On the distribution of the sequence $(n\alpha)$ with transcendental α

by

CHRISTOPH BAXA (Wien)

1. Introduction. Let $\alpha \in \mathbb{R}$ be irrational with regular continued fraction expansion $\alpha = [a_0, a_1, a_2, \ldots]$ (i.e. $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{N}$ for all $i \geq 1$) and convergents $p_n/q_n = [a_0, a_1, \ldots, a_n]$. (Sometimes we write $a_n(\alpha)$ and $p_n(\alpha)/q_n(\alpha)$ to stress the dependence on α .) It is a classic result of P. Bohl [5], W. Sierpiński [15], [16] and H. Weyl [17], [18] that the sequence $(n\alpha)_{n\geq 1}$ is uniformly distributed modulo 1. This property is studied from a quantitative viewpoint by means of the speed of convergence in the limit relation $\lim_{N\to\infty} D_N^*(\alpha) = 0$ where the quantity

$$D_N^*(\alpha) = \sup_{0 \le x \le 1} \left| \frac{1}{N} \sum_{n=1}^N c_{[0,x)}(\{n\alpha\}) - x \right|$$

is called discrepancy. According to a theorem of W. M. Schmidt [11] the convergence is best possible if $D_N^*(\alpha) = O((\log N)/N)$. It was first observed by H. Behnke [4] that this estimate is satisfied if and only if α is of bounded density, i.e. $\sum_{i=1}^m a_i = O(m)$ as $m \to \infty$. For α of bounded density the map $\alpha \mapsto \nu^*(\alpha) = \limsup_{N \to \infty} ND_N^*(\alpha)/\log N$ is used to obtain more detailed information. It was proved by Y. Dupain and V. T. Sós [6] that $\inf_{\alpha \in B} \nu^*(\alpha) = \nu^*([2])$ where B denotes the set of numbers of bounded density and $[2] = [2, 2, 2, \ldots] = 1 + \sqrt{2}$ is used as a convenient shorthand notation. J. Schoißengeier [14] expressed $\nu^*(\alpha)$ in terms of the continued fraction expansion of α after he had obtained partial results in [13]. Employing these results C. Baxa [3] showed the following:

- (1) Let $B^q := \{ \alpha \in B \mid \alpha \text{ is a quadratic irrationality} \}$. Then we have $\nu^*(B) = \overline{\nu^*(B^q)} = [\nu^*([\overline{2}]), \infty)$.
- (2) Let $b \ge 4$ be an even integer, $B_b := \{\alpha = [a_0, a_1, a_2, \ldots] \in B \mid a_i \ge b \}$ for all $i \ge 1$ and $B_b^q := \{\alpha \in B_b \mid \alpha \text{ is a quadratic irrationality}\}$. Then $\nu^*(B_b) = \overline{\nu^*(B_b^q)} = [\nu^*([\overline{b}]), \infty)$.

¹⁹⁹¹ Mathematics Subject Classification: 11K31, 11K38, 11J81.

358 C. Baxa

It is the purpose of the present paper to strengthen these results and to prove:

THEOREM 1. Let $B^t := \{ \alpha \in B \mid \alpha \text{ is transcendental} \}$ and $B^u := \{ \alpha \in B \mid \alpha \text{ is a } U_2\text{-number} \}$. Then

$$\nu^*(B^t) = \nu^*(B^u) = [\nu^*([\overline{2}]), \infty).$$

THEOREM 2. Let $B_b^t := \{ \alpha \in B_b \mid \alpha \text{ is transcendental} \}$ and $B_b^u := \{ \alpha \in B_b \mid \alpha \text{ is a } U_2\text{-number} \}$ (where again $b \geq 4$ is assumed to be an even integer). Then

$$\nu^*(B_b^t) = \nu^*(B_b^u) = [\nu^*([\bar{b}]), \infty).$$

Remarks. (1) For a more detailed and leisurely exposition of the problem and its history the reader is referred to [3].

- (2) In contrast to Theorem 1 we see that $\nu^*(B^q) \subsetneq [\nu^*([2]), \infty)$ since $\nu^*(\alpha)$ is transcendental if α is a quadratic irrationality. This follows from Theorem 1 in §4 of [14] as the logarithm of an algebraic number \neq 1 is always transcendental.
- **2.** Criteria for transcendence. Our criteria are a variant of a method used by E. Maillet [7, Chapter 7] and A. Baker [1], [2] (see also [8, §36]). We will follow rather closely parts of [1] and [2] with two major differences:
- (1) We will use a theorem by W. M. Schmidt which became available only a few years later [9] and was generalized in [10] (compare also with [12]).
- (2) We do not aim at criteria of great generality but at specific ones which are well suited for our purpose. This explains the special shape of Corollary 6 below.

DEFINITION. If β is algebraic then $H(\beta)$ denotes the classical absolute height. This means, if $p(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X] \setminus \{0\}$ with $\gcd(a_0, \dots, a_m) = 1$ and $p(\beta) = 0$ (and $\deg p$ minimal with this property) then

$$H(\beta) = \max_{0 \le i \le m} |a_i|.$$

THEOREM 3 (W. M. Schmidt). Let $\alpha \in \mathbb{R}$ be algebraic but neither rational nor a quadratic irrationality and $\delta > 0$. Then there exist only finitely many $\beta \in \mathbb{R}$ which are rational or quadratic irrationalities such that $|\alpha - \beta| < H(\beta)^{-3-\delta}$.

COROLLARY 4. Let $\alpha \in \mathbb{R}$ have "quasiperiodic" but not periodic continued fraction expansion

$$\alpha = [0, a_1, \dots, a_{\nu_1 - 1}, \overline{a_{\nu_1}, \dots, a_{\nu_1 + k_1 - 1}}^{\lambda_1}, \overline{a_{\nu_2}, \dots, a_{\nu_2 + k_2 - 1}}^{\lambda_2}, \dots]$$

$$(i.e. \ \nu_n = \nu_1 + \sum_{i=1}^{n-1} \lambda_i k_i). \ If \ \alpha \ is \ algebraic \ then \ \lim\sup_{i \to \infty} q_{\nu_{i+1} - 1} q_{\nu_i + k_i - 1}^{-3 - \delta}$$

$$< \infty. \ (Here \ \overline{a_{\nu_1}, \dots, a_{\nu + k}}^{\lambda} \ indicates \ that \ the \ partial \ quotients \ a_{\nu_1}, \dots, a_{\nu + k}$$

should be repeated λ times. For example $[0, \overline{1,2,3}^2, \overline{5}^3, 7, \ldots] = [0,1,2,3,1,2,3,5,5,5,7,\ldots]$.)

Proof. For $i \geq 1$ we define the quadratic irrationality

$$\beta_i := [0, a_1, \dots, a_{\nu_1 - 1}, \overline{a_{\nu_1}, \dots, a_{\nu_1 + k_1 - 1}}^{\lambda_1}, \dots \\ \dots, \overline{a_{\nu_{i-1}}, \dots, a_{\nu_{i-1} + k_{i-1} - 1}}^{\lambda_1}, \dots \\ \overline{a_{\nu_i}, \dots, a_{\nu_i + k_i - 1}}].$$

For $k \leq \nu_{i+1} - 1$ we have $a_k(\alpha) = a_k(\beta_i)$ and we may write p_k/q_k for $p_k(\alpha)/q_k(\alpha) = p_k(\beta_i)/q_k(\beta_i)$. Now

$$L_i \beta_i^2 + M_i \beta_i + N_i = 0$$

with

$$L_{i} = q_{\nu_{i}-2}q_{\nu_{i}+k_{i}-1} - q_{\nu_{i}-1}q_{\nu_{i}+k_{i}-2},$$

$$M_{i} = q_{\nu_{i}-1}p_{\nu_{i}+k_{i}-2} + p_{\nu_{i}-1}q_{\nu_{i}+k_{i}-2} - p_{\nu_{i}-2}q_{\nu_{i}+k_{i}-1} - q_{\nu_{i}-2}p_{\nu_{i}+k_{i}-1},$$

$$N_{i} = p_{\nu_{i}-2}p_{\nu_{i}+k_{i}-1} - p_{\nu_{i}-1}p_{\nu_{i}+k_{i}-2},$$

and therefore

$$H(\beta_i) \le \max\{|L_i|, |M_i|, |N_i|\} < 2q_{\nu_i+k_i-1}^2.$$

Theorem 3 implies

$$q_{\nu_{i+1}-1}^{-2} > |\alpha - \beta_i| > C(\alpha, \delta)H(\beta_i)^{-3-\delta} > C(\alpha, \delta)2^{-3-\delta}q_{\nu_i + k_i - 1}^{-6-2\delta}$$

for a certain $C(\alpha, \delta) > 0$. The corollary follows immediately.

Lemma 5. Keeping all notations of Corollary 4 we have

$$0 < |L_i \alpha^2 + M_i \alpha + N_i| < 8q_{\nu_i + k_i + 1}^4 q_{\nu_{i+1} - 1}^{-2}.$$

Proof. Let $\overline{\beta}_i$ denote the conjugate of β_i . If $|\overline{\beta}_i| \geq 1$ it follows from $L_i \overline{\beta}_i^2 + M_i \overline{\beta}_i + N_i = 0$ that

$$|\overline{\beta}_{i}|^{2} \leq |L_{i}\overline{\beta}_{i}^{2}| = |M_{i}\overline{\beta}_{i} + N_{i}| < 2q_{\nu_{i}+k_{i}-1}^{2}(|\overline{\beta}_{i}| + 1)$$

$$\leq 4q_{\nu_{i}+k_{i}-1}^{2}|\overline{\beta}_{i}|$$

and therefore $|\overline{\beta}_i| < 4q_{\nu_i+k_i-1}^2$, which remains true even if $|\overline{\beta}_i| < 1$. This implies $|\alpha - \overline{\beta}_i| \le 1 + |\overline{\beta}_i| < 1 + 4q_{\nu_i+k_i-1}^2 < 8q_{\nu_i+k_i-1}^2$ and thus

$$|L_i\alpha^2 + M_i\alpha + N_i| = |L_i| \cdot |\alpha - \beta_i| \cdot |\alpha - \overline{\beta}_i|$$

$$< q_{\nu_i + k_i - 1}^2 \cdot q_{\nu_{i+1} - 1}^{-2} \cdot 8q_{\nu_i + k_i - 1}^2 = 8q_{\nu_i + k_i - 1}^4 q_{\nu_{i+1} - 1}^{-2}.$$

Corollary 6. (1) Let b > a > 1 be integers and $\alpha = [0, \overline{a}^{\lambda_1}, \overline{b}^{\lambda_2}, \overline{a}^{\lambda_3}, \overline{b}^{\lambda_4}, \ldots]$. If

$$\limsup_{n \to \infty} \left(\lambda_{n+1} - 13 \frac{\log b}{\log a} (\lambda_1 + \ldots + \lambda_n) \right) = \infty$$

then α is transcendental.

(2) If even $\limsup_{n\to\infty} \lambda_{n+1}/(\lambda_1+\ldots+\lambda_n) = \infty$ then α is a U_2 -number.

360 C. Baxa

Proof. If i > 1 then

$$q_{\nu_i + k_i - 1} = q_{\nu_i} \le (b+1)^{1+\lambda_1 + \dots + \lambda_{i-1}}$$

$$\le (b^2)^{2(\lambda_1 + \dots + \lambda_{i-1})} = a^{4\frac{\log b}{\log a}(\lambda_1 + \dots + \lambda_{i-1})}$$

and therefore

$$q_{\nu_{i+1}-1}q_{\nu_{i}+k_{i}-1}^{-13/4} \ge a^{\lambda_{i}-13\frac{\log b}{\log a}(\lambda_{1}+\ldots+\lambda_{i-1})}$$

and (1) follows immediately from Corollary 4.

We have

$$H(L_iX^2 + M_iX + N_i) = \max\{|L_i|, |M_i|, |N_i|\} < 2q_{\nu + k_i - 1}^2 \le 2b^{4(\nu_i + k_i - 1)}$$

where H denotes the height of a polynomial just for once. Now estimating $q_{\nu_i+k_i-1} \leq b^{2(\nu_i+k_i-1)}$ and $q_{\nu_{i+1}-1} \geq a^{\nu_{i+1}-1}$ we deduce from Lemma 5 that

$$0 < |L_i \alpha^2 + M_i \alpha + N_i|$$

$$< b^{-(2(\nu_{i+1} - 1) \log a - 8(\nu_i + k_i - 1) \log b - 3 \log 2)/\log b} = (2b^{4(\nu_i + k_i - 1)})^{-\Psi_i}$$

with

$$\Psi_i = \frac{2(\nu_{i+1} - 1)\log a - 8(\nu_i + k_i - 1)\log b - 3\log 2}{4(\nu_i + k_i - 1)\log b + \log 2}.$$

Obviously $\limsup_{i\to\infty} \Psi_i = \infty$ is equivalent to $\limsup_{i\to\infty} \nu_{i+1}/\nu_i = \infty$ and therefore to $\limsup_{i\to\infty} \lambda_i/(\lambda_1+\ldots+\lambda_{i-1}) = \infty$.

3. Values of $\nu^*(\alpha)$ for transcendental α

LEMMA 7. Let a < b be even positive integers and $\nu^*([\overline{a}]) < \mu < \nu^*([\overline{b}])$. Then there exists a transcendental $\alpha = [0, a_1, a_2, \ldots]$ (and even a U_2 -number α) such that $a_i \in \{a, b\}$ for all $i \geq 1$ and $\nu^*(\alpha) = \mu$.

Proof. The function

$$f_{ab}(x) = \frac{1}{8} \cdot \frac{a + xb}{\log([\overline{a}]) + x \log([\overline{b}])}$$

increases for positive x, $f_{ab}(0) = \nu^*([\overline{a}])$ and $\lim_{x\to\infty} f_{ab}(x) = \nu^*([\overline{b}])$. Therefore there is a unique $Q \in (0,\infty)$ such that $\mu = f_{ab}(Q)$. Let $(\sigma_n)_{n\geq 1}$ be a strictly increasing sequence of integers such that $\sigma_1 Q \geq 1$ and

(1)
$$\limsup_{n \to \infty} \left(\sigma_{n+1} - 13(Q+1) \frac{\log b}{\log a} (\sigma_1 + \ldots + \sigma_n) \right) = \infty$$

or even

(2)
$$\limsup_{n \to \infty} \frac{\sigma_{n+1}}{\sigma_1 + \ldots + \sigma_n} = \infty$$

are satisfied. Let $\lambda_{2n-1} = 2\sigma_n$ and $\lambda_{2n} = 2[\sigma_n Q]$ for $n \geq 1$. Furthermore, let $\alpha = [0, \overline{a}^{\lambda_1}, \overline{b}^{\lambda_2}, \overline{a}^{\lambda_3}, \overline{b}^{\lambda_4}, \ldots]$. Using Corollary 6 it is easy to check that α is transcendental if (1) and a U_2 -number if (2) is satisfied. Employing a special

case of Theorem 1 in $\S 3$ of [14] which was already stated as Theorem 1 in $\S 4$ of [13] we see that

$$\nu^*(\alpha) = \frac{1}{4} \limsup_{m \to \infty} \frac{1}{\log q_m} \max \left(\sum_{1 \le i \le m, 2 \mid i} a_i, \sum_{1 \le i \le m, 2 \nmid i} a_i \right)$$
$$= \frac{1}{8} \limsup_{m \to \infty} \frac{1}{\log q_m} \sum_{i=1}^m a_i$$

where we used the fact that $\lim_{m\to\infty} \log q_{m+1}/\log q_m = 1$ for numbers of bounded density and that

$$\max\Bigl(\sum_{1\leq i\leq m,2\mid i}a_i,\sum_{1\leq i\leq m,2\nmid i}a_i\Bigr)=\frac{1}{2}\sum_{i=1}^ma_i+\Delta\quad \text{ with } |\Delta|\leq b/2.$$

If
$$\lambda_1 + \ldots + \lambda_{2k-1} < m \le \lambda_1 + \ldots + \lambda_{2k+1}$$
 then

$$\log q_m = (\lambda_1 + \lambda_3 + \dots + \lambda_{2k-1} + r_{2k+1}) \log([\overline{a}]) + (\lambda_2 + \lambda_4 + \dots + \lambda_{2k-2} + r_{2k}) \log([\overline{b}]) + O(k)$$

with an implicit constant that depends on a and b only. Here

$$1 \le r_{2k} = m - (\lambda_1 + \dots + \lambda_{2k-1}) \le \lambda_{2k}, \quad r_{2k+1} = 0$$

if $m \le \lambda_1 + \dots + \lambda_{2k},$
 $r_{2k} = \lambda_{2k}, \quad 1 \le r_{2k+1} = m - (\lambda_1 + \dots + \lambda_{2k}) \le \lambda_{2k+1}$
if $m > \lambda_1 + \dots + \lambda_{2k}.$

(If the reader considers this step to be too sketchy he or she may want to consult the proof of Theorem 4.3 in [3].) Therefore $\nu^*(\alpha) = \frac{1}{8} \limsup_{m \to \infty} h(m)$ where

$$h(m) = \frac{(\lambda_1 + \lambda_3 + \ldots + \lambda_{2k-1} + r_{2k+1})a + (\lambda_2 + \lambda_4 + \ldots + \lambda_{2k-2} + r_{2k})b}{(\lambda_1 + \lambda_3 + \ldots + \lambda_{2k-1} + r_{2k+1})\log([\bar{a}]) + (\lambda_2 + \lambda_4 + \ldots + \lambda_{2k-2} + r_{2k})\log([\bar{b}])}.$$

Obviously $\max\{h(m) \mid \lambda_1 + \ldots + \lambda_{2k-1} < m \le \lambda_1 + \ldots + \lambda_{2k+1}\} = h(\lambda_1 + \ldots + \lambda_{2k})$ and thus

$$\nu^{*}(\alpha) = \frac{1}{8} \lim_{k \to \infty} \sup_{m \ge k} h(m) = \frac{1}{8} \lim_{k \to \infty} \sup_{m > \lambda_{1} + \dots + \lambda_{2k-1}} h(m)$$
$$= \frac{1}{8} \lim_{k \to \infty} \sup_{m > k} h(\lambda_{1} + \dots + \lambda_{2m}) = \frac{1}{8} \lim_{k \to \infty} \sup_{k \to \infty} h(\lambda_{1} + \dots + \lambda_{2k}) = \mu$$

since $\lim_{k\to\infty} (\lambda_2 + \lambda_4 + \ldots + \lambda_{2k})/(\lambda_1 + \lambda_3 + \ldots + \lambda_{2k-1}) = Q$.

362 C. Baxa

LEMMA 8. Let a be an even positive integer. Then there exists a transcendental $\alpha = [0, a_1, a_2, \ldots]$ (and even a U_2 -number α) such that $a_i \in \{a, a+2\}$ for all $i \geq 1$ and $\nu^*(\alpha) = \nu^*([\overline{a}])$.

Proof. Let $\lambda_1 = 1$ and $\lambda_{2n+1} = n(\lambda_1 + \lambda_3 + \ldots + \lambda_{2n-1})$ for $n \geq 1$. Finally, put $\alpha = [0, \overline{a}^{\lambda_1}, a + 2, \overline{a}^{\lambda_3}, a + 2, \overline{a}^{\lambda_5}, \ldots]$. Then α is a U_2 -number according to Corollary 6 and $\nu^*(\alpha) = \nu^*([\overline{a}])$ by Theorem 5.1 in [3].

Proof of Theorems 1 and 2. Let b be a positive even integer. Then

$$[\nu^*([\overline{b}]), \infty) = \{\nu^*([\overline{b}])\} \cup \bigcup_{k=1}^{\infty} (\nu^*([\overline{b}]), \nu^*([\overline{b+2k}]))$$

and both theorems follow from Lemmata 7 and 8, the theorem of Y. Dupain and V. T. Sós [6] and Theorem 3.1 of [3].

References

- [1] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1–8.
- [2] —, On Mahler's classification of transcendental numbers, Acta Math. 111 (1964), 97–120.
- [3] C. Baxa, On the discrepancy of the sequence (nα), J. Number Theory 55 (1995), 94–107.
- [4] H. Behnke, Zur Theorie der diophantischen Approximationen I, Abh. Math. Sem. Univ. Hamburg 3 (1924), 261–318.
- P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem,
 J. Reine Angew. Math. 135 (1909), 189–283.
- [6] Y. Dupain and V. T. Sós, On the discrepancy of (nα) sequences, in: Topics in Classical Number Theory, Vol. 1, Colloq. Math. Soc. János Bolyai 34, G. Halász (ed.), North-Holland, Amsterdam, 1984, 355–387.
- [7] E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, Paris, 1906.
- [8] O. Perron, Die Lehre von den Kettenbrüchen, Band 1, Teubner, Stuttgart, 1977.
- [9] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27–50.
- [10] —, Simultaneous approximation to algebraic numbers by rationals, ibid. 125 (1970), 189–201.
- [11] —, Irregularities of distribution VII, Acta Arith. 21 (1972), 45–50.
- [12] —, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
- [13] J. Schoißengeier, On the discrepancy of $(n\alpha)$ II, J. Number Theory 24 (1986), 54-64
- [14] —, The discrepancy of $(n\alpha)_{n\geq 1}$, Math. Ann. 296 (1993), 529–545.
- W. Sierpiński, Sur la valeur asymptotique d'une certaine somme, Bull. Internat. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1910, 9–11.
- [16] —, On the asymptotic value of a certain sum, Rozprawy Akademii Umiejętności w Krakowie, Wydział mat. przyrod. 50 (1910), 1–10 (in Polish).

- [17] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377–407.
- [18] —, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.

Institut für Mathematik Universität Wien Strudlhofgasse 4 A-1090 Wien, Austria E-mail: baxa@pap.univie.ac.at

Received on 8.10.1996 and in revised form on 3.4.1997

(3057)