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In what follows A will always denote a finite subset of the non-zero reals,
and n the number of its elements. As usual, A+A and A · A stand for the
sets of all pairwise sums {a+a′ : a, a′ ∈ A} and products {a ·a′ : a, a′ ∈ A},
respectively. Also, |S| denotes the size of a set S.

The following problem was posed by Erdős and Szemerédi (see [5]):

For a given n, how small can one make |A+A| and |A · A| simultaneously?

In other words, defining

m(A) := max{|A+A|, |A · A|},
a lower estimate should be found for

g(n) := min
|A|=n

m(A).

R e m a r k. The philosophy behind the question is that either of |A+A|
or |A · A| is easy to minimize—just take an arithmetic or geometric (i.e.,
exponential) progression for A. However, in both of these examples, the
other set becomes very large.

In their above mentioned paper, Erdős and Szemerédi managed to prove
the existence of a small but positive constant c1 such that g(n) ≥ n1+c1 for
all n. (See also p. 107 of Erdős’ paper [3].) Later on, Nathanson and K. Ford
found the lower bounds n32/31 and n16/15, respectively [7].

The goal of this paper is to improve the exponent to 5/4.

Theorem 1. There is a positive absolute constant c such that , for every
n-element set A,

c · n5/4 ≤ max{|A+A|, |A · A|}.
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1. A tool from geometry. In the proof we shall use a result of Sze-
merédi and Trotter (see [9]).

Proposition 1 (Szemerédi–Trotter Theorem). Let t and N be positive
integers with t2 ≤ N . Let , moreover , P be a set of N distinct points in the
plane and e1, . . . , eM some (also distinct) straight lines. If each of the ei
contains t or more points of P, then

M ≤ C · N
2

t3
.

(Here C is a huge absolute constant of Szemerédi and Trotter—improved
later to the more reasonable value of 3 by Clarkson et al . [2]. Recently, a
simple and very elegant proof was found by Székely [8].)

R e m a r k. The importance of the above assertion lies in the fact that
the exponent of t in the denominator is strictly larger than 2. (A bound of
M ≤ (N2

)
/
(
t
2

)
would be trivial by just double-counting the pairs of points.)

The first result in this direction was that of Beck [1], with an exponent 2.05
of t; this was later improved to t3 by Szemerédi and Trotter.

2. Proof of the Theorem. Denote the elements of A by a1, . . . , an,
and define the following n2 functions:

fj,k(x) := aj(x− ak) for 1 ≤ j, k ≤ n.
Lemma 2. For every j, k ≤ n, the function fj,k maps at least n elements

of A+A to some elements of A · A.

(Indeed, the image of ak + ai is aj · ai ∈ A · A, for every ai ∈ A.)

From a geometric point of view, the above lemma asserts that the graph
of each of the functions fj,k contains n or more points of P := (A + A) ×
(A·A). Put N = |P| = |(A+A)| · |(A·A)|. Then, by applying Proposition 1
to P and the fj,k (with M = n2 and t = n), we get

n2 ≤ C · N
2

n3 ,

i.e., N ≥ C−1/2n5/2—whence the Theorem follows immediately.
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