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On the distribution of
the sequence (nα) with transcendental α
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1. Introduction. Let α ∈ R be irrational with regular continued frac-
tion expansion α = [a0, a1, a2, . . .] (i.e. a0 ∈ Z and ai ∈ N for all i ≥ 1)
and convergents pn/qn = [a0, a1, . . . , an]. (Sometimes we write an(α) and
pn(α)/qn(α) to stress the dependence on α.) It is a classic result of P. Bohl
[5], W. Sierpiński [15], [16] and H. Weyl [17], [18] that the sequence (nα)n≥1

is uniformly distributed modulo 1. This property is studied from a quanti-
tative viewpoint by means of the speed of convergence in the limit relation
limN→∞D∗N (α) = 0 where the quantity

D∗N (α) = sup
0≤x≤1

∣∣∣∣
1
N

N∑
n=1

c[0,x)({nα})− x
∣∣∣∣

is called discrepancy . According to a theorem of W. M. Schmidt [11] the
convergence is best possible if D∗N (α) = O((logN)/N). It was first observed
by H. Behnke [4] that this estimate is satisfied if and only if α is of bounded
density , i.e.

∑m
i=1 ai = O(m) as m → ∞. For α of bounded density the

map α 7→ ν∗(α) = lim supN→∞ND∗N (α)/ logN is used to obtain more
detailed information. It was proved by Y. Dupain and V. T. Sós [6] that
infα∈B ν∗(α) = ν∗([2]) where B denotes the set of numbers of bounded
density and [2] = [2, 2, 2, . . .] = 1 +

√
2 is used as a convenient shorthand

notation. J. Schoißengeier [14] expressed ν∗(α) in terms of the continued
fraction expansion of α after he had obtained partial results in [13]. Em-
ploying these results C. Baxa [3] showed the following:

(1) Let Bq := {α ∈ B | α is a quadratic irrationality}. Then we have
ν∗(B) = ν∗(Bq) = [ν∗([2]),∞).

(2) Let b ≥ 4 be an even integer, Bb := {α = [a0, a1, a2, . . .] ∈ B | ai ≥ b
for all i ≥ 1} and Bqb := {α ∈ Bb | α is a quadratic irrationality}. Then
ν∗(Bb) = ν∗(Bqb ) = [ν∗([b]),∞).
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It is the purpose of the present paper to strengthen these results and to
prove:

Theorem 1. Let Bt := {α ∈ B | α is transcendental} and Bu := {α ∈
B | α is a U2-number}. Then

ν∗(Bt) = ν∗(Bu) = [ν∗([2]),∞).

Theorem 2. Let Btb := {α ∈ Bb | α is transcendental} and Bub :=
{α ∈ Bb | α is a U2-number} (where again b ≥ 4 is assumed to be an even
integer). Then

ν∗(Btb) = ν∗(Bub ) = [ν∗([b]),∞).

R e m a r k s. (1) For a more detailed and leisurely exposition of the prob-
lem and its history the reader is referred to [3].

(2) In contrast to Theorem 1 we see that ν∗(Bq) $ [ν∗([2]),∞) since
ν∗(α) is transcendental if α is a quadratic irrationality. This follows from
Theorem 1 in §4 of [14] as the logarithm of an algebraic number 6= 1 is
always transcendental.

2. Criteria for transcendence. Our criteria are a variant of a method
used by E. Maillet [7, Chapter 7] and A. Baker [1], [2] (see also [8, §36]). We
will follow rather closely parts of [1] and [2] with two major differences:

(1) We will use a theorem by W. M. Schmidt which became available
only a few years later [9] and was generalized in [10] (compare also with [12]).

(2) We do not aim at criteria of great generality but at specific ones
which are well suited for our purpose. This explains the special shape of
Corollary 6 below.

Definition. If β is algebraic then H(β) denotes the classical absolute
height . This means, if p(X) =

∑m
i=0 aiX

i ∈ Z[X] \{0} with gcd(a0, . . . , am)
= 1 and p(β) = 0 (and deg p minimal with this property) then

H(β) = max
0≤i≤m

|ai|.

Theorem 3 (W. M. Schmidt). Let α ∈ R be algebraic but neither rational
nor a quadratic irrationality and δ > 0. Then there exist only finitely many
β ∈ R which are rational or quadratic irrationalities such that |α − β| <
H(β)−3−δ.

Corollary 4. Let α ∈ R have “quasiperiodic” but not periodic continued
fraction expansion

α = [0, a1, . . . , aν1−1, aν1 , . . . , aν1+k1−1
λ1 , aν2 , . . . , aν2+k2−1

λ2 , . . .]

(i.e. νn = ν1+
∑n−1
i=1 λiki). If α is algebraic then lim supi→∞ qνi+1−1q

−3−δ
νi+ki−1

< ∞. (Here aν , . . . , aν+k
λ indicates that the partial quotients aν , . . . , aν+k
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should be repeated λ times. For example [0, 1, 2, 32, 53, 7, . . .] = [0, 1, 2, 3, 1, 2,
3, 5, 5, 5, 7, . . .].)

P r o o f. For i ≥ 1 we define the quadratic irrationality

βi := [0, a1, . . . , aν1−1, aν1 , . . . , aν1+k1−1
λ1 , . . .

. . . , aνi−1 , . . . , aνi−1+ki−1−1
λi−1 , aνi , . . . , aνi+ki−1].

For k ≤ νi+1 − 1 we have ak(α) = ak(βi) and we may write pk/qk for
pk(α)/qk(α) = pk(βi)/qk(βi). Now

Liβ
2
i +Miβi +Ni = 0

with

Li = qνi−2qνi+ki−1 − qνi−1qνi+ki−2,

Mi = qνi−1pνi+ki−2 + pνi−1qνi+ki−2 − pνi−2qνi+ki−1 − qνi−2pνi+ki−1,

Ni = pνi−2pνi+ki−1 − pνi−1pνi+ki−2,

and therefore

H(βi) ≤ max{|Li|, |Mi|, |Ni|} < 2q2
νi+ki−1.

Theorem 3 implies

q−2
νi+1−1 > |α− βi| > C(α, δ)H(βi)−3−δ > C(α, δ)2−3−δq−6−2δ

νi+ki−1

for a certain C(α, δ) > 0. The corollary follows immediately.

Lemma 5. Keeping all notations of Corollary 4 we have

0 < |Liα2 +Miα+Ni| < 8q4
νi+ki+1q

−2
νi+1−1.

P r o o f. Let βi denote the conjugate of βi. If |βi| ≥ 1 it follows from
Liβ

2
i +Miβi +Ni = 0 that

|βi|2 ≤ |Liβ2
i | = |Miβi +Ni| < 2q2

νi+ki−1(|βi|+ 1)

≤ 4q2
νi+ki−1|βi|

and therefore |βi| < 4q2
νi+ki−1, which remains true even if |βi| < 1. This

implies |α− βi| ≤ 1 + |βi| < 1 + 4q2
νi+ki−1 < 8q2

νi+ki−1 and thus

|Liα2 +Miα+Ni| = |Li| · |α− βi| · |α− βi|
< q2

νi+ki−1 · q−2
νi+1−1 · 8q2

νi+ki−1 = 8q4
νi+ki−1q

−2
νi+1−1.

Corollary 6. (1) Let b > a > 1 be integers and α = [0, aλ1 , bλ2 , aλ3 ,
bλ4 , . . .]. If

lim sup
n→∞

(
λn+1 − 13

log b
log a

(λ1 + . . .+ λn)
)

=∞

then α is transcendental.

(2) If even lim supn→∞ λn+1/(λ1 +. . .+λn) =∞ then α is a U2-number.
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P r o o f. If i > 1 then

qνi+ki−1 = qνi ≤ (b+ 1)1+λ1+...+λi−1

≤ (b2)2(λ1+...+λi−1) = a4 log b
log a (λ1+...+λi−1)

and therefore

qνi+1−1q
−13/4
νi+ki−1 ≥ aλi−13 log b

log a (λ1+...+λi−1)

and (1) follows immediately from Corollary 4.
We have

H(LiX2 +MiX +Ni) = max{|Li|, |Mi|, |Ni|} < 2q2
νi+ki−1 ≤ 2b4(νi+ki−1)

where H denotes the height of a polynomial just for once. Now estimating
qνi+ki−1 ≤ b2(νi+ki−1) and qνi+1−1 ≥ aνi+1−1 we deduce from Lemma 5 that

0 < |Liα2 +Miα+Ni|
< b−(2(νi+1−1) log a−8(νi+ki−1) log b−3 log 2)/ log b = (2b4(νi+ki−1))−Ψi

with

Ψi =
2(νi+1 − 1) log a− 8(νi + ki − 1) log b− 3 log 2

4(νi + ki − 1) log b+ log 2
.

Obviously lim supi→∞ Ψi =∞ is equivalent to lim supi→∞ νi+1/νi =∞ and
therefore to lim supi→∞ λi/(λ1 + . . .+ λi−1) =∞.

3. Values of ν∗(α) for transcendental α

Lemma 7. Let a < b be even positive integers and ν∗([a]) < µ < ν∗([b]).
Then there exists a transcendental α = [0, a1, a2, . . .] (and even a U2-number
α) such that ai ∈ {a, b} for all i ≥ 1 and ν∗(α) = µ.

P r o o f. The function

fab(x) =
1
8
· a+ xb

log([a]) + x log([b])

increases for positive x, fab(0) = ν∗([a]) and limx→∞ fab(x) = ν∗([b]).
Therefore there is a unique Q ∈ (0,∞) such that µ = fab(Q). Let (σn)n≥1

be a strictly increasing sequence of integers such that σ1Q ≥ 1 and

(1) lim sup
n→∞

(
σn+1 − 13(Q+ 1)

log b
log a

(σ1 + . . .+ σn)
)

=∞
or even

(2) lim sup
n→∞

σn+1

σ1 + . . .+ σn
=∞

are satisfied. Let λ2n−1 = 2σn and λ2n = 2[σnQ] for n ≥ 1. Furthermore, let
α = [0, aλ1 , bλ2 , aλ3 , bλ4 , . . .]. Using Corollary 6 it is easy to check that α is
transcendental if (1) and a U2-number if (2) is satisfied. Employing a special
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case of Theorem 1 in §3 of [14] which was already stated as Theorem 1 in
§4 of [13] we see that

ν∗(α) =
1
4

lim sup
m→∞

1
log qm

max
( ∑

1≤i≤m,2|i
ai,

∑

1≤i≤m,2-i
ai

)

=
1
8

lim sup
m→∞

1
log qm

m∑

i=1

ai

where we used the fact that limm→∞ log qm+1/ log qm = 1 for numbers of
bounded density and that

max
( ∑

1≤i≤m,2|i
ai,

∑

1≤i≤m,2 - i
ai

)
=

1
2

m∑

i=1

ai +∆ with |∆| ≤ b/2.

If λ1 + . . .+ λ2k−1 < m ≤ λ1 + . . .+ λ2k+1 then

log qm = (λ1 + λ3 + . . .+ λ2k−1 + r2k+1) log([a])

+ (λ2 + λ4 + . . .+ λ2k−2 + r2k) log([b]) +O(k)

with an implicit constant that depends on a and b only. Here

1 ≤ r2k = m− (λ1 + . . .+ λ2k−1) ≤ λ2k, r2k+1 = 0

if m ≤ λ1 + . . .+ λ2k,

r2k = λ2k, 1 ≤ r2k+1 = m− (λ1 + . . .+ λ2k) ≤ λ2k+1

if m > λ1 + . . .+ λ2k.

(If the reader considers this step to be too sketchy he or she may want to con-
sult the proof of Theorem 4.3 in [3].) Therefore ν∗(α) = 1

8 lim supm→∞ h(m)
where

h(m)

= (λ1 + λ3 + . . .+ λ2k−1 + r2k+1)a+ (λ2 + λ4 + . . .+ λ2k−2 + r2k)b
(λ1 + λ3 + . . .+ λ2k−1 + r2k+1) log([ā]) + (λ2 + λ4 + . . .+ λ2k−2 + r2k) log([b̄])

.

Obviously max{h(m) | λ1 + . . .+ λ2k−1 < m ≤ λ1 + . . .+ λ2k+1} = h(λ1 +
. . .+ λ2k) and thus

ν∗(α) = 1
8 lim
k→∞

sup
m≥k

h(m) = 1
8 lim
k→∞

sup
m>λ1+...+λ2k−1

h(m)

= 1
8 lim
k→∞

sup
m≥k

h(λ1 + . . .+ λ2m) = 1
8 lim sup

k→∞
h(λ1 + . . .+ λ2k) = µ

since limk→∞(λ2 + λ4 + . . .+ λ2k)/(λ1 + λ3 + . . .+ λ2k−1) = Q.
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Lemma 8. Let a be an even positive integer. Then there exists a transcen-
dental α = [0, a1, a2, . . .] (and even a U2-number α) such that ai ∈ {a, a+2}
for all i ≥ 1 and ν∗(α) = ν∗([a]).

P r o o f. Let λ1 = 1 and λ2n+1 = n(λ1 + λ3 + . . . + λ2n−1) for n ≥ 1.
Finally, put α = [0, aλ1 , a + 2, aλ3 , a + 2, aλ5 , . . .]. Then α is a U2-number
according to Corollary 6 and ν∗(α) = ν∗([a]) by Theorem 5.1 in [3].

P r o o f o f T h e o r e m s 1 a n d 2. Let b be a positive even integer.
Then

[ν∗([b]),∞) = {ν∗([b])} ∪
∞⋃

k=1

(ν∗([b]), ν∗([b+ 2k]))

and both theorems follow from Lemmata 7 and 8, the theorem of Y. Dupain
and V. T. Sós [6] and Theorem 3.1 of [3].
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[8] O. Perron, Die Lehre von den Kettenbrüchen, Band 1 , Teubner, Stuttgart, 1977.
[9] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by

rationals, Acta Math. 119 (1967), 27–50.
[10] —, Simultaneous approximation to algebraic numbers by rationals, ibid. 125 (1970),

189–201.
[11] —, Irregularities of distribution VII , Acta Arith. 21 (1972), 45–50.
[12] —, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
[13] J. Scho ißenge ier, On the discrepancy of (nα) II , J. Number Theory 24 (1986),

54–64.
[14] —, The discrepancy of (nα)n≥1, Math. Ann. 296 (1993), 529–545.
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