . . . , g − 2, g, 2g − 1}.
Now we consider the following situation. Let G be a finite subset of the

set N of positive integers such that the complement N0 \ G of G in the
additive semigroup N0 of non-negative integers forms its subsemigroup. If
the cardinality ofG is g, then {γ1, . . . , γg} = G with γi < γj for i < j is called
a gap sequence of genus g . We say that a gap sequence G is Weierstrass if
there exists a pointed curve (C,P ) such thatG = G(P ). Let a(G) = min{h ∈
N0 \ G |h > 0}. Then a(G) ≤ g + 1. If a(G) = g + 1, then G = {1, . . . , g}.
In this case G is Weierstrass, because for any point P of a curve of genus g
except finitely many points we have G(P ) = {1, . . . , g}. If a(G) = g, then
there is a positive integer k ≤ g−1 such that G = {1, . . . , g−1, g+k}. These
g− 1 kinds of gap sequences are Weierstrass (cf. [9], Th. 14.5). If l is a fixed
integer ≥ 2, then for any sufficiently large g there exists a non-Weierstrass
gap sequence G of genus g such that a(G) = g − l (cf. [7], Th. 3.5 and 4.5).
Hence we pose the following problem: Is any gap sequence G of genus g with
a(G) = g − 1 Weierstrass?

Now we say that G is primitive if 2a(G) > γg. Since any gap sequence of
genus g ≤ 7 is Weierstrass (cf. [6], Th. 4.7), combining the Main Theorem
with Lemma 1 we get the following:

Any non-primitive gap sequence G of genus g with a(G) = g − 1 is
Weierstrass.

In Sections 2, 3 and 4 we construct our desired cyclic coverings π : C → E
of an elliptic curve in the cases when g ≡ 3, 1 and 0 mod 4 respectively. In
Section 5 the case when g ≡ 2 mod 4 is treated. In this case we need an
arithmetic lemma (Key Lemma 4) which is important for the constructions
of the coverings π : C → E.

2. The case g ≡ 3 mod 4. First we prove the following:

Lemma 1. Let G be a non-primitive gap sequence of genus g ≥ 3 with
a(G) = g − 1. Then G = {1, . . . , g − 2, g, 2g − 1}.
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P r o o f. Let G = {γ1, . . . , γg} with γi < γj for i < j. In view of a(G) =
g−1 we must have γi = i for i ≤ g−2 and γg−1 ≥ g. Since G is non-primitive,
we have γg > 2a(G) = 2g − 2. It is a well-known fact that γg ≤ 2g − 1 (for
example, see [4], Lemma 2.1), which implies that γg = 2g− 1. Suppose that
γg−1 ≥ g+1. Then N0\G contains g−1 and g. Since N0\G is a subsemigroup
of N0, we must have γg = 2g − 1 ∈ N0 \G, which is a contradiction. Hence
we obtain γg−1 = g.

In the remainder of this section we will prove the Main Theorem in the
case g ≡ 3 mod 4 with g ≥ 7.

Let g = 4h+ 3 = 2n+ 1 with h ∈ N and n = 2h+ 1. Let E be an elliptic
curve over k with the origin Q′. Let P ′1 be a point of E such that P ′1 6= Q′

and 2[P ′1] = [Q′]. Moreover, P ′2 denotes a point of E such that n[P ′2] = [Q′]
and m[P ′2] 6= [Q′] for any positive integer m < n. Hence in view of g ≥ 7
we have P ′2 6= Q′. Moreover, P ′1 6= P ′2, because 2hP ′2 + P ′2 = nP ′2 ∼ nQ′ =
(2h+ 1)Q′ ∼ 2hP ′1 +Q′. Now we have

(n+ 1)P ′1 + nP ′2 ∼ 2(h+ 1)P ′1 + nQ′ ∼ 2(h+ 1)Q′ + nQ′ = (2n+ 1)Q′.

Hence we may take z ∈ K(E) such that div(z) = (n+1)P ′1+nP ′2−(2n+1)Q′.
Let C be the curve whose function field K(C) is K(E)(z1/(2n+1)). More-

over, π : C → E denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) ⊂ K(C). Then we may take y ∈ K(C) and
σ ∈ Aut(K(C)/K(E)) such that

σ(y) = ζ2n+1y and divE(y2n+1) = (n+ 1)P ′1 + nP ′2 − (2n+ 1)Q′,

where ζ2n+1 is a primitive (2n+ 1)th root of unity. Then there are only two
branch points P ′1 and P ′2 of π. Moreover, π−1(P ′i ) consists of only one point
Pi for i = 1, 2. Hence the ramification index of Pi is 2n + 1 for i = 1, 2.
Therefore

div(y) = (n+ 1)P1 + nP2 − π∗(Q′),
where π∗ denotes the pull-back of π. If we denote by g the genus of C, then
by the Riemann–Hurwitz formula we have g = 2n+ 1. Hence

div(dy) = nP1 + (n− 1)P2 − 2π∗(Q′) +
3∑

i=1

π∗(R′i),

where R′i’s are points of E which are distinct from P ′1, P ′2 and Q′, because
div(dy) is invariant under Aut(K(C)/K(E)).

We set

D′0 = −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i,
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D′2l+1 = −(2l + 2)Q′ + lP ′1 + lP ′2 +
3∑

i=1

R′i for 0 ≤ l ≤ n− 1

and

D′2l = −(2l + 1)Q′ + lP ′1 + (l − 1)P ′2 +
3∑

i=1

R′i for 1 ≤ l ≤ n.

First we show that l(D′0) = 1, i.e., D′0 is linearly equivalent to 0, where
for any divisor D′ on E the number l(D′) denotes the dimension of the
k-vector space

L(D′) = {f ∈ K(E) | divE(f) ≥ −D′}.
Since

σ

(
dy

y

)
=
d(σy)
σy

=
d(ζ2n+1y)
ζ2n+1y

=
dy

y
,

the 1-form dy/y on C is regarded as the one on E. Hence there exists an
element f of K(E) such that fdy/y is regular. Then

divE(f) = P ′1 + P ′2 +Q′ −
3∑

i=1

R′i

because

0 ≤ divC

(
fdy

y

)
= divC(f) + divC

(
dy

y

)

= divC(f)− P1 − P2 − π∗(Q′) +
3∑

i=1

π∗(R′i).

Hence

D′0 = −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i ∼ 0.

Moreover, l(D′r) = 1 for any r with 1 ≤ r ≤ 2n, because deg(D′r) = 1.
To compute the numbers l(D′r−P ′1) and l(D′r−P ′2) we show that mP ′1 6∼

mP ′2 for any positive integer m with m ≤ n. In fact, suppose that there exists
a positive integer m ≤ n such that mP ′1 ∼ mP ′2. If m is even, then

mP ′2 ∼
m

2
2P ′1 ∼

m

2
2Q′ = mQ′,

which is a contradiction. Let m be odd. Then 2mP ′2 ∼ 2mP ′1 ∼ 2mQ′. If
m < n/2, then

(n− 2m)P ′2 = nP ′2 − 2mP ′2 ∼ nQ′ − 2mQ′ = (n− 2m)Q′,
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a contradiction. If n/2 < m < n, then (2m− n)P ′2 ∼ (2m− n)Q′, a contra-
diction. If m = n, then

(n− 1)Q′ + P ′1 ∼ (n− 1)P ′1 + P ′1 ∼ nP ′2 ∼ nQ′,
which implies that P ′1 ∼ Q′. This is a contradiction. Hence we have shown
that for any m with 0 < m ≤ n, mP ′1 6∼ mP ′2.

Now for any l with 0 ≤ l ≤ n − 2 we have l(D′2l+1 − P ′1) = 0. In fact,
suppose that l(D′2l+1 − P ′1) = 1. Then

0 ∼ D′2l+1 − P ′1 −D′0 ∼ (n− 2l − 1)Q′ + lP ′1 + (l + 1− n)P ′2
∼ (n− l − 1)P ′1 − (n− l − 1)P ′2,

because nQ′ ∼ nP ′2 and 2P ′1 ∼ 2Q′. Hence

1 ≤ n− l − 1 ≤ n− 1 and (n− l − 1)P ′1 ∼ (n− l − 1)P ′2,

which is a contradiction.
Now in view of 2P ′1 ∼ 2Q′ and nP ′2 ∼ nQ′ we have

D′2n−1 − P ′1 −D′0 ∼ −(2n− 1)Q′ + (n− 1)Q′ + nQ′ = 0,

which implies that D′2n−1 − P ′1 ∼ 0. Hence

l(D′2n−1) = l(D′2n−1 − P ′1) = 1 and l(D′2n−1 − 2P ′1) = 0.

Suppose that l(D′2l − P ′1) = 1. Then in view of 2P ′1 ∼ 2Q′ we have

0 ∼ D′2l − P ′1 −D′0 ∼ −2lP ′1 + lP ′1 + lP ′2 = −lP ′1 + lP ′2,

a contradiction. Hence l(D′2l − P ′1) = 0 for any l with 1 ≤ l ≤ n.
Next we show that l(D′1 − P ′2) = 0. If l(D′1 − P ′2) = 1, then

−2Q′ +
3∑

i=1

R′i − P ′2 = D′1 − P ′2 ∼ 0 ∼ D′0 ∼ −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i,

which implies that P ′1 ∼ Q′. This is a contradiction. Now in view of 2P ′1 ∼
2Q′ we obtain D′2 − P ′2 ∼ D′0 ∼ 0, which implies that

l(D′2) = l(D′2 − P ′2) = 1 and l(D′2 − 2P ′2) = 0.

Let 1 ≤ l ≤ n− 1. Suppose that l(D′2l+1 − P ′2) = 1. Then

−(2l + 2)Q′ + lP ′1 + (l − 1)P ′2 +
3∑

i=1

R′i ∼ D′0 ∼ −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i,

which implies that −(l+ 1)P ′1 ∼ −(2l+ 1)Q′ + lP ′2. Since nP ′2 ∼ nQ′ and n
is odd, we have

nP ′2 − (l + 1)P ′1 ∼ (n− (2l + 1))Q′ + lP ′2 ∼ (n− (2l + 1))P ′1 + lP ′2,

which implies that (n− l)P ′2 ∼ (n− l)P ′1. This contradicts mP ′1 6∼ mP ′2 for
any 0 < m < n. Hence l(D′2l+1 − P ′2) = 0 for any 1 ≤ l ≤ n− 1.
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Let 2 ≤ l ≤ n. Suppose that l(D′2l − P ′2) = 1. Then

−(2l + 1)Q′ + lP ′1 + (l − 2)P ′2 +
3∑

i=1

R′i ∼ −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i,

which implies that (l + 1)P ′1 + (l − 1)P ′2 ∼ 2lQ′ ∼ 2lP ′1. Hence (l − 1)P ′2 ∼
(l − 1)P ′1, a contradiction. Therefore l(D′2l − P ′2) = 0 for any 2 ≤ l ≤ n.

Now let f be an element of K(E) and set

divE(f) =
∑

P ′∈E
m(P ′)P ′.

Then for any non-negative integer r we obtain

divC

(
fdy

y1−r

)
= ((2n+ 1)m(P ′1) + n+ (n+ 1)(r − 1))P1

+ ((2n+ 1)m(P ′2) + n− 1 + n(r − 1))P2

+ (m(Q′)− r − 1)π∗(Q′)

+
3∑

i=1

(m(R′i) + 1)π∗(R′i) +
∑

P ′∈S
m(P ′)π∗(P ′),

where we set S = E \ {P ′1, P ′2, Q′, R′1, R′2, R′3}. We note that if R′1 6= R′2 and
R′2 = R′3 (resp. R′1 = R′2 = R′3), then

3∑

i=1

(m(R′i) + 1)π∗(R′i)

is replaced by

(m(R′1) + 1)π∗(R′1) + (m(R′2) + 2)π∗(R′2) (resp. (m(R′1) + 3)π∗(R′1)).

For each r = 0, 1, . . . , 2n, we take a non-zero element fr ∈ L(D′r) and
set φr = frdy/y

1−r. Then by the above,

ordPi(φ0) = 2n+ 1− 1 = g − 1 for i = 1, 2.

For any l with 0 ≤ l ≤ n− 2 we have

ordP1(φ2l+1) = n+ l + 1− 1 and ordP2(φ2l+1) = n− l − 1.

Let l = n − 1, i.e., 2l + 1 = 2n − 1. Since L(D′2n−1) = L(D′2n−1 − P ′1) and
L(D′2n−1) ⊃ L(D′2n−1 − P ′2) = (0), we obtain

ordP1(φ2n−1) = 4n+ 1− 1 = 2g − 1− 1 and ordP2(φ2n−1) = 1− 1.

Let l = 1, i.e., 2l = 2. Since L(D′2) ⊃ L(D′2 − P ′1) = (0) and L(D′2) =
L(D′2 − P ′2), we obtain

ordP1(φ2) = 1− 1 and ordP2(φ2) = 2g − 1− 1.
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For any l with 2 ≤ l ≤ n we have

ordP1(φ2l) = l − 1 and ordP2(φ2l) = 2n− l + 1− 1.

Hence for each r = 0, 1, . . . , 2n, φr is a regular 1-form on C. Therefore
G(P1) = G(P2) = {1, . . . , g − 2, g, 2g − 1}.

3. The case g ≡ 1 mod 4. In this section we prove the Main Theorem
in the case g ≡ 1 mod 4 with g ≥ 9.

Let g = 4h+1 = 2n+1 with h ∈ N, h ≥ 2 and n = 2h. Let E be an elliptic
curve over k with the origin Q′. Let P ′1 be a point of E such that P ′1 6= Q′

and 2[P ′1] = [Q′]. Moreover, P ′2 denotes a point of E such that n[P ′2] = −[P ′1]
and m[P ′2] 6= −[P ′1] for any positive integer m < n, where −[P ′1] denotes the
inverse of P ′1 under the addition on the elliptic curve E. Then P ′2 6= Q′ and
P ′1 6= P ′2. Moreover, (n+1)P ′1+nP ′2 ∼ nQ′+P ′1+(n+1)Q′−P ′1 = (2n+1)Q′.
Hence we may take z ∈ K(E) such that div(z) = (n+1)P ′1+nP ′2−(2n+1)Q′.

Let C, π : C → E, y ∈ K(C), P1, P2, R′i, D
′
0, D′2l+1 and D′2l be as in

Section 2. Then, in the same way as in Section 2, D′0 is linearly equivalent
to zero. Moreover, l(D′r) = 1 for any r with 1 ≤ r ≤ 2n.

To compute the numbers l(D′r − P ′1) and l(D′r − P ′2) we show that for
any positive integer m with m ≤ n, mP ′1 6∼ mP ′2. In fact, suppose that there
exists a positive integer m ≤ n such that mP ′1 ∼ mP ′2. If m is odd, then
mP ′2 + P ′1 ∼ (m + 1)P ′1 ∼ (m + 1)Q′. This contradicts m[P ′2] 6= −[P ′1] for
any positive integer m < n. If m is even, then

(n+ 1)Q′ ∼ nP ′2 + P ′1 = (n−m)P ′2 + P ′1 +mP ′2
∼ (n−m)P ′2 + P ′1 +mP ′1 ∼ (n−m)P ′2 + P ′1 +mQ′,

which implies that (n−m)P ′2 +P ′1 ∼ (n+ 1−m)Q′. This is a contradiction.
For any l with 0 ≤ l ≤ n− 2 we have l(D′2l+1−P ′1) = 0. In fact, suppose

that l(D′2l+1 − P ′1) = 1. Then 0 ∼ D′2l+1 − P ′1 −D′0 = −(2l + 1)Q′ + lP ′1 +
(l + 1)P ′2. Since nP ′2 + P ′1 ∼ (n+ 1)Q′ and n is even, we have

nP ′2 − lP ′1 ∼ −P ′1 + (n+ 1)Q′ − (2l + 1)Q′ + (l + 1)P ′2
= −P ′1 + (l + 1)P ′2 + (n− 2l)Q′ ∼ −P ′1 + (l + 1)P ′2 + (n− 2l)P ′1,

which implies that (n−l−1)P ′2 ∼ (n−l−1)P ′1. This contradicts mP ′1 6∼ mP ′2
for 1 ≤ m ≤ n. Since nP ′2 + P ′1 ∼ (n+ 1)Q′ and n is even, we have

D′2n−1 − P ′1 −D′0 ∼ −(2n− 1)Q′ + (n− 1)P ′1 + nP ′2
= −(n− 2)Q′ + (n− 2)P ′1 ∼ −(n− 2)Q′ + (n− 2)Q′ = 0,

which implies that l(D′2n−1) = 1 = l(D′2n−1 − P ′1). Moreover, in the same
way as in Section 2, we obtain l(D′2l − P ′1) = 0 for any l with 1 ≤ l ≤ n.

Next, as in Section 2, we have

l(D′1 − P ′2) = 0 and l(D′2) = l(D′2 − P ′2) = 1.
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Let 1 ≤ l ≤ n − 1. Suppose l(D′2l+1 − P ′2) = 1. Then D′2l+1 − P ′2 ∼ 0
∼ D′0, which implies that −(l + 1)P ′1 ∼ −(2l + 1)Q′ + lP ′2. Since nP ′2 + P ′1
∼ (n+ 1)Q′ and n is even, we have nP ′2− lP ′1 ∼ (n+ 1)Q′− (2l+ 1)Q′+ lP ′2
∼ (n − 2l)P ′1 + lP ′2, which implies that (n − l)P ′2 ∼ (n − l)P ′1. This is a
contradiction. Hence l(D′2l+1 − P ′2) = 0 for any 1 ≤ l ≤ n− 1.

As in Section 2 we have l(D′2l − P ′2) = 0 for any 2 ≤ l ≤ n. Therefore
G(P1) = G(P2) = {1, . . . , g − 2, g, 2g − 1}.

4. The case g ≡ 0 mod 4. First we show the following lemma, which
is useful to construct the desired coverings of an elliptic curve in the even
genus cases.

Lemma 2. Let π0 : C → C0 be a finite morphism of curves of degree 2.
Let P ∈ C be a ramification point of π0. Then n ∈ N0 \ G(π0(P )) if and
only if 2n ∈ N0 \G(P ).

P r o o f. Suppose that n ∈ N0 \ G(π0(P )), i.e., there exists f0 ∈ K(C0)
such that (f0)∞ = nπ0(P ), where (f0)∞ denotes the polar divisor of f0.
Since P is a ramification point of π0, we have (π∗0f0)∞ = 2nP , where π∗0
denotes the inclusion map K(C0) ⊂ K(C) corresponding to the surjective
morphism π0 : C → C0. Hence 2n ∈ N0 \G(P ).

Conversely, suppose that 2n ∈ N0 \ G(P ), i.e., there exists f ∈ K(C)
such that (f)∞ = 2nP . Let σ be an involution of C such that C/〈σ〉 ∼= C0.
Then we may take a local parameter t at P such that σ∗t = −t. Since we
can write

f = c−2nt
−2n + c−2n+1t

−2n+1 + . . .

where c−2n is a non-zero constant and ci’s (i ≥ −2n+ 1) are constants, we
obtain

σ∗f = c−2nt
−2n − c−2n+1t

−2n+1 + . . .

Hence

f + σ∗f = 2c−2nt
−2n + 2c−2n+2t

−2n+2 + . . . ,

which implies that (f + σ∗f)∞ = 2nP . Now

σ∗(f + σ∗f) = σ∗f + (σ2)∗f = f + σ∗f,

which implies that f + σ∗f ∈ K(C0). Therefore (f + σ∗f)∞ = nπ0(P ) on
C0, which implies that n ∈ N0 \G(π0(P )).

Using the above lemma we get the following:

Proposition 3. Let π0 : C → C0 be a finite morphism of curves of
degree 2. Suppose that the genus g of C is even and that the genus of C0

is equal to g/2. Let P ∈ C be a ramification point of π0. If G(P ) contains
{2, 4, . . . , g − 2, g, 2g − 1}, then G(P ) = {1, 2, . . . , g − 2, g, 2g − 1}.
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P r o o f. Suppose that G(P ) ⊃ {2, 4, . . . , g − 2, g, 2g − 1}. Then by Lem-
ma 2 we obtain

G(π0(P )) = {1, 2, . . . , g/2}.
If h is an even integer > g, then by the above we have h/2 ∈ N0 \G(π0(P )).
Hence by Lemma 2 we get h ∈ N0 \ G(P ). On the other hand, if h is an
even integer with g + 2 ≤ h ≤ 2g − 2, then 2g − 1 − h ∈ G(P ). In fact, if
2g − 1 − h ∈ N0 \ G(P ), then 2g − 1 = h + (2g − 1 − h) ∈ N0 \ G(P ), a
contradiction. Hence G(P ) contains the set

{2, 4, . . . , g−2, g, 2g−1}∪{2g−1−h | h is even with g+2 ≤ h ≤ 2g−2}
= {1, 2, 3, 4, . . . , g − 3, g − 2, g, 2g − 1}.

Since the cardinality of G(P ) is g, we get the desired result.

Using this result we show the Main Theorem in the case g ≡ 0 mod 4
with g ≥ 8.

Let g = 4h = 2n with h ∈ N, h ≥ 2 and n = 2h. Let E be an elliptic curve
over k with the origin Q′. Let P ′1 be a point of E such that (2n−1)[P ′1] = [Q′]
and m[P ′1] 6= [Q′] for any positive integer m < 2n− 1. Moreover, P ′2 denotes
the point of E such that [P ′2] = 3[P ′1]. Then P ′2 6= Q′ and P ′1 6= P ′2 because
g ≥ 8. Now we have

(n+ 1)P ′1 + (n− 1)P ′2 ∼ (n+ 1)P ′1 + (n− 1)(3P ′1 − 2Q′)

∼ 2(2n− 1)P ′1 − (2n− 2)Q′ ∼ 2nQ′.

Hence we may take z ∈ K(E) such that div(z) = (n+1)P ′1+(n−1)P ′2−2nQ′.
Let C be the curve whose function field K(C) is K(E)(z1/(2n)). More-

over, π : C → E denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) ⊂ K(C). Then we may take y ∈ K(C) and
σ ∈ Aut(K(C)/K(E)) such that

σ(y) = ζ2ny and divE(y2n) = (n+ 1)P ′1 + (n− 1)P ′2 − 2nQ′.

Since n is even, we get (2n, n + 1) = (2n, n− 1) = 1. Therefore the branch
points of π are P ′1 and P ′2 whose ramification indices are 2n. Therefore

div(y) = (n+ 1)P1 + (n− 1)P2 − π∗(Q′).
Moreover, by the Riemann–Hurwitz formula we have g(C) = 2n = g. Hence

div(dy) = nP1 + (n− 2)P2 − 2π∗(Q′) +
3∑

i=1

π∗(R′i),

where R′i’s are points of E which are distinct from P ′1, P ′2 and Q′.
Let D′0 and D′2l (1 ≤ l ≤ n− 1) be as in Section 2. Moreover, we set

D′n−1 = D′2(n/2−1)+1 = −nQ′ +
(
n

2
− 1
)
P ′1 +

(
n

2
− 1
)
P ′2 +

3∑

i=1

R′i
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and

D′n+1 = D′2·n/2+1 = −(n+ 2)Q′ +
(
n

2
+ 1
)
P ′1 +

(
n

2
− 1
)
P ′2 +

3∑

i=1

R′i.

Then D′0 ∼ 0. Moreover, for any l with 1 ≤ l ≤ n−1 we have l(D′2l) = 1 and
l(D′2l − P ′1) = l(D′2l − P ′2) = 0. In fact, first assume l(D′2l − P ′1) = 1. Then
0 ∼ D′2l−P ′1−D′0 ∼ 4lP ′1−4lQ′, which implies that 2n−1 divides 4l. In view
of 1 ≤ l ≤ n−1 we must have 4l = 2n−1, which is a contradiction. Secondly,
assume l(D′2l−P ′2) = 1. Then 0 ∼ D′2l−P ′2−D′0 ∼ −(4l−2)Q′+(4l−2)P ′1,
which implies that 2n − 1 divides 4l − 2. This is a contradiction. Now we
have

D′n−1 − P ′1 −D′0 ∼ (2n− 1)P ′1 − (2n− 1)Q′ ∼ 0,

which implies that l(D′n−1) = l(D′n−1 − P ′1) = 1 and l(D′n−1 − 2P ′1) = 0.
Moreover, D′n+1 − P ′2 −D′0 ∼ −(2n− 1)Q′ + (2n− 1)P ′1 ∼ 0, which implies
that l(D′n+1) = l(D′n+1 − P ′2) = 1 and l(D′n+1 − 2P ′2) = 0.

Let f ∈ K(E) and set

divE(f) =
∑

P ′∈E
m(P ′)P ′.

Then for any non-negative integer r we obtain

divC

(
fdy

y1−r

)
= (2nm(P ′1) + n+ (n+ 1)(r − 1))P1

+ (2nm(P ′2) + n− 2 + (n− 1)(r − 1))P2

+ (m(Q′)− r − 1)π∗(Q′)

+
3∑

i=1

(m(R′i) + 1)π∗(R′i) +
∑

P ′∈S
m(P ′)π∗(P ′),

where we set S = E \ {P ′1, P ′2, Q′, R′1, R′2, R′3}.
For each r ∈ {0, 2, . . . , 2n − 2} ∪ {n − 1} ∪ {n + 1} we take a non-

zero element fr ∈ L(D′r) and set φr = frdy/y
1−r. Then, by the above,

ordPi(φ0) = 2n − 1 = g − 1 for i = 1, 2. For any l with 1 ≤ l ≤ n − 1 we
have ordP1(φ2l) = 2l − 1 and ordP2(φ2l) = 2(n− l)− 1. Moreover,

ordP1(φn−1) = 4n− 1− 1 = 2g − 1− 1,

ordP2(φn−1) ≥ −2n
(
n

2
− 1
)

+ n− 2 + (n− 1)(n− 2) = 0,

ordP1(φn+1) ≥ −2n
(
n

2
+1
)

+n+(n+1)n = 0 and ordP2(φn+1) = 2g−1−1.

Hence φ0, φ2, . . . , φ2n−2, φn−1, φn+1 are regular 1-forms on C. Therefore we
get G(Pi) ⊃ {2, 4, . . . , g − 2, g, 2g − 1} for i = 1, 2.
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Now let C0 be the curve whose function field K(C0) is K(E)(z1/n). More-
over, η : C0 → E denotes the surjective morphism of curves corresponding
to the inclusion K(E) ⊂ K(C0). Let π0 : C → C0 be the double covering
corresponding to the inclusion K(C0) ⊂ K(C). Since π = η ◦ π0 : C → E
has only two ramification points P1 and P2, which are totally ramified,
by the Riemann–Hurwitz formula we get g(C0) = g/2. Moreover, P1 and
P2 are ramification points of π0. Therefore by Proposition 3 we obtain
G(P1) = G(P2) = {1, 2, . . . , g − 2, g, 2g − 1}.

5. The case g ≡ 2 mod 4. First we show the following arithmetic lemma
which is the key to proving the next Proposition 5.

Key Lemma 4. Let l ≥ 2 be an integer and let p1, . . . , pl be distinct
prime numbers. Then there is a partition

{i1, . . . , it} ∪ {it+1, . . . , il} = {1, . . . , l}
with 1 ≤ t ≤ l − 1 such that (4pi1 . . . pit + 1, pit+1 . . . pil) = 1.

P r o o f. We may assume that p1, . . . , pl are odd. In fact, if p1 = 2, then
(4p2 . . . pl + 1, p1) = 1. We prove the lemma by induction on l ≥ 2.

Let l = 2. We may assume that p1 < p2. Suppose that

(4p1 + 1, p2) 6= 1 and (4p2 + 1, p1) 6= 1,

which implies that p2 | (4p1 + 1) and p1 | (4p2 + 1). Let 4p1 + 1 = mp2. Then
m must be 1 or 3. Moreover, p1 divides (4p2 + 1)m = 16p1 + 4 +m, which
implies that p1 | (4 +m). Let m = 1. Then p1 | 5, which implies that p1 = 5.
Hence p2 = 4p1 + 1 = 21 is not prime, a contradiction. Let m = 3. Then
p1 | 7, which implies that p1 = 7. Hence 3p2 = 4p1 + 1 = 29, a contradiction.

Let l ≥ 3. We may assume that pl > pj for all j 6= l. Suppose that

(4p1 . . . pi−1pi+1 . . . pl + 1, pi) 6= 1, i.e., pi | (4p1 . . . pi−1pi+1 . . . pl + 1)

for all i = 1, . . . , l. Then pl - (4p1 . . . pi−1pi+1 . . . pl−1 + 1) for all i = 1, . . . ,
l − 1. In fact, suppose that pl | (4p1 . . . pi−1pi+1 . . . pl−1 + 1) for some i. In
view of pl | (4p1 . . . pl−1 + 1) we get

pl | 4p1 . . . pi−1pi+1 . . . pl−1(pi − 1),

which implies that pl | (pi − 1). This contradicts pl > pj for all j 6= l.
Moreover, we may assume that pi | (4p1 . . . pi−1pi+1 . . . pl−1 + 1) for each

i = 1, . . . , l − 1. In fact, suppose that pi - (4p1 . . . pi−1pi+1 . . . pl−1 + 1) for
some i. In view of pl - (4p1 . . . pi−1pi+1 . . . pl−1 + 1) we obtain a partition

{1, . . . , i− 1, i+ 1, . . . , l − 1} ∪ {i, l} = {1, . . . , l}
such that (pipl, 4p1 . . . pi−1pi+1 . . . pl−1 + 1) = 1. Hence

pi | 4p1 . . . pi−1pi+1 . . . pl−1(pl − 1)
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for each i = 1, . . . , l − 1. Therefore pi | (pl − 1) for all i = 1, . . . , l − 1,
which implies that pl − 1 = mp1 . . . pl−1 for some integer m. If m ≥ 5, then
pl ≥ 5p1 . . . pl−1 + 1, which contradicts pl | (4p1 . . . pl−1 + 1). If m ≤ 3, then
(mp1 . . . pl−1 + 1) | (4p1 . . . pl−1 + 1), a contradiction.

Hence m = 4. By the induction hypothesis there is a partition

{i1, . . . , it} ∪ {it+1, . . . , il−1} = {1, . . . , l − 1}
with 1 ≤ t ≤ l − 2 such that (4pi1 . . . pit + 1, pit+1 . . . pil−1) = 1. In view of
pl = 4p1 . . . pl−1 + 1 > 4pi1 . . . pit + 1 we get pl - (4pi1 . . . pit + 1). Hence we
obtain (4pi1 . . . pit + 1, pit+1 . . . pil−1pl) = 1.

Using the Key Lemma we show the following proposition, which is crucial
to the proof of the remaining case of the Main Theorem.

Proposition 5. Let n = 10t+3 with an integer t ≥ 1. Then there exists
an integer s with 3 ≤ s ≤ (n−3)/2 such that s | (2n−1) and (2n−1, n+2s)
= 1.

P r o o f. First, we consider the case 2n − 1 = pe1p2 . . . pr with e ≥ 2
if p1 ≥ 5 or e ≥ 3 if p1 = 3, where p2, . . . , pr may not be distinct. Let
s = p1p2 . . . pr and q = pe−1

1 . Then s | (2n− 1) and

(2n− 1, n+ 2s) = (2n− 1, 2n+ 4s) = (2n− 1, 4s+ 1)

= (sq, 4s+ 1) = (q, 4s+ 1) = (pe−1
1 , 4p1p2 . . . pr + 1) = 1.

Moreover,

s = p1p2 . . . pr =
2n− 1
q

≤ 2n− 1
5

≤ n− 3
2

because q = pe−1
1 ≥ 5 and n ≥ 13.

Secondly, we consider the case 2n − 1 = p2
1p2 . . . pr with p1 = 3 where

p1, . . . , pr are distinct. In view of 2n − 1 = 5(4t + 1) we have r ≥ 2. By
Lemma 4 we have a partition

{i1, . . . , it} ∪ {it+1, . . . , ir} = {1, . . . , r}
with 1 ≤ t ≤ r− 1 such that (4pi1 . . . pit + 1, pit+1 . . . pir ) = 1. Hence we get
(4pi1 . . . pit + 1, p1pit+1 . . . pir ) = 1. Let s = pi1 . . . pit and q = p1pit+1 . . . pir .
Then s | (2n− 1) and

(2n− 1, n+ 2s) = (q, 4s+ 1) = (p1pit+1 . . . pir , 4pi1 . . . pit + 1) = 1.

Moreover,

s =
2n− 1
q

≤ 2n− 1
9

<
n− 3

2
because q = p1pit+1 . . . pir ≥ 9.
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Lastly, we consider the case 2n − 1 = p1p2 . . . pr where p1, . . . , pr are
distinct. By Lemma 4 we have a partition {i1, . . . , it} ∪ {it+1, . . . , ir} =
{1, . . . , r} with 1 ≤ t ≤ r − 1 such that (4pi1 . . . pit + 1, pit+1 . . . pir ) = 1.

Let t ≤ r−2 or pi > 3 for all i. We set s = pi1 . . . pit and q = pit+1 . . . pir .
Then s | (2n− 1) and (2n− 1, n+ 2s) = 1. Moreover,

s =
2n− 1
q

=
2n− 1

pit+1 . . . pir
≤ 2n− 1

5
≤ n− 3

2

because n ≥ 13.
Let t = r− 1 and pi = 3 for some i. In this case r ≥ 3, because 2n− 1 =

5(4t+ 1) with 4t+ 1 ≥ 5. Then we may assume that p1 = 3. Let pr > pj for
all j 6= r. Moreover, we may assume either

(1) (pi, 4p1 . . . pi−1pi+1 . . . pr + 1) = 1 for some i = 2, . . . , r, or
(2) there exists a partition

{i1, . . . , it} ∪ {it+1, . . . , ir−1} = {1, . . . , r − 1}
with 1 ≤ t ≤ r − 2 such that (pit+1 . . . pir−1pr, 4pi1 . . . pit + 1) = 1.

In fact, suppose that (1) does not hold, i.e.,

pi | (4p1 . . . pi−1pi+1 . . . pr + 1) for all i = 2, . . . , r.

Then

pr - (4p1 . . . pi−1pi+1 . . . pr−1 + 1) for all i = 2, . . . , r − 1.

In fact, suppose that

pr | (4p1 . . . pi−1pi+1 . . . pr−1 + 1) for some i = 2, . . . , r − 1.

In view of pr | (4p1 . . . pr−1+1) we obtain pr | 4p1 . . . pi−1pi+1 . . . pr−1(pi−1),
which implies that pr | (pi − 1). This contradicts pr > pi.

Moreover, we may assume that

pi | (4p1 . . . pi−1pi+1 . . . pr−1 + 1) for all i = 2, . . . , r − 1.

In fact, suppose that

pi - (4p1 . . . pi−1pi+1 . . . pr−1 + 1) for some i = 2, . . . , r − 1.

In view of pr - (4p1 . . . pi−1pi+1 . . . pr−1 + 1) we have a partition

{1, . . . , i− 1, i+ 1, . . . , r − 1} ∪ {i, r} = {1, . . . , r}
such that (pipr, 4p1 . . . pi−1pi+1 . . . pr−1 + 1) = 1. This case reduces to the
case t ≤ r−2 in which we have already proven the statement. Hence in view
of

pi | (4p1 . . . pi−1pi+1 . . . pr + 1) for all i = 2, . . . , r − 1

we have pi | 4p1 . . . pi−1pi+1 . . . pr−1(pr − 1) for all i = 1, . . . , r − 1, which
implies pi | (pr − 1) for all i = 2, . . . , r − 1. Therefore p2 . . . pr−1 | (pr − 1),
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which in turn implies that pr − 1 = mp2 . . . pr−1 where m is even. In view
of pr | (4p1p2 . . . pr−1 + 1) with p1 = 3 we have

12p2 . . . pr−1 + 1 = m′pr = m′(mp2 . . . pr−1 + 1) = m′mp2 . . . pr−1 +m′

with a positive integer m′. Then we must have m′ = 1, i.e., m = 12. In fact,
suppose that m′ ≥ 2. Then 12−m′m > 0, which implies that 12 > m′m ≥
2m′. Hence m′ ≤ 5, which implies that

4 ≥ m′ − 1 = (12−m′m)p2 . . . pr−1 ≥ p2 . . . pr−1 ≥ 5p3 . . . pr−1.

This is a contradiction. Hence m′ = 1.
Therefore we obtain

pr = 12p2 . . . pr−1 + 1 = 4p1p2 . . . pr−1 + 1.

Since p1, p2, . . . , pr−1 are distinct primes and r − 1 ≥ 2, by Lemma 4
there exists a partition {i1, . . . , it} ∪ {it+1, . . . , ir−1} = {1, . . . , r − 1} with
1 ≤ t ≤ r − 2 such that (4pi1 . . . pit + 1, pit+1 . . . pir−1) = 1. In view of
pr = 4p1p2 . . . pr−1 + 1 > 4pi1 . . . pit + 1 we have pr - (4pi1 . . . pit + 1). Hence
(4pi1 . . . pit + 1, pit+1 . . . pir−1pr) = 1. Thus we have proven that if t = r − 1
and p1 = 3, then we may assume that either (1) or (2) holds.

In case (1) (resp. (2)) we set s=p1 . . . pi−1pi+1 . . . pr (resp. s=pi1 . . . pit)
and q = pi ≥ 5 (resp. q = pit+1 . . . pir−1pr ≥ 15). Then we have s | (2n − 1)
and (2n− 1, n+ 2s) = (q, 4s+ 1) = 1. Moreover,

s =
2n− 1
q

≤ 2n− 1
5

≤ n− 3
2

because n ≥ 13.

Now we prove the Main Theorem in the case g ≡ 2 mod 4 with g ≥ 10.
Let g = 2n where n is an odd integer ≥ 5. First we show that there exists

an odd integer s with 1 ≤ s ≤ (n− 3)/2 such that

s | (2n− 1) and (2n− 1, n+ 2s) = 1.

In fact, let g 6≡ 1 mod 5, which implies that n+ 2 6≡ 0 mod 5. Then

(2n− 1, n+ 2) = (2n− 1, 2n+ 4) = (2n− 1, 5) = 1.

Hence in this case we may take s = 1. Let g ≡ 1 mod 5. Then we can write
n = 10t + 3 with t ≥ 1. By Proposition 5 we may take an integer s with
3 ≤ s ≤ (n− 3)/2 such that s | (2n− 1) and (2n− 1, n+ 2s) = 1.

Now there exists a unique integer m with 0 < m ≤ 2n− 3 such that

(m+ 1)(n+ 2s) ≡ 1 mod 2n− 1.

In fact, in view of (2n − 1, n + 2s) = 1 there exists a unique integer 0 ≤
m ≤ 2n − 3 such that (m + 1)(n + 2s) ≡ 1 mod 2n − 1. If m = 0, then
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n+ 2s ≡ 1 mod 2n− 1. Since

n+ 2s− 1 ≥ n+ 1 > 0 and n+ 2s− 1 ≤ n+ 2 · n− 3
2
− 1 = 2n− 4,

this contradicts (2n− 1) | (n+ 2s− 1).
Let E be an elliptic curve over k with the origin Q′. Let P ′1 be a point

of E such that (2n− 1)[P ′1] = [Q′] and h[P ′1] 6= [Q′] for any positive integer
h < 2n− 1. Moreover, P ′2 denotes the point of E such that [P ′2] = −m[P ′1],
i.e., P ′2 ∼ −mP ′1 + (m + 1)Q′. Then P ′1, P ′2 and Q′ are distinct because
0 < m ≤ 2n− 3. Now we obtain

(n− 2s)P ′1 + (n+ 2s)P ′2 ∼ 2nQ′.

In fact,

(n− 2s)P ′1 + (n+ 2s)P ′2 ∼ (−m(n+ 2s) + n− 2s)P ′1 + (n+ 2s)(m+ 1)Q′.

Then−m(n+2s)+n−2s ≡ −1+2n ≡ 0 mod 2n−1 because (m+1)(n+2s) ≡
1 mod 2n− 1. Hence

(n− 2s)P ′1 + (n+ 2s)P ′2

∼ −m(n+ 2s) + n− 2s
2n− 1

(2n− 1)P ′1 + (n+ 2s)(m+ 1)Q′ ∼ 2nQ′.

Hence we may take z ∈ K(E) such that

div(z) = (n− 2s)P ′1 + (n+ 2s)P ′2 − 2nQ′.

Let C be the curve whose function field K(C) is K(E)(z1/(2n)). More-
over, π : C → E denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) ⊂ K(C). Then we may take y ∈ K(C) and
σ ∈ Aut(K(C)/K(E)) such that

σ(y) = ζ2ny and divE(y2n) = (n− 2s)P ′1 + (n+ 2s)P ′2 − 2nQ′.

Now we have (n, s) = 1. In fact, (n, s) | (2n− 1, n+ 2s) because s | (2n− 1),
which implies that (n, s) = 1. Therefore (2n, n + 2s) = (s, n) = 1 and
(2n, n− 2s) = 1, because n is odd. Therefore the branch points of π are P ′1
and P ′2 whose ramification indices are 2n. Thus

div(y) = (n− 2s)P1 + (n+ 2s)P2 − π∗(Q′).
Moreover, by the Riemann–Hurwitz formula we have g(C) = 2n = g. Hence

div(dy) = (n− 2s− 1)P1 + (n+ 2s− 1)P2 − 2π∗(Q′) +
3∑

i=1

π∗(R′i),

where R′i’s are points of E which are distinct from P ′1, P ′2 and Q′.
We set

D′0 = −P ′1 − P ′2 −Q′ +
3∑

i=1

R′i,
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which is linearly equivalent to zero. Let l ∈ {0, 1, . . . , 2s− 1} be fixed. Then
for any even r > 0 with

2ln− 1
2s

< r ≤ 2(l + 1)n− 1
2s

we set

D′r = −(r + 1)Q′ +
(
r

2
− l − 1

)
P ′1 +

(
r

2
+ l

)
P ′2 +

3∑

i=1

R′i.

Next we show that for any r, l(D′r − P ′1) = 0 and l(D′r − P ′2) = 0,
i.e., D′r − P ′1 6∼ 0 and D′r − P ′2 6∼ 0. Suppose that D′r − P ′1 ∼ 0. Then
0 ∼ D′r − P ′1 −D′0, which implies that((

r

2
+ l + 1

)
(m+ 1)− r

)
Q′ ∼

((
r

2
+ l + 1

)
(m+ 1)− r

)
P ′1.

Hence (
r

2
+ l + 1

)
(m+ 1)− r ≡ 0 mod 2n− 1.

In view of s | (2n− 1), we get(
r

2
+ l + 1

)
(m+ 1)− r ≡ 0 mod s.

Moreover, since (m+1)(n+2s) ≡ 1 mod 2n−1 we have (m+1)n ≡ 1 mod s.
Hence

0 ≡ 2
(
r

2
+ l + 1

)
(m+ 1)n− 2rn ≡ 2(l + 1) mod s,

which implies that l + 1 ≡ 0 mod s. In view of 0 ≤ l ≤ 2s − 1 we have
l = s− 1 or 2s− 1.

Let l = s− 1. Then r satisfies
2(s− 1)n− 1

2s
< r ≤ 2sn− 1

2s
.

Moreover, (
r

2
+ s

)
(m+ 1) ≡ r mod 2n− 1.

In view of (m+ 1)(n+ 2s) ≡ 1 mod 2n− 1 we have

r

2
+ s ≡

(
r

2
+ s

)
(m+ 1)(n+ 2s) ≡ r(n+ 2s)

≡ r

2
(1 + 4s) mod 2n− 1,

which implies that s(2r − 1) ≡ 0 mod 2n− 1. Hence we may set

2r − 1 =
2n− 1
s
· k with a positive odd integer k.
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Then
2(s− 1)n− 1

2s
< r =

(2n− 1)k + s

2s
≤ 2sn− 1

2s
,

which implies that 2(k − s)n ≤ k − s− 1 < 2(k − s+ 1)n. If k > s, then

2n ≤ k − s− 1
k − s = 1− 1

k − s < 1,

a contradiction. If k = s, then 0 ≤ −1, a contradiction. Let k − s = −1.
Since k and s are odd, this is a contradiction. If k − s < −1, then

2n <
k − s− 1
k − s+ 1

= 1 +
2

−k + s− 1
≤ 3,

a contradiction.
Let l = 2s− 1. Then r satisfies

2(2s− 1)n− 1
2s

< r ≤ 4sn− 1
2s

.

Moreover, (
r

2
+ 2s

)
(m+ 1) ≡ r mod 2n− 1.

Hence
r

2
+ 2s ≡

(
r

2
+ 2s

)
(m+ 1)(n+ 2s) ≡ r

2
(1 + 4s) mod 2n− 1,

which implies that 2s(r − 1) ≡ 0 mod 2n− 1. Therefore we may set

r − 1 =
2n− 1
s
· k with a positive odd integer k.

Then
2(2s− 1)n− 1

2s
< r =

(4n− 2)k + 2s
2s

≤ 4sn− 1
2s

,

which implies that 4(k − s)n ≤ 2k − 2s − 1 < 2(2k − 2s + 1)n. This is a
contradiction.

Moreover, we prove that D′r − P ′2 6∼ 0. Suppose that D′r − P ′2 ∼ 0. Then
0 ∼ D′r − P ′2 −D′0, which implies that

((
r

2
+ l

)
(m+ 1)− r

)
Q′ ∼

((
r

2
+ l

)
(m+ 1)− r

)
P ′1.

Hence (
r

2
+ l

)
(m+ 1)− r ≡ 0 mod 2n− 1.

In view of s | (2n− 1), we get
(
r

2
+ l

)
(m+ 1)− r ≡ 0 mod s.
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Since (m+ 1)n ≡ 1 mod s, we obtain

0 ≡
(
r

2
+ l

)
(m+ 1)n− rn ≡ r/2 + l − nr mod s,

which implies that 0 ≡ r + 2l − 2nr ≡ 2l mod s. Since s is odd, we have
l ≡ 0 mod s, which implies that l = 0 or l = s.

Let l = 0. Then 2 ≤ r ≤ (2n− 1)/(2s). Moreover,
r

2
(m+ 1) ≡ r mod 2n− 1.

Hence
r

2
≡ r

2
(m+ 1)(n+ 2s) ≡ 2sr +

r

2
mod 2n− 1,

which implies that 0 ≡ 2sr mod 2n − 1. Therefore r ≡ 0 mod (2n − 1)/s,
which contradicts 2 ≤ r ≤ (2n− 1)/(2s).

Let l = s. Then

2sn− 1
2s

< r ≤ 2(s+ 1)n− 1
2s

.

Moreover, (
r

2
+ s

)
(m+ 1) ≡ r mod 2n− 1.

Hence

r

2
+ s ≡

(
r

2
+ s

)
(m+ 1)(n+ 2s) ≡ r

2
(4s+ 1) mod 2n− 1,

which implies that s ≡ 2sr mod 2n− 1. Hence we may set

2r − 1 =
2n− 1
s
· k,

where k is an odd positive integer. If k ≥ s+ 2, then

2r − 1 ≥ 2n− 1
s

(s+ 2) > 2n− 1 +
2n− 1
s

=
2(s+ 1)n− 1

s
− 1 = 2 · 2(s+ 1)n− 1

2s
− 1 ≥ 2r − 1,

a contradiction. Now we have

2r − 1 > 2 · 2sn− 1
2s

− 1 = 2n− 1
s
− 1,

which implies that 2r − 1 ≥ 2n− 1. If k ≤ s− 2, then

2n− 1 ≤ 2r − 1 ≤ 2n− 1
s

(s− 2) = 2n− 1− 2(2n− 1)
s

< 2n− 1,
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a contradiction. Hence k = s, which implies that

2r − 1 =
2n− 1
s
· s = 2n− 1.

Therefore r = n. Since r is even and n is odd, this is a contradiction. Hence
D′r − P ′2 6∼ 0. Thus we obtain the following: Let l ∈ {0, 1, . . . , 2s − 1} be
fixed. Then for any even r > 0 with (2ln−1)/(2s) < r ≤ (2(l+1)n−1)/(2s)
we get

l(D′r) = 1 and l(D′r − P ′1) = l(D′r − P ′2) = 0.

Now in view of (n, s) = 1 there is a unique non-negative integer q ≤ 2s−1
such that (2q + 1)n ≡ 2s+ 1 mod 4s. Then we set

r1 = 2 · 2s+ 1− (2q + 1)n+ 4s(n− 1)
4s

+ 1

= 2 · (4s− 2q − 1)n− (2s− 1)
4s

+ 1.

Note that r1 is an odd integer ≥ 3. In fact,

4s− 2q − 1 ≥ 4s− 2(2s− 1)− 1 = 1.

Hence in view of s ≤ (n− 3)/2 we get

(4s− 2q − 1)n− (2s− 1) ≥ n− (2s− 1) ≥ 2s+ 3− (2s− 1) = 4 > 0,

which implies that r1 ≥ 3. Then we define

D′r1 = − (r1 + 1)Q′ +
(4s− 2q − 1)n− (2s− 1)− 4s(2s− q)

4s
P ′1

+
(4s− 2q − 1)n− (2s− 1) + 4s(2s− q)

4s
P ′2 +

3∑

i=1

R′i.

Note that degD′r1 = 1. We prove that D′r1 − P ′1 ∼ 0. In fact, in view of
P ′2 ∼ (m+ 1)Q′ −mP ′1 we have

D′r1 − P ′1 −D′0
∼ (4s− 2q − 1)n(m− 1) + (4s(2s− q) + 2s+ 1)(m+ 1)− 2

4s
(Q′ − P ′1).

Then

(4s− 2q − 1)n(m− 1) + (4s(2s− q) + 2s+ 1)(m+ 1)− 2

= 4s(n(m− 1) + 2s(m+ 1))

− ((2q + 1)n(m− 1)− (2s+ 1)(m− 1) + 4sq(m+ 1)− 4s).

Let

u =
(n+ 2s)(m+ 1)− 1

2n− 1
,
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which is a positive integer because (m+1)(n+2s) ≡ 1 mod 2n−1. We have

(2q + 1)n(m− 1)− (2s+ 1)(m− 1) + 4sq(m+ 1)− 4s

= 2q((n+ 2s)(m+ 1)− 2n) + (n+ 2s)(m+ 1)− 2n− 4sm−m+ 1− 4s

= 2q((2n− 1)u+ 1− 2n) + (2n− 1)u+ 1− 2n

− 2((n+ 2s)(m+ 1)− n(m+ 1))−m+ 1

= (2n− 1)((2q − 1)u− 2q +m).

Now (2q − 1)n = (2q + 1)n − 2n ≡ 2s + 1 − 2n ≡ 0 mod s, which implies
that s | (2q − 1) because (n, s) = 1. Moreover,

(−2q +m)n = −2qn+mn ≡ n− 2s− 1 +mn

= (n+ 2s)(m+ 1)− 1− 2s− 2sm− 2s ≡ 0 mod s

because s | (2n − 1). In view of (n, s) = 1 we get s | (−2q + m). Therefore
4s | ((2q − 1)u− 2q +m) because (4, 2n− 1) = 1, which implies that

(2n− 1)4s | ((2q + 1)n(m− 1)− (2s+ 1)(m− 1) + 4sq(m+ 1)− 4s).

Moreover,

4s(n(m− 1) + 2s(m+ 1)) = 4s((m+ 1)(n+ 2s)− 1− (2n− 1)),

which implies that 4s(2n− 1) | 4s(n(m− 1) + 2s(m+ 1)). Hence the integer

(4s− 2q − 1)n(m− 1) + (4s(2s− q) + 2s+ 1)(m+ 1)− 2
4s

is divisible by 2n− 1, which implies that D′r1 − P ′1 ∼ 0.
Next we set

r2 =
(2q + 1)n− 1

2s
= 2 · (2q + 1)n− (2s+ 1)

4s
+ 1,

which is an odd integer because (2q + 1)n ≡ 2s + 1 mod 4s. Moreover,
3 ≤ r2 ≤ 2n− 3. In fact, 1 ≤ 2q+ 1 ≤ 4s− 1 because 0 ≤ q ≤ 2s− 1. Hence

n− 1
2s

≤ r2 =
(2q + 1)n− 1

2s
≤ (4s− 1)n− 1

2s
= 2n− n+ 1

2s
.

In view of 0 < 1 ≤ s ≤ (n− 3)/2 we have

1 <
n− 1
n− 3

≤ n− 1
2s

and 2n− n+ 1
2s

≤ 2n− n+ 1
n− 3

< 2n− 1.

Now we set

D′r2 = − (r2 + 1)Q′ +
(2q + 1)n− (2s+ 1)− 4sq

4s
P ′1

+
(2q + 1)n− (2s+ 1) + 4sq

4s
P ′2 +

3∑

i=1

R′i,
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which is of degree 1. We prove that D′r2 − P ′2 ∼ 0. We have

D′r2 − P ′2 −D′0
∼ (2q + 1)n(m− 1)− (2s+ 1)(m− 1) + 4sq(m+ 1)− 4s

4s
(Q′ − P ′1).

By the argument in the proof of D′r1 − P ′1 ∼ 0 we show that

(2q + 1)n(m− 1)− (2s+ 1)(m− 1) + 4sq(m+ 1)− 4s
4s

is divisible by 2n− 1, which implies that D′r2 − P ′2 ∼ D′0 ∼ 0.
Now we are in a position to prove that {1, . . . , g− 2, g, 2g− 1} is the gap

sequence at P1 and P2. Let f ∈ K(E) and set

divE(f) =
∑

P ′∈E
m(P ′)P ′.

Then for any non-negative integer r we obtain

divC

(
fdy

y1−r

)
= (2nm(P ′1) + r(n− 2s)− 1)P1

+ (2nm(P ′2) + r(n+ 2s)− 1)P2 + (m(Q′)− r − 1)π∗(Q′)

+
3∑

i=1

(m(R′i) + 1)π∗(R′i) +
∑

P ′∈S
m(P ′)π∗(P ′),

where we set S = E \ {P ′1, P ′2, Q′, R′1, R′2, R′3}. Fix l ∈ {0, 1, . . . , 2s− 1}, and
let r be a positive even integer with (2ln−1)/(2s) < r ≤ (2(l+1)n−1)/(2s).
If fr ∈ L(D′r), then

ordP1

(
frdy

y1−r

)
= 2(l + 1)n− 1− 2sr ≥ 0

and

ordP2

(
frdy

y1−r

)
= 2sr − (2ln− 1)− 2 ≥ 0.

In fact, suppose that 2sr − (2ln− 1) = 1, which implies that r = ln/s. We
know that (n, s) = 1, n is odd and r is even. Hence l/s must be even, which
implies that l = 2us with a non-negative integer u. In view of 0 ≤ l ≤ 2s−1
we must have l = 0, which implies that r = 0. This is a contradiction. Hence
2sr− (2ln−1)−2 ≥ 0. Therefore frdy/y1−r is a regular 1-form on C, which
implies that 2n− (2sr − 2nl) (resp. 2sr − 2nl) is a gap at P1 (resp. P2).

Now we show that{
2sr − 2nl

∣∣∣∣ l = 0, 1, . . . , 2s− 1, r is even > 0

with
2ln− 1

2s
< r ≤ 2(l + 1)n− 1

2s

}
= {2, 4, . . . , g − 2}.
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First we show that the above elements 2sr − 2nl are distinct. Let l′ ∈
{0, 1, . . . , 2s− 1} with l′ ≥ l and let r′ be even with

2l′n− 1
2s

< r′ ≤ 2(l′ + 1)n− 1
2s

such that 2sr − 2nl = 2sr′ − 2nl′.

Then n(l′ − l) = s(r′ − r). In view of (n, s) = 1 we obtain s | (l′ − l), which
implies that l′ = l or l′ = l + s. Hence we may assume that l′ = l + s,
which implies that r′ − r = n. Since r′ − r is even and n is odd, this is a
contradiction. Hence the elements 2sr − 2nl are distinct.

Next if l = 0 (resp. l = 2s− 1), then

2ln− 1
2s

=
−1
2s

< 0
(

resp. 2n− 1 ≤ 2(l + 1)n− 1
2s

= 2n− 1
2s

< 2n = g

)
.

In view of r > 0 the cardinality of the set of the elements 2sr − 2nl is
equal to that of {2, 4, . . . , g − 2}. Moreover, 1 ≤ 2sr − 2nl. In view of r ≤
(2(l+ 1)n− 1)/(2s) we have 2sr− 2nl ≤ g− 1. Hence we obtain the desired
result. Therefore 2, 4, . . . , g − 2 are gaps at P1 and P2.

Now if f0 ∈ L(D′0), then

ordPi

(
f0dy

y

)
= 2n− 1 = g − 1 for i = 1, 2,

which implies that g is also a gap at P1 and P2. Let fr1 ∈ L(D′r1−P ′1) 6= {0}.
Then

ordP1

(
fr1dy

y1−r1

)
= 4n− 2 = (2g − 1)− 1

and

ordP2

(
fr1dy

y1−r1

)

≥ −2n · (4s− 2q − 1)n− (2s− 1) + 4s(2s− q)
4s

+ r1(n+ 2s)− 1 = 0.

Therefore fr1dy/y
1−r1 is a regular 1-form on C, which implies that 2g − 1

is a gap at P1. Moreover, let fr2 ∈ L(D′r2 − P ′2) 6= {0}. Then

ordP1

(
fr2dy

y1−r2

)
≥ −2n · (2q + 1)n− (2s+ 1)− 4sq

4s
+ r2(n− 2s)− 1 = 0

and

ordP2

(
fr2dy

y1−r2

)
= (2g − 1)− 1.

Therefore 2g − 1 is a gap at P2. In the same way as in Section 4 we get
G(P1) = G(P2) = {1, 2, . . . , g − 2, g, 2g − 1}.
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