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1. Introduction. Let N be a positive integer, and let

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N
}
.

For each positive divisor N ′ of N with (N ′, N/N ′) = 1 (we write N ′ ‖N),
WN ′ = W

(N)
N ′ denotes the corresponding Atkin–Lehner involution defined

for Γ0(N). (W1 is the identity operator.) Then we define the modular group
Γ ∗0 (N) to be the group generated by Γ0(N) and {WN ′}N ′‖N :

Γ ∗0 (N) = 〈Γ0(N) ∪ {WN ′}N ′‖N 〉.
It is well known (see [1]) that Γ ∗0 (N) normalizes Γ0(N) and the factor group
W (N) := Γ ∗0 (N)/Γ0(N) is abelian of type (2, . . . , 2) with order 2ω(N), where
ω(N) denotes the number of the distinct prime divisors of N .

Let X∗0 (N) be the modular curve which corresponds to Γ ∗0 (N), namely,

X∗0 (N) := X0(N)/W (N) = X0(N)/〈{WN ′}N ′‖N 〉.
In [7], we proved

Theorem A. Assume that N is square-free. Then X∗0 (N) is hyperelliptic
if and only if X∗0 (N) is of genus two.

In [7], we were reduced to 56 cases (21 square-free cases and 35 non-
square-free cases). The above theorem, conjectured by Kluit [9], is the result
for square-free cases.

The purpose of this article is to determine all hyperelliptic curves of type
X∗0 (N) with genus ≥ 3, i.e., to check the hyperellipticity of X∗0 (N) for the
35 values of N listed in Table 1. Our result is formulated in Theorem B
below.

1991 Mathematics Subject Classification: Primary 11F11; Secondary 11F06, 11G30,
14H45, 14G05, 14H25.
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Table 1

Genus N

3 136 144 152 162 164 171 175 196 207 234
240 252 270 294 312 315 348 420 476

4 160 176 264 280 300 306 342
5 216 279 396 630
6 336
7 360 450
10 840
19 1680

Theorem B. There are sixty-four values of N for which X∗0 (N) is hy-
perelliptic. Of these, there are only seven values of N for which X∗0 (N) is
hyperelliptic with genus g ≥ 3, namely , N = 136, 171, 207, 252, 315 for
g = 3, N = 176 for g = 4, and N = 279 for g = 5.

R e m a r k 1. The 57 values of N for which X∗0 (N) is of genus two are as
follows:

67, 73, 85, 88, 93, 103, 104, 106, 107, 112,
115, 116, 117, 121, 122, 125, 129, 133, 134, 135,
146, 147, 153, 154, 158, 161, 165, 166, 167, 168,
170, 177, 180, 184, 186, 191, 198, 204, 205, 206,
209, 213, 215, 221, 230, 255, 266, 276, 284, 285,
286, 287, 299, 330, 357, 380, 390.

Their defining equations are given in [5] (see also [11]).

Notation. Z, Q, C denote respectively the ring of rational integers, the
field of rational numbers and the field of complex numbers. Fpν denotes
the finite field with pν elements. Pn is the n-dimensional projective space.
We denote by τ an element of the complex upper half plane, and we put
q = exp(2πiτ).

2. Modular involutions on X∗0 (N) (I). In this section, we treat the
case with 8 |N or 9 ‖N . As we shall show, X∗0 (N) has an involution which
comes from a matrix when 8 |N or 9 ‖N . We can use this involution to
determine the hyperellipticity of X∗0 (N) for some cases. One may refer to
[10], [1] for the structure of the normalizer of Γ0(N) in GL+

2 (Q). But he
should be careful to use Theorem 8 of [1], since some errors are included
there.

Put Sµ =
( µ 1

0 µ

)
. Then S2 is in the normalizer of Γ0(N) when N is

divisible by 4, and S3 is in the normalizer of Γ0(N) when N is divisible by 9.

Proposition 1. (i) Let 2ν ‖N with ν ≥ 3. Then V2 = S2W2νS2 nor-
malizes Γ ∗0 (N) and Γ0(N). Further , V 2

2 ∈ Γ0(N).
(ii) Let 9 ‖N . Then V3 = S3W9S

2
3 normalizes Γ ∗0 (N) and Γ0(N). Fur-

ther , V 2
3 ∈ Γ0(N).
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P r o o f. This follows from a direct calculation.

Corollary. Suppose 8 |N (resp. 9 ‖N). Then V2 (resp. V3) defines an
involution on X0(N) and on X∗0 (N).

Let S2(N), S0
2(N) and S∗2 (N) be respectively the space of cuspforms of

weight 2 on Γ0(N), the space spanned by newforms of weight 2 on Γ0(N),
and the space of cuspforms of weight 2 on Γ ∗0 (N). Put V = V2 or V3 (or
V2V3 = V3V2 if N = 144 = 2432). To calculate the genus g = g(N ;V ) of
X∗0 (N)/〈V 〉, it suffices to determine the dimension of the subspace

S∗2 (N)V = {f ∈ S∗2 (N) | f |V = f}
of S∗2 (N).

Lemma 1. Let M be a positive integer. Let M ′ be a positive divisor of
M and let d be a positive divisor of M/M ′. For a prime divisor p of M ,
define integers α, β and γ by

pα ‖M, pα−β ‖M ′, pγ ‖ d.
(i) Let f(τ) ∈ S2(M ′). Then

f(dτ)|W (M)
pα = pβ−2γ(f |W (M ′)

pα−β )(d′τ),

where d′ = pβ−2γd.
(ii) If f ∈ S0

2(M ′) is a newform on Γ0(M ′), then f is also an eigenform
for all W (M ′)

m with m ‖M ′. In particular , if f |W (M ′)
pα−β = λ′pf (= ±f) and if

β 6= 2γ (resp. β = 2γ), then

f(dτ)± pβ−2γλ′pf(d′τ) (resp. f(dτ))

becomes an eigenform for W (M)
pα with eigenvalue equal to ±1 (resp. λ′p).

P r o o f. See [1].

For simplicity, we will sometimes write f (d)(τ) = f(dτ) in the following.

Proposition 2. Let N be a positive integer such that 8 |N . Let N ′ be a
positive divisor of N and let d be a positive divisor of N/N ′. Define integers
α, β and γ by

2α ‖N, 2α−β ‖N ′, 2γ ‖ d,
so that N = 2αM and N ′ = 2α−βM ′ for some positive odd integers M,M ′

with M ′ |M . Let f =
∑
anq

n be a newform on Γ0(N ′) such that f |W (N ′)
2α−β =

λf , and put

g(d) = f (d) + f (d)|W (N ′)
2α−β = f (d) + 2β−2γλf (d′)

with d′ = 2β−2γd.
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(i) If α− β ≥ 2, then


g(d)|V2 = −g(d) if β > γ = 0,
g(d)|V2 = +g(d) if β − γ > γ > 0,
f (d)|V2 = λf (d) if β = 2γ.

(ii) If α− β = 1, then



(g(d) + λg(2d))|V2 = −(g(d) + λg(2d)) if γ = 0,
g(d)|V2 = +g(d) if β − γ > γ > 0,
f (d)|V2 = λf (d) if β = 2γ.

P r o o f. Write S = S2 and W = W
(N)
2α . Since Sτ = τ + 1/2, we have

f (d)|S = +f (d) if γ > 0, and f (d)|S = −f (d) if α − β ≥ 2 and γ = 0 (note
that if α− β ≥ 2, then a2m = 0 for m = 1, 2, . . .). The assertions, except for
the case α − β = 1 and γ = 0, follow from these and Lemma 1. Finally, let
α− β = 1 and γ = 0. Then

f (d) + f (d)|S = 2
∞∑
n=1

a2nq
2dn = 2a2

∞∑
n=1

anq
2dn = 2a2f

(2d) = −2λf (2d),

so we have

f (d)|V2 = −2λf (2d)|WS − f (d)|WS = −2β−1f (2β−1d) − 2βλf (2βd).

From this, we see that

(f (d) − f (d)|V2) + λ(f (2d) − f (2d)|V2)

= (f (d) + 2βλf (2βd)) + λ(f (2d) + 2β−2λf (2β−1d)),

hence the assertion follows.

Proposition 3. Let N = 9M with M a positive integer such that 3 -M .
Let M ′ be a positive divisor of M , and let d be a positive divisor of M/M ′.

(i) Let f =
∑
anq

n be a newform on Γ0(9M ′) such that f |W (9M ′)
9 =

+f . Then f (d) is an eigenform of V3 with eigenvalue +1.
(ii) Let f =

∑
anq

n be a newform on Γ0(3M ′) such that f |W (3M ′)
3 = λf .

Then f (d) + 3λf (3d) is an eigenform of V3 with eigenvalue −1.

P r o o f. Write S = S3 and W = W
(9M)
9 , and put ζ = exp(2πi/3). Since

Sτ = τ + 1/3, it follows that

f (d) + f (d)|S + f (d)|S2 =
∑

(1 + ζdn + ζ2dn)anqdn

= 3
∑

a3nq
3dn = 3a3

∑
anq

3dn.

(i) In this case, we have

(f (d)|S + f (d)|S2)|W = f (d)|S + f (d)|S2,
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since a3 = 0 and f |W (9M ′)
9 = f . On the other hand, by Theorem 6 of [1],

g :=
1√−3

(f |S − f |S2) =
∞∑
n=1

(−3
n

)
anq

n

is also a newform on Γ0(9M ′) with g|W (9M ′)
9 = g. Hence f (d)|SW = f (d)|S,

or equivalently, f (d)|SWS2 = f (d).
(ii) In this case, we have

f (d) + f (d)|S + f (d)|S2 = 3a3f
(3d) = −f (d)|W,

so

f (d)|WS2 + f (d)|SWS2 + f (d)|S2WS2 = −f (d)|S2.

Now we have

3λf (3d)|SWS2 = 3λf (3d)|WS2 = f (d)|S2

and

f (d)|WS2 = 3λf (3d)|S2 = 3λf (3d).

Also we compute

f (d)|S2WS2 = f (d)|WSW = 3λf (3d)|SW = 3λf (3d)|W = f (d),

since (WS)3 ∈ Γ0(9M). Hence we obtain the equality

(f + 3λf (3))|SWS2 = −(f + 3λf (3)),

as desired.

As a consequence of these results, we can determine the hyperellipticity
of X∗0 (N) for some cases.

R e m a r k 2. To calculate g, it seems more natural to find the formula
for the number of the fixed points for V , but our method has the advantage
of giving the defining equation of X∗0 (N) (see also the last section).

Example 1. Let N = 136 = 8 · 17. Then S∗2 (136) is spanned by

f1 − 4f (4)
1 , f2 − 2f (2)

2 , f3 − 2f (2)
3 ,

where f1, f2, f3 are newforms such that f1 ∈ S0
2(2 · 17)(−,+) and f2, f3 ∈

S0
2(4 ·17)(−,+). Here and in what follows, signatures indicate the eigenvalues

of Atkin–Lehner involutions (see [2]). Thus X∗0 (136)/〈V2〉 ∼= P1, from which
we see that X∗0 (136) is hyperelliptic, with hyperelliptic involution V2.
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Example 2. Let N = 360 = 8 · 45. A basis 〈g1, . . . , g7〉 of S∗2 (360) is
given by

g1 = f1 − 2f (2)
1 + 9f (9)

1 − 18f (18)
1 ,

g2 = f
(3)
1 − 2f (6)

1 ,

g3 = f2 + 2f (2)
2 + 4f (4)

2 − 3f (3)
2 − 6f (6)

2 − 12f (12)
2 ,

g4 = f
(2)
2 − 3f (6)

2 ,

g5 = f3 − 2f (2)
3 + 5f (5)

3 − 10f (10)
3 ,

g6 = f4 − 4f (4)
4 ,

g7 = f5 − 3f (3)
5 ,

where f1 ∈ S0
2(4 · 5)(−,+), f2 ∈ S0

2(2 · 3 · 5)(+,−,+), f3 ∈ S0
2(4 · 9)(−,+), f4 ∈

S0
2(2 ·9 ·5)(−,+,+) and f5 ∈ S0

2(8 ·3 ·5)(+,−,+). Then, by Proposition 2, we see
that S∗2 (360)V2 = 〈g4, g7〉C, hence the genus g = g(360;V2) of X∗0 (360)/〈V2〉
is 2. Therefore X∗0 (360) is not hyperelliptic, by the following proposition.

Proposition 4. Let X/C be a hyperelliptic curve of genus g. Let w be
an involution on X, and g the genus of X/〈w〉. Suppose g 6= 0. If g is even,
then g = g/2, and if g is odd , then g = (g + 1)/2 or (g − 1)/2.

P r o o f. This is a corollary to Proposition 1 of [12], whose statement will
be given in the next section.

Example 3. Put αn :=
( n 0

0 1

)
. An easy calculation shows that

αnΓ
∗
0 (n2N)α−1

n ⊆ Γ ∗0 (N).

Let n = 2. Then α2Γ
∗
0 (8N)α−1

2 is of index 4 in Γ ∗0 (2N). Now consider the
curve X∗0 (840), which is of genus 10. Then there is a covering X∗0 (840) →
X∗0 (210) of degree 4. We can regard this covering as a composition

X∗0 (840)→ X ′ → X∗0 (210)

of coverings of degree 2. Therefore, by the above proposition, we conclude
that X∗0 (840) is not hyperelliptic, since X∗0 (210) is of genus 1 (see [2]).

By the same reason, X∗0 (1680) is not hyperelliptic, since X∗0 (1680) is of
genus 19 and X∗0 (420) is of genus 3.

To calculate g(N ;V ) in this way, we need information on the W -splitting
of S0

2(N). For N ≤ 300, such data are given in [2]. For N ≥ 301, we in-
clude here a table of the W -splitting of S0

2(N) to the extent of our needs.
(R e m a r k. The third column of Table 2 gives dimensions of direct sum-
mands S0

2(N)(±,...,±) of S0
2(N), ordered lexicographically.)



Hyperelliptic modular curves 375

Table 2. The W -splitting of S0
2(N)

The W -splitting
N p |N

of S0
2(N)

306 2,3,17 0,2,1,1,2,0,0,2
312 2,3,13 1,1,1,0,1,0,1,1
315 3,5,7 2,0,2,0,2,1,0,3
336 2,3,7 0,1,1,0,1,1,0,2
342 2,3,19 1,0,2,1,1,0,0,2

The W -splitting
N p|N

of S0
2(N)

360 2,3,5 0,1,1,0,1,0,1,1
396 2,3,11 0,0,0,0,0,0,1,2
450 2,3,5 1,0,2,1,1,0,0,2
630 2,3,5,7 0,1,1,0,1,1,1,1,

1,0,0,1,0,1,1,0

Table 3. Genera of X∗0 (N) and X∗0 (N)/〈V 〉

Genus of Genus of
N V

X∗0 (N) X∗0 (N)/〈V 〉
136 V2 3 0
144 V2 3 1

V3 3 1
V2V3 3 1

152 V2 3 1
171 V3 3 0
207 V3 3 2
234 V3 3 1
240 V2 3 1
252 V3 3 0
312 V2 3 1
315 V3 3 2
160 V2 4 2

Genus of Genus of
N V

X∗0 (N) X∗0 (N)/〈V 〉
176 V2 4 0
264 V2 4 1
280 V2 4 1
306 V3 4 1
342 V3 4 1
216 V2 5 2
279 V3 5 0
396 V3 5 3
630 V3 5 2
336 V2 6 2
360 V2 7 2
450 V3 7 3

We know from Table 3 that X∗0 (N) is hyperelliptic with hyperelliptic
involution V for N = 136, 171, 252, 176 and 279. We also know that
X∗0 (N) is not hyperelliptic for N = 264, 280, 306, 342, 336 and 360, by
virtue of Proposition 4. Further, we use the following fact to conclude that
X∗0 (207) and X∗0 (315) are hyperelliptic.

Proposition 5. Let X, Y be curves over C of genus 3, 2, respectively.
If there is a covering π : X → Y , then X is hyperelliptic.

P r o o f. See [6].

Determination of the hyperellipticity of X∗0 (N) for N = 144, 152, 234,
240, 312, 160, 216, 396, 630 and 450 will be postponed to the following
sections.

3. Fixed points of V2. In this section, we always assume that 8 |N
except for Remark 3. The important fact is that V2 is defined over Q, so
that the following Ogg’s observations [12] are applicable.



376 Y. Hasegawa

Lemma 2 ([12], Prop. 1). Let X/C be a hyperelliptic curve, and v the
hyperelliptic involution on X. Let w be another involution, and put u = vw,
which is also an involution. Then the fixed-point sets of u, v, and w are
disjoint. If g is even, then w and u have two fixed points each. If g is odd ,
then w has four fixed points, and u has none, or vice versa.

Proposition 6. Let X be a curve defined over Q, and let w be a non-
hyperelliptic involution defined over Q on X. If w has only one rational fixed
point , then X is non-hyperelliptic.

P r o o f. Suppose X is hyperelliptic. Then the hyperelliptic involution v,
which is in the center of AutX, acts on the set of fixed points of w. But v
is defined over Q, so v must fix the (unique) rational fixed point of w. This
is a contradiction.

Observe that S2 =
( 2 1

0 2

)
commutes with all Wpν , p

ν ‖N, p 6= 2. There-
fore S2 induces an isomorphism

X∗0 (N) ∼= X0(N)/G,

where G is the subgroup of AutX0(N) generated by {Wpν}p 6=2∪{V2}. Thus,
to obtain the information about the fixed points of V2 on X∗0 (N), it suffices
to consider the fixed points of W2α (2α ‖N) on X0(N)/G.

Example 4. Let N = 152 = 23 · 19. The genus of X∗0 (152) is three, and
V2 has 4 fixed points on X∗0 (152) (see Table 3). Put G = 〈W19, V2〉, which
is abelian of type (2, 2). On X0(152), we can see from [2] that W8 and W152

have 4 and 12 fixed points, respectively. Since G acts fixed-point-freely on
the fixed-point set of W8 (resp. W152), the contribution of the fixed points
of W8 (resp. W152) on X0(152) to those of W8 on X = X0(152)/G is one
(resp. three). Further we have

h(−4 · 8) = 2, h(−4 · 152) = 12,

where h(−d) is the class number of primitive quadratic forms of discriminant
−d. This means that the fixed points of W152 are all defined over a field of
degree exactly 12. Hence W8 has only one rational fixed point on X, i.e.,
X∗0 (152) ∼= X is not hyperelliptic.

The similar argument can be applied to the cases N = 216 and 312. Let
N = 216. The genus of X∗0 (216) is five, and the involution V2 has four fixed
points on X∗0 (216). On X0(216), we see from [2] that W8 (resp. W216) has
4 (resp. 12) fixed points. Also we compute h(−4 · 8) = 2, h(−4 · 216) = 12.
Hence X∗0 (216) is not hyperelliptic.

For N = 312, we include the W -splitting of S2(312):

3, 10, 7, 5, 6, 6, 9, 3,
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which should be read in the same manner as the data in the third column of
Table 2. From this, we see that W104 has 24 fixed points and W312 has 8 fixed
points; the corresponding class numbers are h(−4·104) = 12, h(−4·312) = 8.
Therefore W8 has exactly one rational fixed point on X0(312)/G, where
G = 〈W3,W13, V2〉. Hence X∗0 (312) is not hyperelliptic.

R e m a r k 3. Let 9 ‖N , and let V3 be the involution on X0(N) defined
in the previous section. Then V3 is defined over Q(

√−3). Also, it can easily
be shown that

V3WpνV3 =
{
Wpν if pν ≡ 0, 1 (mod 3),
W9Wpν if pν ≡ 2 (mod 3)

for pν ‖N (cf. Theorem 8 of [1]).

4. Modular involutions on X∗0 (N) (II). In this section, we assume
that 4 ‖N . Write N = 4M . Then

Proposition 7. We have the isomorphism

X∗0 (N) ∼= X0(N)/G ∼= X0(2M)/〈{Wpν}p|M 〉,
where G is a subgroup of AutX0(N) generated by {Wpν}p6=2 ∪ {S2}.

P r o o f. Indeed, the first isomorphism is obtained by conjugating Γ ∗0 (N)
by S2W4S2, and the second by conjugating 〈G ∪ Γ0(N)〉 by α2.

Consider the case N = 300. Then we have

X∗0 (300) ∼= X0(150)/〈W3,W25〉,
the right hand side of which has a covering of degree two to X∗0 (150); since
the genus of X∗0 (300) is four and that of X∗0 (150) is one, we find that X∗0 (300)
is not hyperelliptic (Proposition 4).

Next we pick up the case N = 348. Then

X∗0 (348) ∼= X := X0(174)/〈W3,W29〉.
The curve X has an involution induced by W2. Since (on X0(174)) W6

and W174 have 4 and 12 fixed points each, and since h(−4 · 6) = 2 and
h(−4 · 174) = 12, it follows that W2 has only one rational fixed point,
as in Example 4. So, by Proposition 6, we conclude that X∗0 (348) is not
hyperelliptic.

5. Reduction modulo p. Let p be a prime number and N a positive in-
teger such that N = pM, p -M . The reduction modulo p of X0(pM) consists
of two copies Z,Z ′ of X0(M) in characteristic p, intersecting transversally
at the supersingular points [3] (see Figure 1).
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Fig. 1. X0(pM) mod p

The Atkin–Lehner involutions WN ′ (N ′ ‖N) still act on X0(N) mod p. If
p -N ′, then WN ′ fixes each component Z,Z ′, and its action in characteristic
p is the same as in characteristic 0. If p |N ′, then WN ′ interchanges Z and
Z ′. In particular, if N ′ = p, then Wp fixes each Fp-rational supersingular
point, while it exchanges each properly Fp2-rational supersingular point for
its conjugate. Let W ′ be a subgroup of W (N). If W ′ is generated by some
of WN ′ with p -N ′, then X0(N)/W ′ mod p is again of the shape in Figure
1 with Z = Z ′ = X0(M)/W ′. If W ′ contains some WN ′ with p |N ′, then
X0(N)/W ′ mod p becomes as in Figure 2:

Fig. 2

where Z ′′ = X0(M)/W ′′ is some quotient of X0(M).
Now assume that X0(N)/W ′ is hyperelliptic. Assume further for sim-

plicity that the special fibre of the minimal model of X0(N)/W ′ at p is as
in Figure 2, with X0(N)/W ′′ being of genus zero. Then, as explained in
Appendix C of [7], there must exist an element A of order 2 of PGL2(Fp)
such that

(1) Aα = α

for all properly Fp2 -rational supersingular points α on Z ′′. We apply this
observation to the cases N = 164 and 234.

Let N = 164 = 41 · 4. We have X∗0 (164) ∼= X0(82)/〈W41〉 =: X by
Proposition 7. Consider X0(82) modulo p = 41. Then Z = Z ′ = X0(2) is of
genus zero, and the curve X0(2) is defined by the equation

(2) j = 64
(x+ 4)3

x2

(see [4]). Since the supersingular j-invariants in characteristic p = 41 are
given by

j(j + 38)(j + 13)(j + 9) = 0,

we compute the supersingular points on X0(2) in characteristic p = 41 by
solving the equation (2):

(x+4)[(x+31)(x2+29x+10)][(x+23)(x2+27x+1)][(x+25)(x2+7x+37)] = 0,
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where x = −4 is the only supersingular point above j = 0. Thus the special
fibre of the minimal model of X at p = 41 is as in Figure 2, with Z ′′ =
X0(2). But it can easily be checked that there does not exist an element of
order 2 of PGL2(F41) with the property (1), from which we conclude that
X∗0 (164) ∼= X is not hyperelliptic.

Let N = 234 = 13 · 18, and consider X0(234) modulo p = 13. Then
Z = Z ′ = X0(18) is of genus zero, and the curve X0(18) is defined by the
equation

(3) j = h ◦ g ◦ f(x),

where

f(X) =
1
2
X(X2 + 6X + 12),

g(X) =
X(2X + 9)2

27(X + 4)
,

h(X) = 27
(X + 1)(9X + 1)3

X
.

The actions of W2,W9,W18 are given by

x|W2 =
−2(x+ 3)
x+ 2

, x|W9 =
−3(x+ 2)
x+ 3

, x|W18 =
6
x

(cf. [4]). The only supersingular j-invariant in characteristic p = 13 is j = 5,
and the supersingular points on X0(18) are obtained by solving the equation
(3):

(x2 + 6)(x2 + 7)(x2 + x+ 5)(x2 + 3x+ 10)(x2 + 4x+ 6)(x2 + 4x+ 9)

× (x2 + 4x+ 10)(x2 + 5x+ 1)(x2 + 5x+ 5)(x2 + 6x+ 2)(x2 + 6x+ 4)

× (x2 + 7x+ 1)(x2 + 7x+ 4)(x2 + 8x+ 10)(x2 + 9x+ 2)(x2 + 9x+ 9)

× (x2 + 10x+ 1)(x2 + 10x+ 6) = 0.

Put X = X∗0 (234) and consider X modulo p = 13, which is of the shape in
Figure 2 with Z ′′ = X∗0 (18). The curve X∗0 (18) is parametrized by

x′ = x+ x|W2 + x|W9 + x|W18 =
(x2 − 6)2

x(x+ 2)(x+ 3)
.

There are three conjugate pairs of properly F132 -rational supersingular
points, say, αi, i = 1, . . . , 6, with αi+3 = αi for i = 1, 2, 3; they are the
roots of the equation

(x′2 − 6x′ + 7)(x′2 − 6x′ − 9)(x′2 − 32) = 0.

It can be shown that the number of the points on Z = Z ′ above each of the
three conjugate pairs is equal to the degree of the covering X0(238) → X.
Hence the special fibre of the minimal model of X at p = 13 is of the shape
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in Figure 2, with Z ′′ = X∗0 (18). But there does not exist an element of order
2 of PGL2(F13) with the property (1), from which we conclude that X∗0 (234)
is not hyperelliptic.

6. Gap sequences. Let X be an algebraic curve over C of genus g. The
Weierstrass gap sequence GP at a point P of X is defined by

GP = {n ∈ Z | n > 0 and (f)∞ 6= n(P ) for all f ∈ K(X)},
where K(X) is the function field of X and (f)∞ is the polar divisor of f .
By the Riemann–Roch theorem, we see that the cardinality of GP is exactly
the genus g of X with maxGP ≤ 2g − 1. It is easily shown that

(4) GP = {n ∈ Z | ∃ω ∈ H0(X,ωX) such that ordP (ω) = n− 1},
where ωX is the canonical sheaf on X. A point P on X is a Weierstrass
point if GP 6= {1, 2, . . . , g}. If X is hyperelliptic and P is a Weierstrass point
of X, then

(5) GP = {1, 3, 5, . . . , 2g − 1}.
Now let Γ be a Fuchsian group of the first kind having i∞, the point

at infinity, as its cusp. For simplicity, we assume that the local parameter
at the point i∞ is q = exp(2πiτ). Let S2(Γ ) be the space of cuspforms of
weight 2 on Γ . If the corresponding algebraic curve X = XΓ is of genus
g, then dimC S2(Γ ) = g. Since S2(Γ ) can be identified with the space of
holomorphic 1-forms on X by sending f to 2πif dτ , we can interpret (4) as

GP = {n ∈ Z | ∃f ∈ S2(Γ ) such that f = qn + . . .}.
Hence if X is hyperelliptic, then there is a basis 〈f1, , . . . , fg〉 of S2(Γ ) of the
form

(6)





f1 = q + a
(1)
2 q2 + a

(1)
3 q3 + . . . ,

f2 = q2 + a
(2)
3 q3 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fg = qg + a

(g)
g+1q

g+1 + . . . ,

or

(7)





f1 = q + a
(1)
2 q2 + a

(1)
3 q3 + . . . ,

f2 = q3 + a
(2)
4 q4 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fg = q2g−1 + a

(g)
2g q

2g + . . .

according as i∞ is an ordinary point or a Weierstrass point. In other words,
if S2(Γ ) does not have a basis of the form (6) nor (7), then X is not hyper-
elliptic. In the following, Γ is taken to be some normalizer of Γ0(N), and
we use trace formulas of Hecke operators to compute Fourier coefficients of
f1, . . . , fg ([8], [13]).



Hyperelliptic modular curves 381

Example 5. Let N = 160. Then X∗0 (160) is of genus 4, so S∗2 (160) is of
dimension 4. On the other hand, S∗2 (160) contains

f1 − 8f (8)
1 = q − 2q3 − q5 + 2q7 + . . . ,

f
(2)
1 − 2f (4)

1 = q2 − 2q4 − 2q6 − q10 + . . . ,

f2 = q − 2q3 − q5 − 2q7 + . . . ,

where f1 ∈ S0
2(4 · 5)(−,+) and f2 ∈ S0

2(32 · 5)(+,+). Hence S∗2 (160) cannot
have a basis of the form (6) nor (7). Namely, X∗0 (160) is not hyperelliptic.

By the same reason, X∗0 (175) and X∗0 (270) are not hyperelliptic; X∗0 (175)
is of genus 3 and S∗2 (175) contains

f1 − 5f (5)
1 = q − q3 + 2q4 + . . . , f2 = q − q3 − 2q4 + . . . ,

where f1 ∈ S0
2(5 ·7)(−,+) and f2 ∈ S0

2(25 ·7)(+,+); X∗0 (270) is of genus 3 and
S∗2 (270) is spanned by

g1 := f1 − 9f (9)
1 = q − q2 + q3 + q4 + . . . ,

g2 := f2 + 2f (2)
2 − 3f (3)

2 − 6f (6)
2 = q + 3q2 − 3q3 + q4 + . . . ,

g3 := f3 + 2f (2)
3 = q − 2q4 + . . . ,

where f1 ∈ S0
2(2 · 3 · 5)(+,−,+), f2 ∈ S0

2(9 · 5)(−,+) and f3 ∈ S0
2(27 · 5)(+,+), so

3g1 + g2 − 4g3 = 12q4 + . . . ∈ S∗2 (270).

Example 6. Let N = 396. Then X∗0 (396)/〈V3〉 is of genus 3, and the
space S∗2 (396)V3 is spanned by f1 + 4f (4)

1 , f
(2)
1 and f2 − 2f (2)

2 , where f1 ∈
S0

2(9 · 11)(+,+) and f2 ∈ S0
2(2 · 9 · 11)(−,+,+) (see [2] and Proposition 3). But

since their levels are divisible by 32, f1 and f2 have zero as their third Fourier
coefficients, implying that S∗2 (396)V3 cannot have a basis of the form (6) nor
(7). This shows that X∗0 (396)/〈V3〉 is not hyperelliptic. Hence X∗0 (396) is
also non-hyperelliptic.

By the same reason, X∗0 (450) is not hyperelliptic (the space S∗2 (450)V3

is spanned by f1 − 5f (5)
1 , f2 + 2f (2)

2 and f3, where f1 ∈ S0
2(2 · 9 · 5)(+,+,−),

f2 ∈ S0
2(9 · 25)(+,+) and f3 ∈ S0

2(2 · 9 · 25)(+,+,+)).

7. Conclusion: Remaining cases and the defining equations of
hyperelliptic curves X∗0 (N). So far, we have determined the hyperellip-
ticity of X∗0 (N) except for the following values of N :

(8) N = 144, 162, 196, 240, 294, 420, 476, 630.

We are now going to treat these remaining cases. Let Γ be as in the
previous section, and 〈f1, . . . , fg〉 a basis of S2(Γ ). Assume for simplicity



382 Y. Hasegawa

that i∞ is an ordinary point of XΓ , and that 〈f1, . . . , fg〉 is of the form (6).
Put

z =
fg−1

fg
, w =

dz

2πifgdτ
=
(
fg
q

)−1
dz

dq

and define

G(T ) = T 2g+2 + v2g+1T
2g+1 + . . .+ v0 ∈ C[T ]

by the condition ordq(w2 − G(z)) ≥ 1, i.e., the Laurent series w2 − G(z)
consists only of positive q-power terms. Thus we can write

(9) w2 −G(z) =
∑

j≥1

djq
j .

Proposition 8.Notation being as above, the curve X = XΓ is hyperel-
liptic if and only if the following two conditions hold :

(i) G(T ) is separable,
(ii) d1 = . . . = dh = 0 where h = 4g2 + 8g − 20.

Moreover , if X is hyperelliptic, then it is defined by the equation w2 = G(z).

P r o o f. See [7].

Example 7. Let N = 144. Then a basis of S∗2 (144) is given by

f1 = q − 4q4 − 4q7 + 2q13 +O(q17),

f2 = q2 − 4q4 + 2q5 + 2q6 − 4q7 + 2q9 − 2q10 + 4q13 +O(q17),

f3 = q3 − 2q4 + q5 − 2q7 + q9 + 2q11 + 2q13 − 2q15 +O(q17).

Put x = f1/f3 and y = f2/f3. Then we can see that they satisfy no quadratic
equations. In fact, by obtaining much more precise expressions for f1, f2, f3,
we can verify that x and y satisfy a quartic equation

x3 − x2(y2 + 4) + 2x(y3 − 2y2 + 2y + 3)− (y4 − 4y3 + 8y2 − 8y + 7) = 0,

which is the defining equation of X∗0 (144). Hence X∗0 (144) is not hyperel-
liptic. We can give an alternative proof which uses Proposition 8. In the
present case, we have

G(T ) = T 8 − 12T 7 + 76T 6 − 272T 5 + 626T 4 − 820T 3 + 720T 2 − 184T + 1

and w2−G(z) = −864 q+ . . . , hence again we conclude that X∗0 (144) is not
hyperelliptic.

Example 8. Let N = 207. By Table 3 and Proposition 5, we know that
X∗0 (207) is hyperelliptic. Let us compute the defining equation of X∗0 (207).
A basis of S∗2 (207) is given by

f1 = q + q2 − q3 − 2q4 − 2q5 − q6 − q7

− 2q8 − q9 − q10 + q12 − 3q13 +O(q14),
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f2 = q2 − 2q4 − q5 + q7 + q8 − q10 − 2q11 +O(q14),

f3 = q3 − q4 − 2q5 + q6 + q7 + q8 + q9 − q10 − 4q11 − q12 + 3q13 +O(q14).

Then we compute f2
2 − f1f3 = O(q15), or equivalently, x2 − y = O(q9) if we

write x = f2/f3 and y = f1/f3. Since the degree of the divisors of poles of
x and y are bounded by

2 · 3− 2 = 4,

and since x2, y have a pole of order 2 at i∞, we see that the fi’s in fact
satisfy a quadratic equation

f2
2 − f1f3 = 0.

Hence again we find that X∗0 (207) is hyperelliptic. Its defining equation is
given by

w2 = z8 − 6z7 + 11z6 − 12z5 + 9z4 − 12z3 + 11z2 − 6z + 1,

where we put

z =
f2

f3
and w =

(
f3

q

)−1
dz

dq
.

Using Proposition 8, we can show that X∗0 (N) is not hyperelliptic for all
N in (8) (see Table 6 for data of Fourier coefficients). Hence we have

Theorem. Assume that X∗0 (N) is of genus ≥ 3. Then X∗0 (N) is hyper-
elliptic if and only if N = 136, 171, 207, 252, 315, 176 or 279. For N 6= 207
and N 6= 315, the hyperelliptic involution of X∗0 (N) is of type V in the
notation of Section 2; namely , V = S2W8S2 for N = 136, V = S2W16S2

for N = 176, and V = S3W9S
2
3 for N = 171, 252 and 279. Their defining

equations are given in Table 4 below.

Table 4

Discriminant of
N Defining equation w2 = f(z) of X∗0 (N)

f(z)

136 w2 = z(z + 1)(z2 + 3z − 2)(z4 + 4z3 + 5z2 + 2z − 4) −228173

171 w2 = (z2 − z + 1)(z6 + z5 + 2z4 − 7z3 − 2z2 − 3z + 9) 21636194

207 w2 = z8 − 6z7 + 11z6 − 12z5 + 9z4 − 12z3 + 11z2 − 6z + 1 −21636233

252 w2 = (z2 + 3)(z2 − z + 1)(z4 − 5z3 + 8z2 − 7z + 7) 2283474

315 w2 = (z4 + z3 + 3z2 + z + 1)(z4 + 5z3 + 3z2 + 5z + 1) −216365273

176 w2 = z(z3 − 4z + 4)(z3 − 2z2 + 2)(z3 + 2z2 − 2) −240115

279 w2 = (z6 − z5 + z4 + 2z3 − z2 + 1)
× (z6 + 3z5 + 5z4 + 6z3 + 7z2 + 12z + 9) 22438316

R e m a r k 4. Let N be an integer which is in Table 3. Then X∗0 (N)/〈V 〉
is of genus 2 for N = 207, 315, 160, 216, 630, 336 and 360. We also give
their defining equations in Table 5.
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Table 5

Discriminant of
N Defining equation w2 = f(z) of X∗0 (N)

f(z)

207 w2 = (z − 1)(z + 3)(z4 − 2z3 − 5z2 + 6z − 3) −21236233

315 w2 = (z − 3)(z + 1)(z2 − z + 1)(z2 + 3z − 3) −212365473

160 w2 = (z2 + 4)(z2 − 2z + 2)(z2 + 2z + 2) −22654

216 w2 = (z2 − 3z + 3)(z3 − 3z2 + 3z + 3) 2438

630 w2 = (z2 + z − 1)(z4 − z3 + 2z2 + 7z + 7) 212365372

336 w2 = (z2 − 3)(z4 − 11z2 + 32) 2233 · 72

360 w2 = (z2 + 3)(z2 − z + 4)(z2 + z + 4) −2183352

Table 6

N A basis of S∗2 (N) d1

162 (1, 0, 0, 0,−4,−3,−4,−2, 0, 4, 1, 3) 10
(0, 1, 0,−1,−1,−3, 0,−1, 0, 1, 1, 3)
(0, 0, 1, 0,−2,−1,−1, 0, 0, 2, 1, 1)

196 (1, 0, 0,−1,−2,−2,−3, 0, 0, 2,−1, 0) −760
(0, 1, 0, 0,−2,−2,−3, 1, 1, 2, 1, 0)
(0, 0, 1, 0,−2,−1, 0, 0, 0, 2, 0,−1)

240 (1, 0, 0,−2,−1, 0,−1, 0,−2, 0, 0,−2) 49600
(0, 1, 0, 0,−2,−1,−2, 0, 0, 3,−2, 0)
(0, 0, 1,−2, 0, 0, 3, 0,−3, 0, 0,−2)

294 (1, 0, 0, 0,−1,−1,−3,−1,−2,−2,−1, 1) −522
(0, 1, 0, 0,−1,−1, 0,−3, 0,−3, 0, 0)
(0, 0, 1, 1, 0,−1,−3,−3,−3,−1, 1, 0)

420 (1, 0, 0,−1, 0,−1,−1, 0, 0,−1,−2, 0) 8
(0, 1, 0, 0,−2,−1, 0, 1, 0, 1, 0, 0)
(0, 0, 1, 0,−1,−1, 0, 0,−1, 1, 2,−1)

476 (1, 0, 0,−1,−1, 0, 0, 0,−1,−1, 0, 0) −48
(0, 1, 0, 0,−1, 0,−1, 1,−2,−1,−2, 0)
(0, 0, 1, 0, 0,−1,−1, 0, 0, 0,−2,−1)

630 (1, 0, 0, 0, 0,−1, 0,−2,−2, 1,−2, 2, 0,−1,−2, 3,−5, 1) 24354
(0, 1, 0, 0, 0, 0, 0,−3, 0,−1,−2, 0, 2,−1, 0, 2,−4, 0)
(0, 0, 1, 0, 0,−1,−1, 0, 0, 0,−1, 1,−1, 1,−1, 0,−3, 0)
(0, 0, 0, 1, 0, 0, 1,−3,−1, 0,−2, 0, 3,−1, 0, 4,−3, 1)
(0, 0, 0, 0, 1,−1, 0,−1,−1, 1, 0, 2, 1, 0,−2, 4,−4, 0)

In Table 6, we give a basis of S∗2 (N) explicitly for all N 6= 144 in (8) (for
N = 144, see Example 7).

If fi(τ) ∈ S∗2 (N) (1 ≤ i ≤ g) has the Fourier expansion fi(τ) =∑
n≥1 a

(i)
n qn, we give its Fourier coefficients by (a(i)

1 , a
(i)
2 , . . . , a

(i)
r ) with r =

3g + 3. Note that for all N in Table 6, the fi’s are of the form (6), and
r = 3g + 3 is the lowest bound to be able to calculate d1 (see (9) and
Proposition 8). We have d1 6= 0 for all N in (8).
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