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1. Introduction. Let C' be a complete non-singular irreducible alge-
braic curve of genus g > 2 defined over an algebraically closed field k of
characteristic 0, which is called a curve in this paper. Let P be its point. A
positive integer + is called a gap at P if there exists a regular 1-form w on C
such that ordp(w) = v — 1. We denote by G(P) the set of gaps at P. Then
the cardinality of G(P) is equal to g. Now the sequence {v1,...,7,} = G(P)
with v; < y; for ¢ < j is called the gap sequence at P.

Let 7 : C — C’ be a cyclic covering of curves of degree d with total
ramification points P. It is well known that in the case of C' = P! and
d = 2 we have G(P) = {1,3,...,2g — 1}. In the case of C' = P! and
d = 3 (resp. 4) the gap sequences G(P) are known (see [1], [2], [3] (resp. [4],
Prop. 4.5)). If C" = P! and d is a prime number > 5, we can also determine
the gap sequences G(P) (for example, see [5], Prop. 1). In this paper we
shall consider the case C’ = E where E is an elliptic curve. If d = 2, then
G(P) are known ([4], Prop. 2.9, 3.10). However, for d > 3 there are only
a few results on the gap sequences G(P). For example, I. Kuribayashi and
K. Komiya ([8], Th. 5) showed the following: If 7 : C' — E is a cyclic
covering of an elliptic curve of degree 6 which is branched over three points
P! (i = 1,2,3) such that $m—1(P/) = i, then the gap sequence G(Py) can
be determined, where P; denotes the point of C' over P;. Moreover, the
author ([6], Lemma 4.6) showed the following: Let E be an elliptic curve
with the origin Q’. Let P (resp. Pj) be a point of E such that P # @’
and 2[P]] = [Q'] (resp. Py # Q' and 3[P;] = [Q’]), where for any positive
integer m and any point P’ of the elliptic curve F the multiplication of
P’ by m is denoted by m[P’]. Then there is an element z of K(F) such
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that div(z) = 4P| 4+ 3P — 7Q" where K(FE) denotes the function field of E.
Let m : C' — E be the surjective morphism of curves corresponding to the
inclusion K(E) ¢ K(E)(z'/7) = K(C). If P, denotes the point of C' over
P}, then the gap sequence G(P,) is equal to {1,2,3,4,5,7,13}. In this paper
we shall prove the generalization of the above statement for the degree of
the covering 7 : C' — FE, which is the following:

MAIN THEOREM. Let g > 7. We can construct cyclic coverings m : C' —
E of an elliptic curve E of degree g which have only two ramification points
Py and Py, which are totally ramified, such that

GP)=G(P)=A{1,...,9—2,9,2g — 1}.

Now we consider the following situation. Let G be a finite subset of the
set N of positive integers such that the complement Ny \ G of G in the
additive semigroup Ny of non-negative integers forms its subsemigroup. If
the cardinality of G is g, then {y1,...,7,} = G withv; < v; fori < j is called
a gap sequence of genus g. We say that a gap sequence G is Weierstrass if
there exists a pointed curve (C, P) such that G = G(P). Let a(G) = min{h €
No\ G|h > 0}. Then a(G) < g+ 1. If a(G) = g+ 1, then G = {1,...,g}.
In this case G is Weierstrass, because for any point P of a curve of genus g
except finitely many points we have G(P) = {1,...,¢}. If a(G) = g, then
there is a positive integer k < g—1 such that G = {1,...,9—1,g9+k}. These
g — 1 kinds of gap sequences are Weierstrass (cf. [9], Th. 14.5). If [ is a fixed
integer > 2, then for any sufficiently large g there exists a non-Weierstrass
gap sequence G of genus ¢ such that a(G) = g — 1 (cf. [7], Th. 3.5 and 4.5).
Hence we pose the following problem: Is any gap sequence G of genus g with
a(G) = g — 1 Weierstrass?

Now we say that G is primitive if 2a(G) > ~,. Since any gap sequence of
genus g < 7 is Weierstrass (cf. [6], Th. 4.7), combining the Main Theorem
with Lemma 1 we get the following:

Any non-primitive gap sequence G of genus g with a(G) = g — 1 is
Wezerstrass.

In Sections 2, 3 and 4 we construct our desired cyclic coverings 7 : C' — F
of an elliptic curve in the cases when g = 3, 1 and 0 mod 4 respectively. In
Section 5 the case when g = 2 mod 4 is treated. In this case we need an
arithmetic lemma (Key Lemma 4) which is important for the constructions
of the coverings 7 : C' — E.

2. The case g = 3 mod 4. First we prove the following:

LEMMA 1. Let G be a non-primitive gap sequence of genus g > 3 with
a(G)=g—1. Then G={1,...,9—2,9,2g — 1}.
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Proof. Let G = {v1,...,74} with 7; < ; for ¢ < j. In view of a(G) =
g—1 we must have v; = i for ¢ < g—2 and 4,1 > g. Since G is non-primitive,
we have v, > 2a(G) = 2¢g — 2. It is a well-known fact that v, < 2¢g — 1 (for
example, see [4], Lemma 2.1), which implies that v, = 2g — 1. Suppose that
Yg—1 > g+1. Then No\ G contains g—1 and g. Since N\ G is a subsemigroup
of Ny, we must have v, = 2g — 1 € Ny \ G, which is a contradiction. Hence
we obtain v4_1 =g. =

In the remainder of this section we will prove the Main Theorem in the
case ¢ = 3 mod 4 with g > 7.

Let g =4h+3 =2n+1 with h € N and n = 2h+ 1. Let E be an elliptic
curve over k with the origin @Q'. Let P be a point of E such that P # Q’
and 2[P/] = [Q’']. Moreover, Pj denotes a point of E such that n[Pj] = [Q’]
and m[Pj] # [Q'] for any positive integer m < n. Hence in view of g > 7
we have Pj # Q'. Moreover, P| # Pj, because 2hPj + Py = nP) ~ nQ’ =
(2h +1)Q" ~ 2hP] + Q'. Now we have

(n+1)P{ +nPy~2(h+1)P[ +nQ" ~2(h+1)Q +nQ = (2n+ 1)Q’.

Hence we may take z € K(F) such that div(z) = (n+1)P{+nPj—(2n+1)Q’.

Let C be the curve whose function field K(C) is K(E)(z*/2"+1), More-
over, m : C — FE denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) C K(C). Then we may take y € K(C) and
o € Aut(K(C)/K(FE)) such that

o(y) = Gnpry  and  divep(y* ™) = (n+ 1)P] +nPj — 2n +1)Q’,

where (a,,+1 is a primitive (2n + 1)th root of unity. Then there are only two
branch points P and Pj of w. Moreover, 7~ !(P/) consists of only one point
P; for i = 1,2. Hence the ramification index of P; is 2n + 1 for ¢ = 1,2.
Therefore

div(y) = (n + 1) P + nP> — 7°(Q'),
where m* denotes the pull-back of 7. If we denote by g the genus of C, then
by the Riemann—-Hurwitz formula we have g = 2n + 1. Hence

3
div(dy) = nPy + (n— 1)Py — 27°(Q") + Y _ 7" (R}),
i=1
where R!’s are points of E' which are distinct from P;, Py and @', because
div(dy) is invariant under Aut(K(C)/K(FE)).
We set

3
Dy=~P - P-Q +) R,

=1
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3
Dy =—(2+2)Q +1P{ +1Ps+ > R, for0<l<n-—1

i=1

and
3
Dy =21+ 1)Q +IP{+(I-1)Py+> R} forl1<i<n.
=1

First we show that [(Dj) = 1, i.e., Dj is linearly equivalent to 0, where
for any divisor D’ on E the number [(D’) denotes the dimension of the
k-vector space

L(D") = {f € K(E) | divg(f) = —D'}.

Since

)

0(@) _dloy) _ d(Geny1y) _ dy
Y oy Cant1Y Y
the 1-form dy/y on C is regarded as the one on E. Hence there exists an

element f of K(F) such that fdy/y is regular. Then

3
dive(f) =P+ P+ @Q - ) _R;

i=1

because
d d
0 < dive (fy> = divg(f) + dive (y>
Y Yy
3
=dive(f) — P — P, — 7 (Q) + Y_ 7 (R)).
i=1
Hence

3
Dy=—-P/ —P;—Q +> Rj~0.
i=1
Moreover, (D)) =1 for any r with 1 < r < 2n, because deg(D,.) = 1.
To compute the numbers I(D). — PJ) and (D, — Py) we show that mP]
mPj for any positive integer m with m < n. In fact, suppose that there exists
a positive integer m < n such that mP] ~ mPj. If m is even, then

mPy ~ %QP{ ~ %2@' —mQ’,

which is a contradiction. Let m be odd. Then 2mPj ~ 2mP] ~ 2m@Q'. If
m < n/2, then

(n —2m)Py = nPy — 2mPy ~ nQ" —2mQ" = (n — 2m)Q’,
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a contradiction. If n/2 < m < n, then (2m —n)Py ~ (2m — n)@’, a contra-
diction. If m = n, then

(n=1)Q" + P ~ (n—=1)P[ + P{ ~nP; ~ nQ)',

which implies that P ~ @'. This is a contradiction. Hence we have shown
that for any m with 0 < m < n, mP] o mP;.

Now for any [ with 0 <1 < n — 2 we have I(Dy,; — P{) = 0. In fact,
suppose that I(Dgy, ; — P[) = 1. Then

0~ Dy —P—Dj~(n—20—1)Q +IP +(I+1—n)P;
~n—-1-1)P —(n—1-1)P;,
because n@Q’ ~ nPj and 2P| ~ 2Q)’. Hence
1<n—-I1-1<n-1 and (n—Il—-1)P ~(n—101-1)P;,

which is a contradiction.
Now in view of 2P| ~ 2Q" and nPj ~ n@Q’ we have

Dypy = Pl =Dy~ =(2n = 1)Q" + (n — )Q" +nQ" =0,
which implies that D5, _, — P{ ~ 0. Hence
(DS, 1) =1(D,, 1—P)=1 and (D), ;—2P])=0.
Suppose that [(D}; — P{) = 1. Then in view of 2P] ~ 2@Q’ we have
0~ D}y — P — D} ~ —21P, + 1P} + P} = —IP} + 1P},

a contradiction. Hence [(D), — P{) = 0 for any [ with 1 <1 <mn.
Next we show that I[(D] — P}) = 0. If I((D] — P3) = 1, then

3 3
—2Q'+Y Rj—Py=D{—Py~0~Dj~—P —P;—Q +> Rj,
i=1 =1
which implies that P; ~ @’. This is a contradiction. Now in view of 2P| ~
2Q’ we obtain D}, — Pj ~ D{; ~ 0, which implies that
(DY) =1(Dy—Py)=1 and (D) —2P}) =0.
Let 1 <1 <n — 1. Suppose that [(D5,,; — P;) = 1. Then

3 3
—(2+2)Q +1P{+ (- 1)P,+> R~ Dj~—P —Pj— Q'+ R],
=1 i=1
which implies that —(l + 1)P] ~ —(2{ 4+ 1)Q" + [ P;. Since nPj ~ nQ" and n
is odd, we have
nPy—(1+1)P{ ~ (n— (20 +1)Q +1P) ~ (n— (20 + 1)) P{ + P},

which implies that (n — [)Pj ~ (n — [)P{. This contradicts mP] « mPj for
any 0 < m <n. Hence [(Dj; —Py) =0 forany 1 <l <n—1.
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Let 2 <[ < n. Suppose that I(Dj, — P;) = 1. Then

3 3
21+ 1)Q +1P{ +(1-2)Py+> R ~-P - P,—Q + ) R,

i=1 1=1
which implies that (I + 1)P] + (I — 1)P5 ~ 21Q" ~ 2[P;. Hence (I — 1)Pj ~
(I —1)Pj, a contradiction. Therefore I(D5, — P5) = 0 for any 2 <[ <n.
Now let f be an element of K(E) and set
divg(f) = Y m(P")P'.
P'eE

Then for any non-negative integer r we obtain

dive (yf Y ) =(2n+1)m(P))+n+ (n+1)(r—1))P

+((2n+1)m(Py) +n—1+n(r—1))P;
+ (m(Q') —r=1r(Q)
+ Z (R) + Dr*(R) + > m(P')x*(P'),
P'eS
where we set S = E\ {P], P},Q’, R}, R}, R;}. We note that if R} # Rf and
R!, = RY, (resp. R} = R, = RY), then

3

> (m(R) + 17" (R;)

i=1
is replaced by
(m(R}) + 1)m™ (Ry) + (m(Ry) + 2)7" (Ry)  (resp. (m(Ry) + 3)7" (R))).

For each r = 0,1,...,2n, we take a non-zero element f, € L(D.) and
set ¢, = frdy/y'~". Then by the above,

ordp,(¢po) =2n+1—-1=g—1 fori=1,2.
For any [ with 0 <1 < n — 2 we have
ordp, (¢p2141) =n+1+1—1 and ordp,(¢o41) =n—1—1.

Let Il =n—1,ie, 204+ 1=2n—1. Since L(D},,_,) = L(D},_, — P{) and
L(Dj, 1) D L(Dj,_; — P3) = (0), we obtain

ordp, (p2n—1) =4n+1—-1=2g—1—1 and ordp,(¢2,-1)=1—1.

Let | = 1, ie., 2l = 2. Since L(D%) D L(D5 — P{) = (0) and L(D%) =
L(D} — Pj), we obtain

OrdPl (¢2) =1-1 and Ordp2(¢2) = 29 —1-1.
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For any [ with 2 <1 < n we have
ordp, (p) =1 —1 and ordp,(¢a) =2n—1+1—1.

Hence for each r = 0,1,...,2n, ¢, is a regular 1-form on C. Therefore
G(P)=G(P)={1,...,9—2,9,29 — 1}.

3. The case g = 1 mod 4. In this section we prove the Main Theorem
in the case g =1 mod 4 with g > 9.

Let g = 4h+1 = 2n+1 with h € N, h > 2 and n = 2h. Let E be an elliptic
curve over k with the origin @’. Let P| be a point of E such that P| # @’
and 2[P{] = [Q’']. Moreover, Pj denotes a point of E such that n[Pj] = —[P/]
and m[Pj] # —[P{] for any positive integer m < n, where —[Pj] denotes the
inverse of P; under the addition on the elliptic curve E. Then P) # Q" and
P| # Pj. Moreover, (n+1)P{+nPj ~ nQ'+P/+(n+1)Q'—P] = (2n+1)Q’.
Hence we may take z € K(F) such that div(z) = (n+1)P{+nPj—(2n+1)Q’.

Let C,7m:C — E,y € K(C), P1, P2, R}, Dy, Dy, and Dj; be as in
Section 2. Then, in the same way as in Section 2, Dj is linearly equivalent
to zero. Moreover, [(D.) =1 for any r with 1 < r < 2n.

To compute the numbers I(D] — P{) and [(D,. — Pj3) we show that for
any positive integer m with m < n, mP| ¢ mPj. In fact, suppose that there
exists a positive integer m < n such that mP; ~ mPj. If m is odd, then
mPj + P ~ (m + 1)P{ ~ (m+ 1)Q'. This contradicts m[Py] # —[Pj] for
any positive integer m < n. If m is even, then

(n+1)Q ~nPy+ P/ =(n—m)Py+ P, + mP,
~ (n—m)Py+ P{ +mP{ ~ (n —m)P; + P + mQ’,
which implies that (n —m)Pj+ P ~ (n+1—m)Q’. This is a contradiction.

For any [ with 0 <1 < n—2 we have I(Dy,; — P/) = 0. In fact, suppose
that I[(Dj,,; — P{) = 1. Then 0 ~ D}, — P{ — Dy = —(2l + 1)Q" + 1P| +
(I +1)Py. Since nP) + P{ ~ (n+ 1)Q" and n is even, we have
nPy— 1P| ~—P +(n+1)Q — 21+ 1)Q + (I+1)P;

=P +(+1)Py+(n—-20Q ~—P] +(+1)P,+ (n—20)P],
which implies that (n—{—1)Py ~ (n—[—1)P;. This contradicts mP;  mP;
for 1 <m < n. Since nPy + P| ~ (n+1)Q’ and n is even, we have
D, _,—P —Dy~—2n—-1)Q" + (n—1)P| +nP;

=-(n-2)Q +(n—2)P{ ~—(n—2)Q" + (n—2)Q =0,
which implies that (D5, _,) = 1 = I(D},,_; — P{). Moreover, in the same
way as in Section 2, we obtain [(D5;, — P{) = 0 for any { with 1 <1 <mn.

Next, as in Section 2, we have

(D) —P)=0 and (D) =1(D,—P})=1.
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Let 1 <1 < n— 1. Suppose I(Dy_, — P;) = 1. Then D5 | — P; ~ 0
~ D{, which implies that —(I + 1)P] ~ —(2l + 1)Q’ + [Pj. Since nPj + P|
~ (n+1)Q" and n is even, we have nP) — P ~ (n+1)Q' — 21+ 1)Q' + 1P,
~ (n — 20)P{ 4+ [P}, which implies that (n — )P ~ (n —[)P{. This is a
contradiction. Hence (D5, — P;) = 0 for any 1 <1 <n — 1.

As in Section 2 we have [(Dj, — P;) = 0 for any 2 < [ < n. Therefore
GP)=G(P)={1,...,9—2,9,2g — 1}.

4. The case g = 0 mod 4. First we show the following lemma, which
is useful to construct the desired coverings of an elliptic curve in the even
genus cases.

LEMMA 2. Let my : C' — Cy be a finite morphism of curves of degree 2.
Let P € C be a ramification point of mg. Then n € Ny \ G(mo(P)) if and
only if 2n € Ng \ G(P).

Proof. Suppose that n € Ny \ G(mo(P)), i.e., there exists fo € K(Cp)
such that (fo)eo = nmo(P), where (fp)oo denotes the polar divisor of fj.
Since P is a ramification point of m, we have (7§ fo)ec = 2nP, where 7
denotes the inclusion map K(Cjy) € K(C) corresponding to the surjective
morphism 7 : C' — Cy. Hence 2n € Ny \ G(P).

Conversely, suppose that 2n € Ny \ G(P), i.e., there exists f € K(C)
such that (f)s = 2nP. Let o be an involution of C such that C/(o) = Cj.
Then we may take a local parameter t at P such that ¢*t = —t. Since we
can write

f= Cfgnt_2n + C,2n+1t_2n+1 + ...
where c_s, is a non-zero constant and ¢;’s (i > —2n + 1) are constants, we
obtain
O'*f = C_Qnt72n — C_2n+1t72n+1 —+ ...
Hence
f + O'*f = QC_Qnt_zn + 26_2n+2t_2n+2 —+ ... s
which implies that (f + 0* f)so = 2nP. Now
(f+af)=c"f+ (@) f=f+0o"],
which implies that f + o*f € K(Cp). Therefore (f 4+ 0* f)s = nmo(P) on
Co, which implies that n € Ng \ G(mo(P)). =
Using the above lemma we get the following:

PROPOSITION 3. Let wy : C — Cy be a finite morphism of curves of
degree 2. Suppose that the genus g of C is even and that the genus of Cy
is equal to g/2. Let P € C be a ramification point of my. If G(P) contains
{2,4,...,9—2,9,29g — 1}, then G(P) ={1,2,...,9 — 2,9,2g9 — 1}.
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Proof. Suppose that G(P) D {2,4,...,9 — 2,9,2g — 1}. Then by Lem-

ma 2 we obtain

G(WO(P)) = {17 2,... 79/2}
If h is an even integer > g, then by the above we have h/2 € No \ G(7o(P)).
Hence by Lemma 2 we get h € Ny \ G(P). On the other hand, if h is an
even integer with g +2 < h < 2g — 2, then 29 — 1 — h € G(P). In fact, if
2g—1—h e Nyg\G(P), then29g—1=h+(29—1—h) € Ng\ G(P), a
contradiction. Hence G(P) contains the set

{2,4,...,9—2,9,29g—1}U{29g—1—h | h is even with g+2 < h < 2g—2}

= {17273747" 9 — 379 - 279729 - 1}
Since the cardinality of G(P) is g, we get the desired result. m

Using this result we show the Main Theorem in the case ¢ = 0 mod 4
with g > 8.

Let g = 4h = 2n with h € N, h > 2 and n = 2h. Let E be an elliptic curve
over k with the origin @)". Let P| be a point of E such that (2n—1)[P]] = [Q’]
and m[P]] # [Q'] for any positive integer m < 2n — 1. Moreover, P; denotes
the point of E such that [Py] = 3[P[]. Then P} # Q" and P; # Pj because
g > 8. Now we have

(m+1)P+(n—1)P,~(n+1)P + (n—1)(3P —2Q")
~2(2n —1)P{ — (2n —2)Q" ~ 2nQ’.
Hence we may take z € K(F) such that div(z) = (n+1)P{+(n—1)P,—2nQ’.

Let C be the curve whose function field K(C) is K(E)(z'/?™). More-
over, m : C — FE denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) C K(C). Then we may take y € K(C) and
o € Aut(K(C)/K(FE)) such that

o(y) = Gay and  dive(y*") = (n+1)P[ + (n —1)P; — 2nQ".
Since n is even, we get (2n,n + 1) = (2n,n — 1) = 1. Therefore the branch
points of 7 are P{ and P whose ramification indices are 2n. Therefore

le(y) == (n + l)Pl + (n — 1)P2 — W*(Q/).

Moreover, by the Riemann—Hurwitz formula we have g(C) = 2n = g. Hence
3
div(dy) = nPi + (n —2)P, — 27°(Q') + >_ *(R}),
i=1

where R)’s are points of E which are distinct from PJ, P) and Q’.
Let Dj and D), (1 <1 <mn—1) be as in Section 2. Moreover, we set

3
n n
Dy _y = Dy(nja-1y41 = —nQ' + (2 - 1)P1/ + <2 - 1) P+ R
i=1
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and

3
Dpi1 = Dyyyoir = —(n+2)Q + (Z + 1)P{ + (Z — 1>P2’ + ZR;.
i=1

Then Dy, ~ 0. Moreover, for any [ with 1 <! < n—1 we have [(D},;) =1 and
(D}, — P]) = (D}, — P3) = 0. In fact, first assume (D5, — P{) = 1. Then
0 ~ Db, —P{—D{ ~ 4lP{ —41Q’, which implies that 2n—1 divides 4l. In view
of 1 <1 < n—1wemust have 4] = 2n—1, which is a contradiction. Secondly,
assume (D)}, — P}) = 1. Then 0 ~ D), — P — D{, ~ —(41—2)Q' + (4l — 2) P;,
which implies that 2n — 1 divides 4] — 2. This is a contradiction. Now we
have

Dy =P =Dy~ (2n—1)P] — (2n - 1)Q" ~ 0,
which implies that I[(D),_,) = l(D),_y — P{) = 1 and I(D],_, — 2P{) = 0.
Moreover, D, . P2 D~ —2n—-1)Q" + (2n — 1)P{ ~ 0, which implies

that I(D n+1) l( wi1 — P3) =1and (D], —2P;) =0.
Let f € K(F) and set
dive(f) = Y_ m(P")P'.
P'€E

Then for any non-negative integer r we obtain

dive <Z;f Y > = (2nm(P))+n+ (n+1)(r—1))P,

+@2nm(Py) +n—2+n—1)(r—1))P
+ (m(Q/) —r=1r(Q)

+Z (R)) + D)m*(R) + > m(P")r*(P"),
Pes
where we set S = E\ {P{, P3,Q’, R}, R}, R}}.

For each r € {0,2,...,2n — 2} U {n — 1} U {n + 1} we take a non-
zero element f. € L(D.) and set ¢, = f.dy/y'~". Then, by the above,
ordp,(¢p) =2n—1=g—1fori=1,2. For any [ with 1 <[ <n—1 we
have ordp, (¢2;) = 2] — 1 and ordp, (¢2;) = 2(n — 1) — 1. Moreover,

OrdP1(¢n—1) :471—1—1:29_1_17
ordp, (¢n—1) 2 —Zn(g - 1> +n—-2+(n—-1)(n—-2)=0,
ordp, (¢n+1) > 2n<g+1) +n+(n+1)n =0 and ordp,(¢p,41) = 29—1—1.

Hence ¢g, ¢, ..., dan—2, dn—1, dn+1 are regular 1-forms on C. Therefore we
get G(P;) D{2,4,...,9—2,9,2g — 1} for i =1, 2.
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Now let C be the curve whose function field K(Cp) is K(E)(z'/™). More-
over, 11 : Cy — E denotes the surjective morphism of curves corresponding
to the inclusion K(F) C K(Cp). Let mg : C — Cy be the double covering
corresponding to the inclusion K(Cy) C K(C). Since r =nomy : C — E
has only two ramification points P; and P, which are totally ramified,
by the Riemann—Hurwitz formula we get g(Cy) = ¢g/2. Moreover, P; and
P, are ramification points of my. Therefore by Proposition 3 we obtain
G(Pl) :G(PZ) = {1727---79—2,9729_ 1}

5. The case g = 2 mod 4. First we show the following arithmetic lemma
which is the key to proving the next Proposition 5.

KeEYy LEMMA 4. Let | > 2 be an integer and let p1,...,p; be distinct
prime numbers. Then there is a partition

{il,...,it}U{it+1,...,il} - {1,,l}
with 1 <t <1 —1 such that (4p;, ...pi, + 1, pipy ---piy) = 1.
Proof. We may assume that pq,...,p; are odd. In fact, if p; = 2, then

(4ps ...p1 + 1,p1) = 1. We prove the lemma by induction on [ > 2.
Let [ = 2. We may assume that p; < pa. Suppose that

(4p1 + 1)p2) ;é 1 and (4p2 + ]-apl) 7é 1)

which implies that ps | (4p1 + 1) and pq | (4p2 +1). Let 4p; + 1 = mpy. Then

m must be 1 or 3. Moreover, p; divides (4ps + 1)m = 16p; + 4 + m, which

implies that py | (4 +m). Let m = 1. Then p; | 5, which implies that p; = 5.

Hence ps = 4p; + 1 = 21 is not prime, a contradiction. Let m = 3. Then

p1| 7, which implies that p; = 7. Hence 3py = 4p; + 1 = 29, a contradiction.
Let [ > 3. We may assume that p; > p; for all j # [. Suppose that

(4p1...pic1piv1---m+Lpi) #1, e, pi|(dp1...picipiy1-..p+1)
forall i = 1,...,0. Then p;f(4p1 ... pi—1pit1..-pi—1+ 1) foralli =1,...,
[ — 1. In fact, suppose that p; | (4p1...pi—1Pit1---Pi—1 + 1) for some i. In
view of py | (4p1 ... p1—1 + 1) we get

pul4py .. picipiyr - pi—1(pi — 1),

which implies that p; | (p; — 1). This contradicts p; > p; for all j # L.
Moreover, we may assume that p; | (4p1 ... pi—1Pi+1-..pi—1 + 1) for each

i =1,...,1 — 1. In fact, suppose that p;{(4p1...pi—1pPiy1-..P1—1 + 1) for

some i. In view of p;{(4p1 ... pi—1Pit1...pi—1 + 1) we obtain a partition

{1,...,i—1,i4+1,..., 1 —1}u{il} ={1,...,1}
such that (p;pi,4p1 ... pi—1pit1-..pi—1 +1) = 1. Hence
pil4p1 ... pic1piv1---pi—1(p — 1)
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for each ¢ = 1,...,1 — 1. Therefore p;|(py — 1) for all i = 1,...,1 — 1,
which implies that p; — 1 = mpy ... p;—1 for some integer m. If m > 5, then
pi > 5p1...pi—1 + 1, which contradicts p; | (4p1 ...pi—1 + 1). If m < 3, then
(mpy...p1—1+1)|(4p1...p1—1 + 1), a contradiction.

Hence m = 4. By the induction hypothesis there is a partition

{il,...,it}U{it+1,...,il_1}:{1,...,l—1}

with 1 <t <1 — 2 such that (4p;, ...pi, + 1, pi,y, ---Piy_,) = 1. In view of
pr=A4p1...pi—1+1>4p;, ... pi, + 1 we get pit(4pi, .. .pi, +1). Hence we
obtain (4p;, ...pi, + Lpioy ---0iy_,p) = 1. m

Using the Key Lemma we show the following proposition, which is crucial
to the proof of the remaining case of the Main Theorem.

PROPOSITION 5. Let n = 10t 4+ 3 with an integer t > 1. Then there exists
an integer s with 3 < s < (n—3)/2 such that s| (2n—1) and (2n—1,n+2s)
=1.

Proof. First, we consider the case 2n — 1 = pips...p, with e > 2
if pp > 5 o0r e > 3if py = 3, where po,...,p. may not be distinct. Let
s=pip2...pr and g = pf_l. Then s|(2n — 1) and

2n—1,n+2s)=2n—-1,2n+4s) =(2n—1,4s+1)
= (Sg, 4s + 1) = (q748 + 1) = (p§7174p1p2 Y 2 1) =1L
Moreover,

2n —1 2n —1 n—3
S=pip2...pr = < <
q ) 2

because ¢ = pf_l >5and n > 13.

Secondly, we consider the case 2n — 1 = pips...p, with p; = 3 where
P1,--.,pr are distinct. In view of 2n — 1 = 5(4t + 1) we have r > 2. By
Lemma 4 we have a partition

{il,...,it}U{Z'tJrl,...,ir}:{1,...,7“}
with 1 <t <r —1 such that (4p;, ...pi, + 1,4, ---pi,) = 1. Hence we get
(4pi, - -pi, + L, 01Diyy, ---1i,) = 1. Let s = p;, ...p;, and ¢ = p1p;,., ---Di,.-
Then s|(2n — 1) and
(2n —1,n+2s) = (q,45+ 1) = (p1Pi,\y - - - Di,» 4Diy - - D3, +1) = 1.
Moreover,
S:2n—1 < 2n —1 <n—3
qg ~ 9 2
because ¢ = p1pi,,, ---pi, > 9.
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Lastly, we consider the case 2n — 1 = pyps...p, where p1,...,p, are
distinct. By Lemma 4 we have a partition {i1,...,4:} U {it41,...,0.} =
{1,...,r} with 1 <t <r —1such that (4p;, ...p;, + L,pi,, -..pi,.) = L.

Lett <r—2orp; >3foralli. Weset s =p;, ...p;, andq=p;, ., ...pi,.
Then s|(2n — 1) and (2n — 1,n + 2s) = 1. Moreover,
2n —1 2n —1 2n—1 n-—3

= < <
q Digyr - - - Di, 5 2

S =

because n > 13.

Let t =7 —1 and p; = 3 for some 4. In this case r > 3, because 2n — 1 =
5(4t+ 1) with 4¢4+1 > 5. Then we may assume that p; = 3. Let p, > p; for
all j # r. Moreover, we may assume either

(1) (pis4p1-..pi—1Pit1---pr+1) =1 for some i =2,...,7, or
(2) there exists a partition

{i1, .oy} Ufiggr, e oyip_1 b ={1,...,7r =1}
with 1 <t <7 — 2 such that (p;,,, ...pi,_,Pr,4pi, --.pi, +1) = L.
In fact, suppose that (1) does not hold, i.e.,
pi|(4p1...picipit1...pr+ 1) foralli=2,...,r
Then
prt(4p1 ... Di—1Pig1 .- Dr—1+ 1) foralli=2,... r—1.
In fact, suppose that
pr|(4p1 ... Di—1Pit1---Pr—1+ 1) forsomei=2,...,r —1.
In view of p,- | (4p1 ... pr—1+1) we obtain p, |4p1 ... pi—1pit1 - - Pr—1(pi—1),
which implies that p, | (p; — 1). This contradicts p, > p;.
Moreover, we may assume that
pi|(4p1 ... Pic1Pit1 .- pr—1+1) foralli=2,...,r—1.
In fact, suppose that
pit(4p1 ... pi—1Piv1---Pr—1+1) forsomei=2,...,r—1.
In view of p,.{(4p1...pi—1Pit1-..Pr—1 + 1) we have a partition
{1,...,i—1,i+1,....,r =1} U{i,r} ={1,...,r}
such that (p;p,,4p1...Pi—1Pi+1---pr—1 + 1) = 1. This case reduces to the

case t < r—2 in which we have already proven the statement. Hence in view
of

pi|(4p1 ... piciPiz1--.pr+1) foralli=2....r—1

we have p; |4p1 ... pi—1Pi+1---Pr—1(pr — 1) for all e = 1,...,7 — 1, which
implies p; | (pr — 1) for all ¢ =2,...,7 — 1. Therefore ps...p.—1|(p, — 1),
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which in turn implies that p, —1 = mps...p,—1 where m is even. In view
of p, | (4p1p2 ... pr—1 + 1) with p; = 3 we have

12p2...0r_1+1=m'p, =m'(mpa...pr_1 +1)=m'mps...p._1 +m’

with a positive integer m/. Then we must have m’ = 1, i.e., m = 12. In fact,
suppose that m’ > 2. Then 12 — m’m > 0, which implies that 12 > m/m >
2m’. Hence m’ < 5, which implies that

4>m'—1=(12—m'm)ps...pr—1 > pa...pr—1 > 5p3...pr_1.

This is a contradiction. Hence m’ = 1.
Therefore we obtain

pr=12p2...pr1+1=4p1pa...pr1 + 1.

Since p1,p2,...,pr—1 are distinct primes and » — 1 > 2, by Lemma 4
there exists a partition {i1,...,%} U {it41,...,0r—1} = {1,...,r — 1} with
1 <t < r—2such that (4p;, ...pi, + 1, pipyy ---0i,_,) = 1. In view of
pr=4p1p2...pr—1+ 1> 4p;, ... p;, + 1 we have p, 1 (4p;, ... pi, +1). Hence
(4pi, - -pi, + 1,Dipsy - Pi,_ Pr) = 1. Thus we have proven that if t =7 —1
and p; = 3, then we may assume that either (1) or (2) holds.

In case (1) (resp. (2)) we set S=p1...pi—1Pit1 ... Pr (T€SP. S=Piy ... Di,)
and ¢ = p; > 5 (resp. ¢ = pi,, ---Pi,_,pr > 15). Then we have s|(2n — 1)
and (2n — 1,n + 2s) = (¢,4s + 1) = 1. Moreover,

2n —1 2n —1 n—3
= < <
g ~— 5 = 2

S

because n > 13. m

Now we prove the Main Theorem in the case g = 2 mod 4 with g > 10.
Let g = 2n where n is an odd integer > 5. First we show that there exists
an odd integer s with 1 < s < (n — 3)/2 such that

s|(2n—1) and (2n—1,n+2s)=1.
In fact, let g # 1 mod 5, which implies that n + 2 £ 0 mod 5. Then
2n—1,n+2)=02n—-1,2n+4)=2n—-1,5) = 1.

Hence in this case we may take s = 1. Let g = 1 mod 5. Then we can write
n = 10t + 3 with t > 1. By Proposition 5 we may take an integer s with
3<s<(n—3)/2such that s|(2n—1) and (2n — 1,n + 2s) = 1.

Now there exists a unique integer m with 0 < m < 2n — 3 such that

(m+1)(n+2s) =1mod 2n — 1.

In fact, in view of (2n — 1,n 4+ 2s) = 1 there exists a unique integer 0 <
m < 2n — 3 such that (m 4+ 1)(n + 2s) = 1 mod 2n — 1. If m = 0, then
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n + 2s =1 mod 2n — 1. Since
n+2s—1>n+1>0 and n+2s—1§n+2-%_3—1:2n—4,
this contradicts (2n — 1) | (n + 2s — 1).

Let E be an elliptic curve over k with the origin Q'. Let P| be a point
of E such that (2n — 1)[P]] = [Q'] and h[P{] # [Q’] for any positive integer
h < 2n — 1. Moreover, Pj denotes the point of F such that [Pj] = —m][P]],
ie, P, ~ —mP{ + (m + 1)Q". Then P{, P; and Q' are distinct because
0 <m < 2n — 3. Now we obtain

(n—2s)P] + (n+ 2s)Py ~ 2nQ’.
In fact,
(n—28)P] + (n+2s)Py ~ (—m(n+2s) + n — 2s)P{ + (n+ 2s)(m + 1)Q".
Then —m(n+2s)+n—2s = —14+2n = 0 mod 2n—1 because (m+1)(n+2s) =
1 mod 2n — 1. Hence
(n—2s5)P] + (n+2s)P)
—m(n+2s)+n—2s

2n —1
Hence we may take z € K(E) such that

div(z) = (n — 28)P] + (n + 2s) Py — 2nQ’.

Let C be the curve whose function field K(C) is K(E)(z'/2™). More-
over, m : C — FE denotes the surjective morphism of curves correspond-
ing to the inclusion K(E) C K(C). Then we may take y € K(C) and
o € Aut(K(C)/K(FE)) such that

o(y) = Cony and  dive(y*™) = (n — 25)P] + (n 4 2s) Py — 2nQ’.

Now we have (n,s) = 1. In fact, (n,s)|(2n — 1,n + 2s) because s | (2n — 1),
which implies that (n,s) = 1. Therefore (2n,n + 2s) = (s,n) = 1 and
(2n,n — 2s) = 1, because n is odd. Therefore the branch points of 7 are P;
and P, whose ramification indices are 2n. Thus

div(y) = (n —2s)Py + (n + 28) P> — (Q").

Moreover, by the Riemann—Hurwitz formula we have g(C) = 2n = g. Hence

(2n—1)P] + (n+2s)(m+1)Q" ~ 2nQ’.

3
div(dy) = (n — 25 = )Py + (n+2s — )Py = 27°(Q') + Y _ 7" (R}),
=1

where R)’s are points of E which are distinct from P{, P} and Q’.
We set

3
Dy=-P —P-Q +) R,

i=1
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which is linearly equivalent to zero. Let [ € {0,1,...,2s — 1} be fixed. Then
for any even r > 0 with
2ln —1 <2(l+1)n—1

<
2s "= 2s

we set

3
r / r / r / /
D.=—(r+1)Q + <2 —l—1>P1 + <2+Z>P2+;Ri.
Next we show that for any r, (D, — P{) = 0 and (D] — P3y) = 0,
ie., D, — P/ # 0 and D, — P} 4 0. Suppose that D] — P{ ~ 0. Then
0 ~ D — P — D{, which implies that

R (e e

Hence

<;+l+1>(m+1)—r50mod2n—1.

In view of s|(2n — 1), we get

<g+l+l)(m+1)—r50mods.

Moreover, since (m+1)(n+2s) = 1 mod 2n—1 we have (m+1)n = 1 mod s.
Hence

O:2(£+l+1>(m+1)n2rn:2(l+1)m0ds,

which implies that [ + 1 = O mod s. In view of 0 < [ < 2s — 1 we have
l=s—1or2s—1.
Let [ = s — 1. Then r satisfies
2(s—1)n—1 < 2sn —1
_- << —
2s - 2s
Moreover,
<;+3>(m+1) =r mod 2n — 1.

In view of (m + 1)(n + 2s) = 1 mod 2n — 1 we have

L= (;+s)(m+1><n+2s>zr(n+2s>

= g(l +4s) mod 2n — 1,
which implies that s(2r — 1) = 0 mod 2n — 1. Hence we may set
2n -1

2r—1= -k with a positive odd integer k.
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Then
2(s—1)n—1 ey 2n—1Dk+s S2$n—17
2s 2s 2s
which implies that 2(k —s)n <k —s—1<2(k—s+ 1)n. If k > s, then
k—s—1 1
P
Ay — k—s

<1,

a contradiction. If k = s, then 0 < —1, a contradiction. Let kK — s = —1.
Since k and s are odd, this is a contradiction. If £ — s < —1, then

k—s—1 2
o1y — = <3,

m< ST
S s+ kts—1-

a contradiction.
Let | = 2s — 1. Then r satisfies

22s—1)n—1 4sn — 1
—_— < r < —.

2s 2s
Moreover,
(g+23)(m+1) =rmod 2n — 1.
Hence
r r r
2 +2s= <2+23>(m+1)(n+25) = 5(1—1—45) mod 2n — 1,
which implies that 2s(r — 1) = 0 mod 2n — 1. Therefore we may set
2n —1
r—1= n -k with a positive odd integer k.
5
Then
22s—1)n—1 re (4n — 2)k + 2s < 43n—1’
2s 2s 2s

which implies that 4(k — s)n < 2k —2s — 1 < 2(2k — 2s + 1)n. This is a
contradiction.

Moreover, we prove that D] — Pj ¢ 0. Suppose that D — Pj ~ 0. Then
0 ~ D!. — P} — D{, which implies that

<<;+l>(m+1) —T>Q’~ (<;+l>(m+1)—r>P{-

<T+l>(m+1)—r50mod2n—1.

Hence

2
In view of s|(2n — 1), we get

<;+l)(m+1)—r:0mods.
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Since (m + 1)n = 1 mod s, we obtain
0= <;+l>(m+1)n—rnEr/2+l—nrmods,

which implies that 0 = r + 2] — 2nr = 2l mod s. Since s is odd, we have
[ = 0 mod s, which implies that [ =0 or [ = s.
Let [ =0. Then 2 <r < (2n — 1)/(2s). Moreover,

g(m+1)zrmod2n—l.

Hence
r
2
which implies that 0 = 2sr mod 2n — 1. Therefore » = 0 mod (2n — 1)/s,
which contradicts 2 < r < (2n —1)/(2s).

(m+1)(n+2s) =2sr + % mod 2n — 1,

N3

Let [ = s. Then
2sn — 1 2(s+1)n—1
< —F
2s TS 2s
Moreover,
(;—I—S)(m—l—l) =r mod 2n — 1.
Hence

(4s+1) mod 2n — 1,

T
2 2 -2

T r

s t+s= <+S>(m+1)(n+28)

which implies that s = 2sr mod 2n — 1. Hence we may set

2n —1
S

2r—1=

k,

where k is an odd positive integer. If k > s + 2, then

2n —1 2n —1
1> " (542 >m -1+ 2
s s
2 1)n—1 2 1)n—1
:w_1:2.w_122r_1’
s 2s
a contradiction. Now we have
2sn —1 1
o —1>2. 2070 49y 1,
s
which implies that 2r — 1> 2n — 1. If £ < s — 2, then
2n —1 22n —1
m-1<ow—1< T g oysgp1 222D oy

S
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a contradiction. Hence k£ = s, which implies that
2n —1
s

2r—1= -s=2n— 1.

Therefore » = n. Since r is even and n is odd, this is a contradiction. Hence
D! — Pj # 0. Thus we obtain the following: Let [ € {0,1,...,2s — 1} be
fixed. Then for any even r > 0 with (2In—1)/(2s) < r < (2(I+1)n—1)/(2s)
we get
I(D,)=1 and (D, —P{)=1(D, — Pj)=0.
Now in view of (n, s) = 1 there is a unique non-negative integer ¢ < 2s—1
such that (2¢ + 1)n = 2s + 1 mod 4s. Then we set
2s+1—(2¢+1)n+4s(n—1)
4s
(4s —2¢ —1)n — (2s — 1)
4s
Note that r; is an odd integer > 3. In fact,

ds —2¢—1>4s—-2(2s—1)—1=1.

+1

7“1:2

=2. + 1.

Hence in view of s < (n — 3)/2 we get
(4s—2¢—1)n—(2s—1)>n—(2s—1)>2s+3—(2s—1)=4>0,
which implies that 1 > 3. Then we define
(4s —2q — 1)n — (2s — 1) — 4s(2s — q)
4s

3
N (45_2q_1)n_(25_1)+48(2S_Q)P2’+ZR§.
i=1

D, = —(rn+1)Q + Py

4s

Note that deg D] = 1. We prove that D, — P| ~ 0. In fact, in view of
P~ (m+1)Q" — mP] we have
D;'1 - Pl/ - D6

(4s—2q—1)n(m—1)+ (4s(2s —q) +2s+ 1)(m+1) — 2

~ - @~ ).

Then
(4s—2¢—1)n(m—1)+ (4s(2s —q) +2s+ 1)(m+ 1) — 2
=4s(n(m — 1)+ 2s(m+ 1))
—((2¢+1)n(m—1)—(2s+1)(m — 1) + 4sq(m + 1) — 4s).

Let
(n+2s)(m+1)—1
N on —1 ’
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which is a positive integer because (m+1)(n+2s) = 1 mod 2n— 1. We have
(2¢+1)n(m—1) — (2s+1)(m —1) + 4sq(m + 1) — 4s
=2¢((n+2s)(m+1)—2n)+ (n+2s)(m+1) —2n—4sm —m+ 1 — 4s
=2¢(2n—1u+1-2n)+2n—1lu+1—-2n
—2((n+2s)(m+1)—n(m+1)—m+1
=2n—-1)((2g — 1)u — 2g + m).
Now (2¢ — 1)n = (2¢+ 1)n — 2n = 2s + 1 — 2n = 0 mod s, which implies
that s|(2¢ — 1) because (n,s) = 1. Moreover,
(—2¢g+m)n=—-2qgn+mn=n—2s—1+mn
=n+2s)(m+1)—1—-25s—2sm—2s=0mod s

because s|(2n — 1). In view of (n,s) = 1 we get s|(—2¢q + m). Therefore
4s]((2g — 1)u — 2¢ + m) because (4,2n — 1) = 1, which implies that

(2n —Dds|((2¢+ Dn(m —1) — (2s+1)(m — 1) + 4sq(m + 1) — 4s).

Moreover,
4s(n(m —1) +2s(m+1)) =4s((m+1)(n+2s) — 1 — (2n — 1)),
which implies that 4s(2n — 1) |4s(n(m — 1) +2s(m + 1)). Hence the integer
(4s —2¢—1)n(m—1)+ (4s(2s —q) +2s+ 1)(m+1) — 2
4s

is divisible by 2n — 1, which implies that D, — P/ ~ 0.

Next we set

(2¢+1)n—1 _s. (2¢+1)n—(2s+1)
2s B 4s

which is an odd integer because (2¢ + 1)n = 2s + 1 mod 4s. Moreover,
3<ro<2n—3. Infact, 1 <2¢+1<4s—1 because 0 < q < 2s — 1. Hence

n—1<r (2q+1)n—1<(4s—1)n—1:2n n+1

Ty = +]-a

2s — 2 2s - 2s 25
In view of 0 < 1 < s < (n — 3)/2 we have
- 1
1<n 1§n and 2n—n+1§2n—n+1<2n—1.
n—3 S S n—3

Now we set

(2¢+1)n—(2s+1)—4sq ,
4s A

3
(2g+1)n—(2s+1)+4sq ., ,
P. E R;
+ s 5 1 - i

D, = —(r2+1)Q" +
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which is of degree 1. We prove that D, — P; ~ 0. We have
D, —P,— Dy
(2¢+1Dn(m—1)—(2s+1)(m —1) +4sq(m + 1) — 4s
- 4s
By the argument in the proof of D, — P| ~ 0 we show that
(2¢+1)n(m—1)—(2s+1)(m—1)+4sq(m+1) —4s
4s
is divisible by 2n — 1, which implies that D, — P; ~ Dj ~ 0.
Now we are in a position to prove that {1,...,9—2, 9,29 — 1} is the gap
sequence at P; and P». Let f € K(E) and set

divg(f) = Y m(P")P'.

P'cE

(Q = Pp).

Then for any non-negative integer r we obtain
dive ( fdy ) = (2nm(P]) +r(n—2s) —1)P,
y'-

+ <2nm(P2’) +r(n+2s) = 1)P+ (m(Q') —r — 1)7"(Q")

+ Z (R) + \)m*(R) + Y m(P')x*(P),
PeS
where we setS:E\{Pl,PQ,Q’, 1Ry Ry} Fixl € {0,1,...,2s — 1}, and
let 7 be a positive even integer with (2ln 1)/(2s) <r < (2(+1)n—1)/(2s).
If f, € L(DL), then

d
ordp, <f1_y> =2(l4+1)n—1—-2sr >0
y T

and

rd
ordp, <f y> =2sr—(2ln—1)—2>0.

yl—r

In fact, suppose that 2sr — (2in — 1) = 1, which implies that r» = in/s. We

know that (n,s) =1, n is odd and r is even. Hence /s must be even, which

implies that | = 2us with a non-negative integer u. In view of 0 <1 < 2s—1

we must have [ = 0, which implies that » = 0. This is a contradiction. Hence

2sr — (2ln—1) —2 > 0. Therefore f.dy/y'~" is a regular 1-form on C, which

implies that 2n — (2sr — 2nl) (resp. 2sr — 2nl) is a gap at Py (resp. P»).
Now we show that

{23r—2nl l=0,1,...,2s—1, riseven > 0

2ln — 1 - <2(l+1)n—1}

=12.4,...,9g—2}.
2s - 2s 24,9 }
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First we show that the above elements 2sr — 2nl are distinct. Let I’ €
{0,1,...,2s — 1} with I’ > [ and let 7’ be even with

/ _ / _
2ln -1 < 200+ 1)n—1
2s 2s
Then n(l’ — 1) = s(r’ — r). In view of (n,s) =1 we obtain s| (I’ — [), which
implies that I’ = [ or I’ = | + s. Hence we may assume that I’ = [ + s,
which implies that ' —r = n. Since v’ — r is even and n is odd, this is a

contradiction. Hence the elements 2sr — 2nl are distinct.
Next if [ = 0 (resp. | = 2s — 1), then

2ln —1 -1 20+ 1)n—1 1
i =—<0 (resp.Qn—1<(+2)n:2n—2<2n:g>.
s s

such that 2sr — 2nl = 2sr’ — 2nl’.

25 2s
In view of r > 0 the cardinality of the set of the elements 2sr — 2nl is
equal to that of {2,4,...,g — 2}. Moreover, 1 < 2sr — 2nl. In view of r <
(2(I+1)n—1)/(2s) we have 2sr —2nl < g — 1. Hence we obtain the desired
result. Therefore 2,4,...,9 — 2 are gaps at P; and Ps.

Now if fo € L(Dj)), then

d
ordp, <f°y> —m—1=g-1 fori=1,2,
y

which implies that g is also a gap at P} and P. Let f., € L(D;, —P;) # {0}.
Then

yl—Tl

ordp, (frldy) =4dn—-2=(29—-1)—1

and

fﬁ dy
ordp, <y1—’”1

4s —2q—1)n— (25 — 1) +4s(2s —
Z_Qn ( S q )n (48 )+ S( S q>+7’1(n+28)—1=0
S

Therefore f, dy/y'~" is a regular 1-form on C, which implies that 2¢g — 1
is a gap at P. Moreover, let f., € L(D,, — P3) # {0}. Then

r 2 n — (2 1)—4
ordp, (ff_dy> > —2n - (2g+ n A(L s+1)—4sq +7r(n—2s)—1=0
y S

and

1—’)"2

ordp, <§T2dy> =(29—1)— L.

Therefore 2g — 1 is a gap at P5. In the same way as in Section 4 we get
GP)=G(P)={1,2,...,9—2,9,29g — 1}.
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