Hyperelliptic modular curves $X_0^*(N)$

by

Yuji Hasegawa (Tokyo)

1. Introduction. Let N be a positive integer, and let

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \ \middle| \ c \equiv 0 \bmod N \right\}.$$

For each positive divisor N' of N with (N', N/N') = 1 (we write N' || N), $W_{N'} = W_{N'}^{(N)}$ denotes the corresponding Atkin–Lehner involution defined for $\Gamma_0(N)$. (W_1 is the identity operator.) Then we define the modular group $\Gamma_0^*(N)$ to be the group generated by $\Gamma_0(N)$ and $\{W_{N'}\}_{N'||N}$:

$$\Gamma_0^*(N) = \langle \Gamma_0(N) \cup \{W_{N'}\}_{N' \parallel N} \rangle.$$

It is well known (see [1]) that $\Gamma_0^*(N)$ normalizes $\Gamma_0(N)$ and the factor group $W(N) := \Gamma_0^*(N)/\Gamma_0(N)$ is abelian of type $(2, \ldots, 2)$ with order $2^{\omega(N)}$, where $\omega(N)$ denotes the number of the distinct prime divisors of N.

Let $X_0^*(N)$ be the modular curve which corresponds to $\Gamma_0^*(N)$, namely,

$$X_0^*(N) := X_0(N) / W(N) = X_0(N) / \langle \{W_{N'}\}_{N' \parallel N} \rangle.$$

In [7], we proved

THEOREM A. Assume that N is square-free. Then $X_0^*(N)$ is hyperelliptic if and only if $X_0^*(N)$ is of genus two.

In [7], we were reduced to 56 cases (21 square-free cases and 35 non-square-free cases). The above theorem, conjectured by Kluit [9], is the result for square-free cases.

The purpose of this article is to determine all hyperelliptic curves of type $X_0^*(N)$ with genus ≥ 3 , i.e., to check the hyperellipticity of $X_0^*(N)$ for the 35 values of N listed in Table 1. Our result is formulated in Theorem B below.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11F11; Secondary 11F06, 11G30, 14H45, 14G05, 14H25.

^[369]

Y. Hasegawa

T	h	P	1

Genus					Ν	T				
3	136	144	152	162	164	171	175	196	207	234
	240	252	270	294	312	315	348	420	476	
4	160	176	264	280	300	306	342			
5	216	279	396	630						
6	336									
7	360	450								
10	840									
19	1680									

THEOREM B. There are sixty-four values of N for which $X_0^*(N)$ is hyperelliptic. Of these, there are only seven values of N for which $X_0^*(N)$ is hyperelliptic with genus $g \ge 3$, namely, N = 136, 171, 207, 252, 315 for g = 3, N = 176 for g = 4, and N = 279 for g = 5.

 $\operatorname{Rem}\operatorname{ark}$ 1. The 57 values of N for which $X_0^*(N)$ is of genus two are as follows:

67,	73,	85,	88,	93,	103,	104,	106,	107,	112,
115,	116,	117,	121,	122,	125,	129,	133,	134,	135
146,	147,	153,	154,	158,	161,	165,	166,	167,	168_{-}
170,	177,	180,	184,	186,	191,	198,	204,	205,	206
209,	213,	215,	221,	230,	255,	266,	276,	284,	285,
286,	287,	299,	330,	357,	380,	390.			

Their defining equations are given in [5] (see also [11]).

Notation. \mathbb{Z} , \mathbb{Q} , \mathbb{C} denote respectively the ring of rational integers, the field of rational numbers and the field of complex numbers. $\mathbb{F}_{p^{\nu}}$ denotes the finite field with p^{ν} elements. \mathbb{P}^n is the *n*-dimensional projective space. We denote by τ an element of the complex upper half plane, and we put $q = \exp(2\pi i \tau)$.

2. Modular involutions on $X_0^*(N)$ (I). In this section, we treat the case with 8 | N or 9 || N. As we shall show, $X_0^*(N)$ has an involution which comes from a matrix when 8 | N or 9 || N. We can use this involution to determine the hyperellipticity of $X_0^*(N)$ for some cases. One may refer to [10], [1] for the structure of the normalizer of $\Gamma_0(N)$ in $\operatorname{GL}_2^+(\mathbb{Q})$. But he should be careful to use Theorem 8 of [1], since some errors are included there.

Put $S_{\mu} = \begin{pmatrix} \mu & 1 \\ 0 & \mu \end{pmatrix}$. Then S_2 is in the normalizer of $\Gamma_0(N)$ when N is divisible by 4, and S_3 is in the normalizer of $\Gamma_0(N)$ when N is divisible by 9.

PROPOSITION 1. (i) Let $2^{\nu} \parallel N$ with $\nu \geq 3$. Then $V_2 = S_2 W_{2^{\nu}} S_2$ normalizes $\Gamma_0^*(N)$ and $\Gamma_0(N)$. Further, $V_2^2 \in \Gamma_0(N)$.

(ii) Let $9 \parallel N$. Then $V_3 = S_3 W_9 S_3^2$ normalizes $\Gamma_0^*(N)$ and $\Gamma_0(N)$. Further, $V_3^2 \in \Gamma_0(N)$.

 $\Pr{oof.}$ This follows from a direct calculation. \blacksquare

COROLLARY. Suppose 8 | N (resp. 9 || N). Then $V_2 \text{ (resp. } V_3)$ defines an involution on $X_0(N)$ and on $X_0^*(N)$.

Let $S_2(N)$, $S_2^0(N)$ and $S_2^*(N)$ be respectively the space of cuspforms of weight 2 on $\Gamma_0(N)$, the space spanned by newforms of weight 2 on $\Gamma_0(N)$, and the space of cuspforms of weight 2 on $\Gamma_0^*(N)$. Put $V = V_2$ or V_3 (or $V_2V_3 = V_3V_2$ if $N = 144 = 2^43^2$). To calculate the genus $\bar{g} = \bar{g}(N;V)$ of $X_0^*(N)/\langle V \rangle$, it suffices to determine the dimension of the subspace

$$S_2^*(N)^V = \{ f \in S_2^*(N) \mid f | V = f \}$$

of $S_{2}^{*}(N)$.

LEMMA 1. Let M be a positive integer. Let M' be a positive divisor of M and let d be a positive divisor of M/M'. For a prime divisor p of M, define integers α, β and γ by

$$p^{\alpha} \parallel M, \quad p^{\alpha-\beta} \parallel M', \quad p^{\gamma} \parallel d.$$

(i) Let $f(\tau) \in S_2(M')$. Then

$$f(d\tau)|W_{p^{\alpha}}^{(M)} = p^{\beta-2\gamma}(f|W_{p^{\alpha-\beta}}^{(M')})(d'\tau),$$

where $d' = p^{\beta - 2\gamma} d$.

(ii) If $f \in S_2^0(M')$ is a newform on $\Gamma_0(M')$, then f is also an eigenform for all $W_m^{(M')}$ with $m \parallel M'$. In particular, if $f \mid W_{p^{\alpha-\beta}}^{(M')} = \lambda'_p f \ (= \pm f)$ and if $\beta \neq 2\gamma$ (resp. $\beta = 2\gamma$), then

$$f(d\tau) \pm p^{\beta - 2\gamma} \lambda'_p f(d'\tau)$$
 (resp. $f(d\tau)$)

becomes an eigenform for $W_{p^{\alpha}}^{(M)}$ with eigenvalue equal to ± 1 (resp. λ'_p).

Proof. See [1]. ■

For simplicity, we will sometimes write $f^{(d)}(\tau) = f(d\tau)$ in the following.

PROPOSITION 2. Let N be a positive integer such that 8 | N. Let N' be a positive divisor of N and let d be a positive divisor of N/N'. Define integers α, β and γ by

$$2^{\alpha} \parallel N, \quad 2^{\alpha-\beta} \parallel N', \quad 2^{\gamma} \parallel d,$$

so that $N = 2^{\alpha}M$ and $N' = 2^{\alpha-\beta}M'$ for some positive odd integers M, M'with $M' \mid M$. Let $f = \sum a_n q^n$ be a newform on $\Gamma_0(N')$ such that $f \mid W_{2^{\alpha-\beta}}^{(N')} = \lambda f$, and put

$$g^{(d)} = f^{(d)} + f^{(d)} | W_{2^{\alpha-\beta}}^{(N')} = f^{(d)} + 2^{\beta-2\gamma} \lambda f^{(d')}$$

with $d' = 2^{\beta - 2\gamma} d$.

$$\begin{array}{ll} \text{(i) If } \alpha - \beta \geq 2, \ then \\ & \left\{ \begin{array}{ll} g^{(d)} | V_2 = -g^{(d)} & \text{if } \beta > \gamma = 0, \\ g^{(d)} | V_2 = +g^{(d)} & \text{if } \beta - \gamma > \gamma > 0, \\ f^{(d)} | V_2 = \lambda f^{(d)} & \text{if } \beta = 2\gamma. \end{array} \right. \\ \text{(ii) If } \alpha - \beta = 1, \ then \\ & \left\{ \begin{array}{ll} (g^{(d)} + \lambda g^{(2d)}) | V_2 = -(g^{(d)} + \lambda g^{(2d)}) & \text{if } \gamma = 0, \\ g^{(d)} | V_2 = +g^{(d)} & \text{if } \beta - \gamma > \gamma > 0, \\ f^{(d)} | V_2 = \lambda f^{(d)} & \text{if } \beta = 2\gamma. \end{array} \right.$$

Proof. Write $S = S_2$ and $W = W_{2\alpha}^{(N)}$. Since $S\tau = \tau + 1/2$, we have $f^{(d)}|S = +f^{(d)}$ if $\gamma > 0$, and $f^{(d)}|S = -f^{(d)}$ if $\alpha - \beta \ge 2$ and $\gamma = 0$ (note that if $\alpha - \beta \ge 2$, then $a_{2m} = 0$ for m = 1, 2, ...). The assertions, except for the case $\alpha - \beta = 1$ and $\gamma = 0$, follow from these and Lemma 1. Finally, let $\alpha - \beta = 1$ and $\gamma = 0$. Then

$$f^{(d)} + f^{(d)}|S = 2\sum_{n=1}^{\infty} a_{2n}q^{2dn} = 2a_2\sum_{n=1}^{\infty} a_nq^{2dn} = 2a_2f^{(2d)} = -2\lambda f^{(2d)},$$

so we have

$$f^{(d)}|V_2 = -2\lambda f^{(2d)}|WS - f^{(d)}|WS = -2^{\beta-1}f^{(2^{\beta-1}d)} - 2^{\beta}\lambda f^{(2^{\beta}d)}.$$

From this, we see that

$$(f^{(d)} - f^{(d)}|V_2) + \lambda(f^{(2d)} - f^{(2d)}|V_2) = (f^{(d)} + 2^{\beta}\lambda f^{(2^{\beta}d)}) + \lambda(f^{(2d)} + 2^{\beta-2}\lambda f^{(2^{\beta-1}d)}),$$

hence the assertion follows. \blacksquare

PROPOSITION 3. Let N = 9M with M a positive integer such that $3 \nmid M$. Let M' be a positive divisor of M, and let d be a positive divisor of M/M'.

(i) Let $f = \sum a_n q^n$ be a newform on $\Gamma_0(9M')$ such that $f|W_9^{(9M')} = +f$. Then $f^{(d)}$ is an eigenform of V_3 with eigenvalue +1.

(ii) Let $f = \sum_{n \neq 0} a_n q^n$ be a newform on $\Gamma_0(3M')$ such that $f|W_3^{(3M')} = \lambda f$. Then $f^{(d)} + 3\lambda f^{(3d)}$ is an eigenform of V_3 with eigenvalue -1.

Proof. Write $S = S_3$ and $W = W_9^{(9M)}$, and put $\zeta = \exp(2\pi i/3)$. Since $S\tau = \tau + 1/3$, it follows that

$$f^{(d)} + f^{(d)}|S + f^{(d)}|S^2 = \sum (1 + \zeta^{dn} + \zeta^{2dn})a_n q^{dn}$$
$$= 3\sum a_{3n}q^{3dn} = 3a_3\sum a_n q^{3dn}$$

(i) In this case, we have

$$(f^{(d)}|S + f^{(d)}|S^2)|W = f^{(d)}|S + f^{(d)}|S^2,$$

since $a_3 = 0$ and $f|W_9^{(9M')} = f$. On the other hand, by Theorem 6 of [1],

$$g := \frac{1}{\sqrt{-3}} (f|S - f|S^2) = \sum_{n=1}^{\infty} \left(\frac{-3}{n}\right) a_n q^n$$

is also a newform on $\Gamma_0(9M')$ with $g|W_9^{(9M')} = g$. Hence $f^{(d)}|SW = f^{(d)}|S$, or equivalently, $f^{(d)}|SWS^2 = f^{(d)}$.

(ii) In this case, we have

$$f^{(d)} + f^{(d)}|S + f^{(d)}|S^2 = 3a_3f^{(3d)} = -f^{(d)}|W,$$

 \mathbf{SO}

$$f^{(d)}|WS^{2} + f^{(d)}|SWS^{2} + f^{(d)}|S^{2}WS^{2} = -f^{(d)}|S^{2}.$$

Now we have

$$3\lambda f^{(3d)}|SWS^2 = 3\lambda f^{(3d)}|WS^2 = f^{(d)}|S^2$$

and

$$f^{(d)}|WS^2 = 3\lambda f^{(3d)}|S^2 = 3\lambda f^{(3d)}.$$

Also we compute

$$f^{(d)}|S^2WS^2 = f^{(d)}|WSW = 3\lambda f^{(3d)}|SW = 3\lambda f^{(3d)}|W = f^{(d)},$$

since $(WS)^3 \in \Gamma_0(9M)$. Hence we obtain the equality

$$(f + 3\lambda f^{(3)})|SWS^2 = -(f + 3\lambda f^{(3)})$$

as desired. \blacksquare

As a consequence of these results, we can determine the hyperellipticity of $X_0^*(N)$ for some cases.

Remark 2. To calculate \bar{g} , it seems more natural to find the formula for the number of the fixed points for V, but our method has the advantage of giving the defining equation of $X_0^*(N)$ (see also the last section).

EXAMPLE 1. Let $N = 136 = 8 \cdot 17$. Then $S_2^*(136)$ is spanned by

$$f_1 - 4f_1^{(4)}, \quad f_2 - 2f_2^{(2)}, \quad f_3 - 2f_3^{(2)},$$

where f_1, f_2, f_3 are newforms such that $f_1 \in S_2^0(2 \cdot 17)^{(-,+)}$ and $f_2, f_3 \in S_2^0(4 \cdot 17)^{(-,+)}$. Here and in what follows, signatures indicate the eigenvalues of Atkin–Lehner involutions (see [2]). Thus $X_0^*(136)/\langle V_2 \rangle \cong \mathbb{P}^1$, from which we see that $X_0^*(136)$ is hyperelliptic, with hyperelliptic involution V_2 .

EXAMPLE 2. Let $N = 360 = 8 \cdot 45$. A basis $\langle g_1, \ldots, g_7 \rangle$ of $S_2^*(360)$ is given by

$$\begin{split} g_1 &= f_1 - 2f_1^{(2)} + 9f_1^{(9)} - 18f_1^{(18)}, \\ g_2 &= f_1^{(3)} - 2f_1^{(6)}, \\ g_3 &= f_2 + 2f_2^{(2)} + 4f_2^{(4)} - 3f_2^{(3)} - 6f_2^{(6)} - 12f_2^{(12)}, \\ g_4 &= f_2^{(2)} - 3f_2^{(6)}, \\ g_5 &= f_3 - 2f_3^{(2)} + 5f_3^{(5)} - 10f_3^{(10)}, \\ g_6 &= f_4 - 4f_4^{(4)}, \\ g_7 &= f_5 - 3f_5^{(3)}, \end{split}$$

where $f_1 \in S_2^0(4 \cdot 5)^{(-,+)}, f_2 \in S_2^0(2 \cdot 3 \cdot 5)^{(+,-,+)}, f_3 \in S_2^0(4 \cdot 9)^{(-,+)}, f_4 \in S_2^0(2 \cdot 9 \cdot 5)^{(-,+,+)}$ and $f_5 \in S_2^0(8 \cdot 3 \cdot 5)^{(+,-,+)}$. Then, by Proposition 2, we see that $S_2^*(360)^{V_2} = \langle g_4, g_7 \rangle_{\mathbb{C}}$, hence the genus $\bar{g} = \bar{g}(360; V_2)$ of $X_0^*(360) / \langle V_2 \rangle$ is 2. Therefore $X_0^*(360)$ is not hyperelliptic, by the following proposition.

PROPOSITION 4. Let X/\mathbb{C} be a hyperelliptic curve of genus g. Let w be an involution on X, and \overline{g} the genus of $X/\langle w \rangle$. Suppose $\overline{g} \neq 0$. If g is even, then $\overline{g} = g/2$, and if g is odd, then $\overline{g} = (g+1)/2$ or (g-1)/2.

Proof. This is a corollary to Proposition 1 of [12], whose statement will be given in the next section. \blacksquare

EXAMPLE 3. Put $\alpha_n := \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$. An easy calculation shows that

$$\alpha_n \Gamma_0^*(n^2 N) \alpha_n^{-1} \subseteq \Gamma_0^*(N).$$

Let n = 2. Then $\alpha_2 \Gamma_0^*(8N) \alpha_2^{-1}$ is of index 4 in $\Gamma_0^*(2N)$. Now consider the curve $X_0^*(840)$, which is of genus 10. Then there is a covering $X_0^*(840) \rightarrow X_0^*(210)$ of degree 4. We can regard this covering as a composition

$$X_0^*(840) \to X' \to X_0^*(210)$$

of coverings of degree 2. Therefore, by the above proposition, we conclude that $X_0^*(840)$ is not hyperelliptic, since $X_0^*(210)$ is of genus 1 (see [2]).

By the same reason, $X_0^*(1680)$ is not hyperelliptic, since $X_0^*(1680)$ is of genus 19 and $X_0^*(420)$ is of genus 3.

To calculate $\bar{g}(N; V)$ in this way, we need information on the *W*-splitting of $S_2^0(N)$. For $N \leq 300$, such data are given in [2]. For $N \geq 301$, we include here a table of the *W*-splitting of $S_2^0(N)$ to the extent of our needs. (R e m ar k. The third column of Table 2 gives dimensions of direct summands $S_2^0(N)^{(\pm,...,\pm)}$ of $S_2^0(N)$, ordered lexicographically.)

Ν	$p \mid N$	The W-splitting of $S_2^0(N)$	$N p N \begin{array}{c} \text{The W-splitting}\\ \text{of $S_2^0(N)$} \end{array}$
306	2,3,17	0,2,1,1,2,0,0,2	$360 \ 2,3,5 \ 0,1,1,0,1,0,1,1$
312	2,3,13	$1,\!1,\!1,\!0,\!1,\!0,\!1,\!1$	$396\ 2,3,11\ 0,0,0,0,0,0,1,2$
315	3,5,7	$2,\!0,\!2,\!0,\!2,\!1,\!0,\!3$	$450 \ 2,3,5 \ 1,0,2,1,1,0,0,2$
336	2,3,7	0, 1, 1, 0, 1, 1, 0, 2	6302,3,5,70,1,1,0,1,1,1,1,1,
342	2,3,19	$1,\!0,\!2,\!1,\!1,\!0,\!0,\!2$	1,0,0,1,0,1,1,0

Table 2. The *W*-splitting of $S_2^0(N)$

Table 3. Genera of $X_0^*(N)$ and $X_0^*(N)/\langle V \rangle$

N V	17	Genus of	Genus of	7	r	TZ	Genus of	Genus of
	V	$X_0^*(N)$	$X_0^*(N)/\langle V\rangle$	11	V	$X_0^*(N)$	$X_0^*(N)/\langle V\rangle$	
136	V_2	3	0	$\overline{17}$	6	V_2	4	0
144	V_2	3	1	26	4	V_2	4	1
	V_3	3	1	28	0	V_2	4	1
	V_2V_3	3	1	30	6	V_3	4	1
152	V_2	3	1	34	2	V_3	4	1
171	V_3	3	0	21	6	V_2	5	2
207	V_3	3	2	27	9	V_3	5	0
234	V_3	3	1	39	6	V_3	5	3
240	V_2	3	1	63	0	V_3	5	2
252	V_3	3	0	33	6	V_2	6	2
312	V_2	3	1	36	0	V_2	7	2
315	V_3	3	2	45	0	V_3	7	3
160	V_2	4	2					

We know from Table 3 that $X_0^*(N)$ is hyperelliptic with hyperelliptic involution V for N = 136, 171, 252, 176 and 279. We also know that $X_0^*(N)$ is not hyperelliptic for N = 264, 280, 306, 342, 336 and 360, by virtue of Proposition 4. Further, we use the following fact to conclude that $X_0^*(207)$ and $X_0^*(315)$ are hyperelliptic.

PROPOSITION 5. Let X, Y be curves over \mathbb{C} of genus 3, 2, respectively. If there is a covering $\pi : X \to Y$, then X is hyperelliptic.

Proof. See [6]. ■

Determination of the hyperellipticity of $X_0^*(N)$ for N = 144, 152, 234, 240, 312, 160, 216, 396, 630 and 450 will be postponed to the following sections.

3. Fixed points of V_2 . In this section, we always assume that 8 | N except for Remark 3. The important fact is that V_2 is defined over \mathbb{Q} , so that the following Ogg's observations [12] are applicable.

LEMMA 2 ([12], Prop. 1). Let X/\mathbb{C} be a hyperelliptic curve, and v the hyperelliptic involution on X. Let w be another involution, and put u = vw, which is also an involution. Then the fixed-point sets of u, v, and w are disjoint. If g is even, then w and u have two fixed points each. If g is odd, then w has four fixed points, and u has none, or vice versa.

PROPOSITION 6. Let X be a curve defined over \mathbb{Q} , and let w be a nonhyperelliptic involution defined over \mathbb{Q} on X. If w has only one rational fixed point, then X is non-hyperelliptic.

Proof. Suppose X is hyperelliptic. Then the hyperelliptic involution v, which is in the center of Aut X, acts on the set of fixed points of w. But v is defined over \mathbb{Q} , so v must fix the (unique) rational fixed point of w. This is a contradiction.

Observe that $S_2 = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ commutes with all $W_{p^{\nu}}, p^{\nu} \parallel N, p \neq 2$. Therefore S_2 induces an isomorphism

$$X_0^*(N) \cong X_0(N)/G$$

where G is the subgroup of Aut $X_0(N)$ generated by $\{W_{p^{\nu}}\}_{p\neq 2} \cup \{V_2\}$. Thus, to obtain the information about the fixed points of V_2 on $X_0^*(N)$, it suffices to consider the fixed points of $W_{2^{\alpha}}$ $(2^{\alpha} \parallel N)$ on $X_0(N)/G$.

EXAMPLE 4. Let $N = 152 = 2^3 \cdot 19$. The genus of $X_0^*(152)$ is three, and V_2 has 4 fixed points on $X_0^*(152)$ (see Table 3). Put $G = \langle W_{19}, V_2 \rangle$, which is abelian of type (2, 2). On $X_0(152)$, we can see from [2] that W_8 and W_{152} have 4 and 12 fixed points, respectively. Since G acts fixed-point-freely on the fixed-point set of W_8 (resp. W_{152}), the contribution of the fixed points of W_8 (resp. W_{152}) to those of W_8 on $X = X_0(152)/G$ is one (resp. three). Further we have

$$h(-4 \cdot 8) = 2, \quad h(-4 \cdot 152) = 12,$$

where h(-d) is the class number of primitive quadratic forms of discriminant -d. This means that the fixed points of W_{152} are all defined over a field of degree exactly 12. Hence W_8 has only one rational fixed point on X, i.e., $X_0^*(152) \cong X$ is not hyperelliptic.

The similar argument can be applied to the cases N = 216 and 312. Let N = 216. The genus of $X_0^*(216)$ is five, and the involution V_2 has four fixed points on $X_0^*(216)$. On $X_0(216)$, we see from [2] that W_8 (resp. W_{216}) has 4 (resp. 12) fixed points. Also we compute $h(-4 \cdot 8) = 2$, $h(-4 \cdot 216) = 12$. Hence $X_0^*(216)$ is not hyperelliptic.

For N = 312, we include the W-splitting of $S_2(312)$:

which should be read in the same manner as the data in the third column of Table 2. From this, we see that W_{104} has 24 fixed points and W_{312} has 8 fixed points; the corresponding class numbers are $h(-4\cdot104) = 12$, $h(-4\cdot312) = 8$. Therefore W_8 has exactly one rational fixed point on $X_0(312)/G$, where $G = \langle W_3, W_{13}, V_2 \rangle$. Hence $X_0^*(312)$ is not hyperelliptic.

Remark 3. Let $9 \parallel N$, and let V_3 be the involution on $X_0(N)$ defined in the previous section. Then V_3 is defined over $\mathbb{Q}(\sqrt{-3})$. Also, it can easily be shown that

$$V_3 W_{p^{\nu}} V_3 = \begin{cases} W_{p^{\nu}} & \text{if } p^{\nu} \equiv 0, 1 \pmod{3}, \\ W_9 W_{p^{\nu}} & \text{if } p^{\nu} \equiv 2 \pmod{3} \end{cases}$$

for $p^{\nu} \parallel N$ (cf. Theorem 8 of [1]).

4. Modular involutions on $X_0^*(N)$ (II). In this section, we assume that $4 \parallel N$. Write N = 4M. Then

PROPOSITION 7. We have the isomorphism

$$X_0^*(N) \cong X_0(N)/G \cong X_0(2M)/\langle \{W_{p^\nu}\}_{p|M} \rangle,$$

where G is a subgroup of Aut $X_0(N)$ generated by $\{W_{p^{\nu}}\}_{p\neq 2} \cup \{S_2\}$.

Proof. Indeed, the first isomorphism is obtained by conjugating $\Gamma_0^*(N)$ by $S_2W_4S_2$, and the second by conjugating $\langle G \cup \Gamma_0(N) \rangle$ by α_2 .

Consider the case N = 300. Then we have

$$X_0^*(300) \cong X_0(150) / \langle W_3, W_{25} \rangle$$

the right hand side of which has a covering of degree two to $X_0^*(150)$; since the genus of $X_0^*(300)$ is four and that of $X_0^*(150)$ is one, we find that $X_0^*(300)$ is not hyperelliptic (Proposition 4).

Next we pick up the case N = 348. Then

$$X_0^*(348) \cong X := X_0(174) / \langle W_3, W_{29} \rangle.$$

The curve X has an involution induced by W_2 . Since (on $X_0(174)$) W_6 and W_{174} have 4 and 12 fixed points each, and since $h(-4 \cdot 6) = 2$ and $h(-4 \cdot 174) = 12$, it follows that W_2 has only one rational fixed point, as in Example 4. So, by Proposition 6, we conclude that $X_0^*(348)$ is not hyperelliptic.

5. Reduction modulo p. Let p be a prime number and N a positive integer such that N = pM, $p \nmid M$. The reduction modulo p of $X_0(pM)$ consists of two copies Z, Z' of $X_0(M)$ in characteristic p, intersecting transversally at the supersingular points [3] (see Figure 1).

The Atkin–Lehner involutions $W_{N'}(N' || N)$ still act on $X_0(N) \mod p$. If $p \nmid N'$, then $W_{N'}$ fixes each component Z, Z', and its action in characteristic p is the same as in characteristic 0. If $p \mid N'$, then $W_{N'}$ interchanges Z and Z'. In particular, if N' = p, then W_p fixes each \mathbb{F}_p -rational supersingular point, while it exchanges each properly \mathbb{F}_{p^2} -rational supersingular point for its conjugate. Let W' be a subgroup of W(N). If W' is generated by some of $W_{N'}$ with $p \nmid N'$, then $X_0(N)/W' \mod p$ is again of the shape in Figure 1 with $Z = Z' = X_0(M)/W'$. If W' contains some $W_{N'}$ with $p \mid N'$, then $X_0(N)/W' \mod p$ becomes as in Figure 2:

where $Z'' = X_0(M)/W''$ is some quotient of $X_0(M)$.

Now assume that $X_0(N)/W'$ is hyperelliptic. Assume further for simplicity that the special fibre of the minimal model of $X_0(N)/W'$ at p is as in Figure 2, with $X_0(N)/W''$ being of genus zero. Then, as explained in Appendix C of [7], there must exist an element A of order 2 of $\mathrm{PGL}_2(\mathbb{F}_p)$ such that

(1)
$$A\alpha = \overline{\alpha}$$

for all properly \mathbb{F}_{p^2} -rational supersingular points α on Z''. We apply this observation to the cases N = 164 and 234.

Let $N = 164 = 41 \cdot 4$. We have $X_0^*(164) \cong X_0(82)/\langle W_{41} \rangle =: X$ by Proposition 7. Consider $X_0(82)$ modulo p = 41. Then $Z = Z' = X_0(2)$ is of genus zero, and the curve $X_0(2)$ is defined by the equation

(2)
$$j = 64 \frac{(x+4)^3}{x^2}$$

(see [4]). Since the supersingular *j*-invariants in characteristic p = 41 are given by

$$j(j+38)(j+13)(j+9) = 0,$$

we compute the supersingular points on $X_0(2)$ in characteristic p = 41 by solving the equation (2):

$$(x+4)[(x+31)(x^2+29x+10)][(x+23)(x^2+27x+1)][(x+25)(x^2+7x+37)] = 0,$$

where x = -4 is the only supersingular point above j = 0. Thus the special fibre of the minimal model of X at p = 41 is as in Figure 2, with $Z'' = X_0(2)$. But it can easily be checked that there does not exist an element of order 2 of PGL₂(\mathbb{F}_{41}) with the property (1), from which we conclude that $X_0^*(164) \cong X$ is not hyperelliptic.

Let $N = 234 = 13 \cdot 18$, and consider $X_0(234)$ modulo p = 13. Then $Z = Z' = X_0(18)$ is of genus zero, and the curve $X_0(18)$ is defined by the equation

(3)
$$j = h \circ g \circ f(x),$$

where

$$\begin{split} f(X) &= \frac{1}{2}X(X^2 + 6X + 12), \\ g(X) &= \frac{X(2X+9)^2}{27(X+4)}, \\ h(X) &= 27\frac{(X+1)(9X+1)^3}{X}. \end{split}$$

The actions of W_2, W_9, W_{18} are given by

$$x|W_2 = \frac{-2(x+3)}{x+2}, \quad x|W_9 = \frac{-3(x+2)}{x+3}, \quad x|W_{18} = \frac{6}{x}$$

(cf. [4]). The only supersingular *j*-invariant in characteristic p = 13 is j = 5, and the supersingular points on $X_0(18)$ are obtained by solving the equation (3):

$$\begin{aligned} &(x^2+6)(x^2+7)(x^2+x+5)(x^2+3x+10)(x^2+4x+6)(x^2+4x+9)\\ &\times(x^2+4x+10)(x^2+5x+1)(x^2+5x+5)(x^2+6x+2)(x^2+6x+4)\\ &\times(x^2+7x+1)(x^2+7x+4)(x^2+8x+10)(x^2+9x+2)(x^2+9x+9)\\ &\times(x^2+10x+1)(x^2+10x+6)=0. \end{aligned}$$

Put $X = X_0^*(234)$ and consider X modulo p = 13, which is of the shape in Figure 2 with $Z'' = X_0^*(18)$. The curve $X_0^*(18)$ is parametrized by

$$x' = x + x|W_2 + x|W_9 + x|W_{18} = \frac{(x^2 - 6)^2}{x(x+2)(x+3)}.$$

There are three conjugate pairs of properly \mathbb{F}_{13^2} -rational supersingular points, say, α_i , $i = 1, \ldots, 6$, with $\alpha_{i+3} = \overline{\alpha}_i$ for i = 1, 2, 3; they are the roots of the equation

$$(x'^2 - 6x' + 7)(x'^2 - 6x' - 9)(x'^2 - 32) = 0.$$

It can be shown that the number of the points on Z = Z' above each of the three conjugate pairs is equal to the degree of the covering $X_0(238) \to X$. Hence the special fibre of the minimal model of X at p = 13 is of the shape in Figure 2, with $Z'' = X_0^*(18)$. But there does not exist an element of order 2 of $\text{PGL}_2(\mathbb{F}_{13})$ with the property (1), from which we conclude that $X_0^*(234)$ is not hyperelliptic.

6. Gap sequences. Let X be an algebraic curve over \mathbb{C} of genus g. The Weierstrass gap sequence G_P at a point P of X is defined by

 $G_P = \{n \in \mathbb{Z} \mid n > 0 \text{ and } (f)_{\infty} \neq n(P) \text{ for all } f \in K(X)\},\$

where K(X) is the function field of X and $(f)_{\infty}$ is the polar divisor of f. By the Riemann–Roch theorem, we see that the cardinality of G_P is exactly the genus g of X with max $G_P \leq 2g - 1$. It is easily shown that

(4)
$$G_P = \{ n \in \mathbb{Z} \mid \exists \omega \in H^0(X, \omega_X) \text{ such that } \operatorname{ord}_P(\omega) = n - 1 \},$$

where ω_X is the canonical sheaf on X. A point P on X is a Weierstrass point if $G_P \neq \{1, 2, \ldots, g\}$. If X is hyperelliptic and P is a Weierstrass point of X, then

(5)
$$G_P = \{1, 3, 5, \dots, 2g - 1\}.$$

Now let Γ be a Fuchsian group of the first kind having $i\infty$, the point at infinity, as its cusp. For simplicity, we assume that the local parameter at the point $i\infty$ is $q = \exp(2\pi i\tau)$. Let $S_2(\Gamma)$ be the space of cuspforms of weight 2 on Γ . If the corresponding algebraic curve $X = X_{\Gamma}$ is of genus g, then dim_{\mathbb{C}} $S_2(\Gamma) = g$. Since $S_2(\Gamma)$ can be identified with the space of holomorphic 1-forms on X by sending f to $2\pi i f d\tau$, we can interpret (4) as

$$G_P = \{ n \in \mathbb{Z} \mid \exists f \in S_2(\Gamma) \text{ such that } f = q^n + \ldots \}.$$

Hence if X is hyperelliptic, then there is a basis $\langle f_1, \ldots, f_g \rangle$ of $S_2(\Gamma)$ of the form

(6)
$$\begin{cases} f_1 = q + a_2^{(1)}q^2 + a_3^{(1)}q^3 + \dots, \\ f_2 = q^2 + a_3^{(2)}q^3 + \dots, \end{cases}$$

$$\int_{g} \frac{1}{g} = q^{g} + a_{g+1}^{(g)} q^{g+1} + \dots,$$

or

(7)
$$\begin{cases} f_1 = q + a_2^{(1)}q^2 + a_3^{(1)}q^3 + \dots \\ f_2 = q^3 + a_4^{(2)}q^4 + \dots \\ \dots \\ f_g = q^{2g-1} + a_{2g}^{(g)}q^{2g} + \dots \end{cases}$$

according as $\overline{i\infty}$ is an ordinary point or a Weierstrass point. In other words, if $S_2(\Gamma)$ does not have a basis of the form (6) nor (7), then X is not hyperelliptic. In the following, Γ is taken to be some normalizer of $\Gamma_0(N)$, and we use trace formulas of Hecke operators to compute Fourier coefficients of f_1, \ldots, f_g ([8], [13]). EXAMPLE 5. Let N = 160. Then $X_0^*(160)$ is of genus 4, so $S_2^*(160)$ is of dimension 4. On the other hand, $S_2^*(160)$ contains

$$f_1 - 8f_1^{(8)} = q - 2q^3 - q^5 + 2q^7 + \dots,$$

$$f_1^{(2)} - 2f_1^{(4)} = q^2 - 2q^4 - 2q^6 - q^{10} + \dots,$$

$$f_2 = q - 2q^3 - q^5 - 2q^7 + \dots,$$

where $f_1 \in S_2^0(4 \cdot 5)^{(-,+)}$ and $f_2 \in S_2^0(32 \cdot 5)^{(+,+)}$. Hence $S_2^*(160)$ cannot have a basis of the form (6) nor (7). Namely, $X_0^*(160)$ is not hyperelliptic.

By the same reason, $X_0^*(175)$ and $X_0^*(270)$ are not hyperelliptic; $X_0^*(175)$ is of genus 3 and $S_2^*(175)$ contains

$$f_1 - 5f_1^{(5)} = q - q^3 + 2q^4 + \dots, \qquad f_2 = q - q^3 - 2q^4 + \dots,$$

where $f_1 \in S_2^0(5 \cdot 7)^{(-,+)}$ and $f_2 \in S_2^0(25 \cdot 7)^{(+,+)}$; $X_0^*(270)$ is of genus 3 and $S_2^*(270)$ is spanned by

$$g_{1} := f_{1} - 9f_{1}^{(9)} = q - q^{2} + q^{3} + q^{4} + \dots,$$

$$g_{2} := f_{2} + 2f_{2}^{(2)} - 3f_{2}^{(3)} - 6f_{2}^{(6)} = q + 3q^{2} - 3q^{3} + q^{4} + \dots,$$

$$g_{3} := f_{3} + 2f_{3}^{(2)} = q - 2q^{4} + \dots,$$

$$f_{n} \in \mathbb{C}^{0}(2, 2, 5)^{(+, -, +)}, \quad f_{n} \in \mathbb{C}^{0}(0, 5)^{(-, +)} \text{ and } f_{n} \in \mathbb{C}^{0}(27, 5)^{(+, +)}$$

where $f_1 \in S_2^0(2 \cdot 3 \cdot 5)^{(+,-,+)}, f_2 \in S_2^0(9 \cdot 5)^{(-,+)}$ and $f_3 \in S_2^0(27 \cdot 5)^{(+,+)}$, so

$$3g_1 + g_2 - 4g_3 = 12q^4 + \ldots \in S_2^*(270)$$

EXAMPLE 6. Let N = 396. Then $X_0^*(396)/\langle V_3 \rangle$ is of genus 3, and the space $S_2^*(396)^{V_3}$ is spanned by $f_1 + 4f_1^{(4)}$, $f_1^{(2)}$ and $f_2 - 2f_2^{(2)}$, where $f_1 \in S_2^0(9 \cdot 11)^{(+,+)}$ and $f_2 \in S_2^0(2 \cdot 9 \cdot 11)^{(-,+,+)}$ (see [2] and Proposition 3). But since their levels are divisible by 3^2 , f_1 and f_2 have zero as their third Fourier coefficients, implying that $S_2^*(396)^{V_3}$ cannot have a basis of the form (6) nor (7). This shows that $X_0^*(396)/\langle V_3 \rangle$ is not hyperelliptic. Hence $X_0^*(396)$ is also non-hyperelliptic.

By the same reason, $X_0^*(450)$ is not hyperelliptic (the space $S_2^*(450)^{V_3}$ is spanned by $f_1 - 5f_1^{(5)}$, $f_2 + 2f_2^{(2)}$ and f_3 , where $f_1 \in S_2^0(2 \cdot 9 \cdot 5)^{(+,+,-)}$, $f_2 \in S_2^0(9 \cdot 25)^{(+,+)}$ and $f_3 \in S_2^0(2 \cdot 9 \cdot 25)^{(+,+,+)}$).

7. Conclusion: Remaining cases and the defining equations of hyperelliptic curves $X_0^*(N)$. So far, we have determined the hyperellipticity of $X_0^*(N)$ except for the following values of N:

$$(8) N = 144, 162, 196, 240, 294, 420, 476, 630.$$

We are now going to treat these remaining cases. Let Γ be as in the previous section, and $\langle f_1, \ldots, f_g \rangle$ a basis of $S_2(\Gamma)$. Assume for simplicity

that $\overline{i\infty}$ is an ordinary point of X_{Γ} , and that $\langle f_1, \ldots, f_g \rangle$ is of the form (6). Put

$$z = \frac{f_{g-1}}{f_g}, \quad w = \frac{dz}{2\pi i f_g d\tau} = \left(\frac{f_g}{q}\right)^{-1} \frac{dz}{dq}$$

and define

$$G(T) = T^{2g+2} + v_{2g+1}T^{2g+1} + \ldots + v_0 \in \mathbb{C}[T]$$

by the condition $\operatorname{ord}_q(w^2 - G(z)) \ge 1$, i.e., the Laurent series $w^2 - G(z)$ consists only of positive q-power terms. Thus we can write

(9)
$$w^2 - G(z) = \sum_{j \ge 1} d_j q^j.$$

PROPOSITION 8. Notation being as above, the curve $X = X_{\Gamma}$ is hyperelliptic if and only if the following two conditions hold:

- (i) G(T) is separable,
- (ii) $d_1 = \ldots = d_h = 0$ where $h = 4g^2 + 8g 20$.

Moreover, if X is hyperelliptic, then it is defined by the equation $w^2 = G(z)$.

Proof. See [7]. ■

EXAMPLE 7. Let N = 144. Then a basis of $S_2^*(144)$ is given by

$$\begin{split} f_1 &= q - 4q^4 - 4q^7 + 2q^{13} + O(q^{17}), \\ f_2 &= q^2 - 4q^4 + 2q^5 + 2q^6 - 4q^7 + 2q^9 - 2q^{10} + 4q^{13} + O(q^{17}), \\ f_3 &= q^3 - 2q^4 + q^5 - 2q^7 + q^9 + 2q^{11} + 2q^{13} - 2q^{15} + O(q^{17}). \end{split}$$

Put $x = f_1/f_3$ and $y = f_2/f_3$. Then we can see that they satisfy no quadratic equations. In fact, by obtaining much more precise expressions for f_1 , f_2 , f_3 , we can verify that x and y satisfy a quartic equation

 $x^{3} - x^{2}(y^{2} + 4) + 2x(y^{3} - 2y^{2} + 2y + 3) - (y^{4} - 4y^{3} + 8y^{2} - 8y + 7) = 0,$

which is the defining equation of $X_0^*(144)$. Hence $X_0^*(144)$ is not hyperelliptic. We can give an alternative proof which uses Proposition 8. In the present case, we have

 $G(T) = T^8 - 12T^7 + 76T^6 - 272T^5 + 626T^4 - 820T^3 + 720T^2 - 184T + 1$ and $w^2 - G(z) = -864 q + \dots$, hence again we conclude that $X_0^*(144)$ is not hyperelliptic.

EXAMPLE 8. Let N = 207. By Table 3 and Proposition 5, we know that $X_0^*(207)$ is hyperelliptic. Let us compute the defining equation of $X_0^*(207)$. A basis of $S_2^*(207)$ is given by

$$f_1 = q + q^2 - q^3 - 2q^4 - 2q^5 - q^6 - q^7$$
$$-2q^8 - q^9 - q^{10} + q^{12} - 3q^{13} + O(q^{14}),$$

$$f_{2} = q^{2} - 2q^{4} - q^{5} + q^{7} + q^{8} - q^{10} - 2q^{11} + O(q^{14}),$$

$$f_{3} = q^{3} - q^{4} - 2q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 4q^{11} - q^{12} + 3q^{13} + O(q^{14})$$

Then we compute $f_2^2 - f_1 f_3 = O(q^{15})$, or equivalently, $x^2 - y = O(q^9)$ if we write $x = f_2/f_3$ and $y = f_1/f_3$. Since the degree of the divisors of poles of x and y are bounded by

$$2 \cdot 3 - 2 = 4,$$

and since x^2, y have a pole of order 2 at $\overline{i\infty}$, we see that the f_i 's in fact satisfy a quadratic equation

$$f_2^2 - f_1 f_3 = 0.$$

Hence again we find that $X_0^*(207)$ is hyperelliptic. Its defining equation is given by

$$w^{2} = z^{8} - 6z^{7} + 11z^{6} - 12z^{5} + 9z^{4} - 12z^{3} + 11z^{2} - 6z + 1,$$

where we put

$$z = \frac{f_2}{f_3}$$
 and $w = \left(\frac{f_3}{q}\right)^{-1} \frac{dz}{dq}$.

Using Proposition 8, we can show that $X_0^*(N)$ is not hyperelliptic for all N in (8) (see Table 6 for data of Fourier coefficients). Hence we have

THEOREM. Assume that $X_0^*(N)$ is of genus ≥ 3 . Then $X_0^*(N)$ is hyperelliptic if and only if N = 136, 171, 207, 252, 315, 176 or 279. For $N \neq 207$ and $N \neq 315$, the hyperelliptic involution of $X_0^*(N)$ is of type V in the notation of Section 2; namely, $V = S_2 W_8 S_2$ for N = 136, $V = S_2 W_{16} S_2$ for N = 176, and $V = S_3 W_9 S_3^2$ for N = 171, 252 and 279. Their defining equations are given in Table 4 below.

N	Defining equation $w^2 = f(z)$ of $X_0^*(N)$	Discriminant of $f(z)$
136	$w^{2} = z(z+1)(z^{2}+3z-2)(z^{4}+4z^{3}+5z^{2}+2z-4)$	$-2^{28}17^3$
171	$w^{2} = (z^{2} - z + 1)(z^{6} + z^{5} + 2z^{4} - 7z^{3} - 2z^{2} - 3z + 9)$	$2^{16}3^{6}19^{4}$
207	$w^{2} = z^{8} - 6z^{7} + 11z^{6} - 12z^{5} + 9z^{4} - 12z^{3} + 11z^{2} - 6z + 1$	$-2^{16}3^{6}23^{3}$
252	$w^{2} = (z^{2} + 3)(z^{2} - z + 1)(z^{4} - 5z^{3} + 8z^{2} - 7z + 7)$	$2^{28}3^47^4$
315	$w^{2} = (z^{4} + z^{3} + 3z^{2} + z + 1)(z^{4} + 5z^{3} + 3z^{2} + 5z + 1)$	$-2^{16}3^{6}5^{2}7^{3}$
176	$w^{2} = z(z^{3} - 4z + 4)(z^{3} - 2z^{2} + 2)(z^{3} + 2z^{2} - 2)$	$-2^{40}11^5$
279	$w^{2} = (z^{6} - z^{5} + z^{4} + 2z^{3} - z^{2} + 1)$	
	$\times \left(z^6 + 3z^5 + 5z^4 + 6z^3 + 7z^2 + 12z + 9\right)$	$2^{24}3^831^6$

Table 4

R e m a r k 4. Let N be an integer which is in Table 3. Then $X_0^*(N)/\langle V \rangle$ is of genus 2 for N = 207, 315, 160, 216, 630, 336 and 360. We also give their defining equations in Table 5.

Table 5

$ \begin{array}{ c c c c c c c } \hline N & \mbox{Defining equation } w^2 = f(z) \mbox{ of } X_0^*(N) & \mbox{Discriminant of } \\ \hline \hline & f(z) \\ \hline 207 & w^2 = (z-1)(z+3)(z^4-2z^3-5z^2+6z-3) & -2^{12}3^623^3 \\ 315 & w^2 = (z-3)(z+1)(z^2-z+1)(z^2+3z-3) & -2^{12}3^65^47^3 \\ 160 & w^2 = (z^2+4)(z^2-2z+2)(z^2+2z+2) & -2^{26}5^4 \\ 216 & w^2 = (z^2-3z+3)(z^3-3z^2+3z+3) & 2^{4}3^8 \\ 630 & w^2 = (z^2+z-1)(z^4-z^3+2z^2+7z+7) & 2^{12}3^65^37^2 \\ 336 & w^2 = (z^2-3)(z^4-11z^2+32) & 2^{23}3\cdot7^2 \\ 360 & w^2 = (z^2+3)(z^2-z+4)(z^2+z+4) & -2^{18}3^35^2 \\ \hline \end{array} $			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N	Defining equation $w^2 = f(z)$ of $X_0^*(N)$	Discriminant of $f(z)$
$\begin{array}{ll} 315 & w^2 = (z-3)(z+1)(z^2-z+1)(z^2+3z-3) & -2^{12}3^65^47^3 \\ 160 & w^2 = (z^2+4)(z^2-2z+2)(z^2+2z+2) & -2^{26}5^4 \\ 216 & w^2 = (z^2-3z+3)(z^3-3z^2+3z+3) & 2^{4}3^8 \\ 630 & w^2 = (z^2+z-1)(z^4-z^3+2z^2+7z+7) & 2^{12}3^65^37^2 \\ 336 & w^2 = (z^2-3)(z^4-11z^2+32) & 2^{23}3\cdot7^2 \\ 360 & w^2 = (z^2+3)(z^2-z+4)(z^2+z+4) & -2^{18}3^35^2 \end{array}$	207	$w^{2} = (z-1)(z+3)(z^{4} - 2z^{3} - 5z^{2} + 6z - 3)$	$-2^{12}3^{6}23^{3}$
$ \begin{array}{ll} 160 & w^2 = (z^2 + 4)(z^2 - 2z + 2)(z^2 + 2z + 2) & -2^{26}5^4 \\ 216 & w^2 = (z^2 - 3z + 3)(z^3 - 3z^2 + 3z + 3) & 2^43^8 \\ 630 & w^2 = (z^2 + z - 1)(z^4 - z^3 + 2z^2 + 7z + 7) & 2^{12}3^65^37^2 \\ 336 & w^2 = (z^2 - 3)(z^4 - 11z^2 + 32) & 2^{23}3 \cdot 7^2 \\ 360 & w^2 = (z^2 + 3)(z^2 - z + 4)(z^2 + z + 4) & -2^{18}3^35^2 \end{array} $	315	$w^{2} = (z-3)(z+1)(z^{2}-z+1)(z^{2}+3z-3)$	$-2^{12}3^{6}5^{4}7^{3}$
$\begin{array}{ll} 216 & w^2 = (z^2 - 3z + 3)(z^3 - 3z^2 + 3z + 3) & 2^{4}3^8 \\ 630 & w^2 = (z^2 + z - 1)(z^4 - z^3 + 2z^2 + 7z + 7) & 2^{12}3^65^37^2 \\ 336 & w^2 = (z^2 - 3)(z^4 - 11z^2 + 32) & 2^{23}3 \cdot 7^2 \\ 360 & w^2 = (z^2 + 3)(z^2 - z + 4)(z^2 + z + 4) & -2^{18}3^35^2 \end{array}$	160	$w^{2} = (z^{2} + 4)(z^{2} - 2z + 2)(z^{2} + 2z + 2)$	$-2^{26}5^4$
$\begin{array}{ll} 630 & w^2 = (z^2 + z - 1)(z^4 - z^3 + 2z^2 + 7z + 7) & 2^{12}3^65^37^2 \\ 336 & w^2 = (z^2 - 3)(z^4 - 11z^2 + 32) & 2^{23}3 \cdot 7^2 \\ 360 & w^2 = (z^2 + 3)(z^2 - z + 4)(z^2 + z + 4) & -2^{18}3^35^2 \end{array}$	216	$w^{2} = (z^{2} - 3z + 3)(z^{3} - 3z^{2} + 3z + 3)$	$2^4 3^8$
$\begin{array}{ll} 336 & w^2 = (z^2 - 3)(z^4 - 11z^2 + 32) & 2^{23}3 \cdot 7^2 \\ 360 & w^2 = (z^2 + 3)(z^2 - z + 4)(z^2 + z + 4) & -2^{18}3^35^2 \end{array}$	630	$w^{2} = (z^{2} + z - 1)(z^{4} - z^{3} + 2z^{2} + 7z + 7)$	$2^{12}3^{6}5^{3}7^{2}$
$360 w^2 = (z^2 + 3)(z^2 - z + 4)(z^2 + z + 4) \qquad -2^{18}3^35^2$	336	$w^2 = (z^2 - 3)(z^4 - 11z^2 + 32)$	$2^{23}3 \cdot 7^2$
	360	$w^{2} = (z^{2} + 3)(z^{2} - z + 4)(z^{2} + z + 4)$	$-2^{18}3^35^2$

Та	bl	e	6
		· •	•••

\overline{N}	A basis of $S_2^*(N)$	d_1
162	(1, 0, 0, 0, -4, -3, -4, -2, 0, 4, 1, 3)	10
	(0, 1, 0, -1, -1, -3, 0, -1, 0, 1, 1, 3)	
	(0, 0, 1, 0, -2, -1, -1, 0, 0, 2, 1, 1)	
196	(1, 0, 0, -1, -2, -2, -3, 0, 0, 2, -1, 0)	-760
	(0, 1, 0, 0, -2, -2, -3, 1, 1, 2, 1, 0)	
	(0, 0, 1, 0, -2, -1, 0, 0, 0, 2, 0, -1)	
240	(1, 0, 0, -2, -1, 0, -1, 0, -2, 0, 0, -2)	49600
	(0, 1, 0, 0, -2, -1, -2, 0, 0, 3, -2, 0)	
	(0, 0, 1, -2, 0, 0, 3, 0, -3, 0, 0, -2)	
294	(1, 0, 0, 0, -1, -1, -3, -1, -2, -2, -1, 1)	-522
	(0, 1, 0, 0, -1, -1, 0, -3, 0, -3, 0, 0)	
	(0, 0, 1, 1, 0, -1, -3, -3, -3, -1, 1, 0)	
420	(1, 0, 0, -1, 0, -1, -1, 0, 0, -1, -2, 0)	8
	(0, 1, 0, 0, -2, -1, 0, 1, 0, 1, 0, 0)	
	(0, 0, 1, 0, -1, -1, 0, 0, -1, 1, 2, -1)	
476	(1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 0)	-48
	(0, 1, 0, 0, -1, 0, -1, 1, -2, -1, -2, 0)	
	(0, 0, 1, 0, 0, -1, -1, 0, 0, 0, -2, -1)	
630	(1, 0, 0, 0, 0, -1, 0, -2, -2, 1, -2, 2, 0, -1, -2, 3, -5, 1)	24354
	(0, 1, 0, 0, 0, 0, 0, -3, 0, -1, -2, 0, 2, -1, 0, 2, -4, 0)	
	(0, 0, 1, 0, 0, -1, -1, 0, 0, 0, -1, 1, -1, 1, -1, 0, -3, 0)	
	(0, 0, 0, 1, 0, 0, 1, -3, -1, 0, -2, 0, 3, -1, 0, 4, -3, 1)	
	(0, 0, 0, 0, 1, -1, 0, -1, -1, 1, 0, 2, 1, 0, -2, 4, -4, 0)	

In Table 6, we give a basis of $S_2^*(N)$ explicitly for all $N \neq 144$ in (8) (for N = 144, see Example 7).

If $f_i(\tau) \in S_2^*(N)$ $(1 \leq i \leq g)$ has the Fourier expansion $f_i(\tau) = \sum_{n\geq 1} a_n^{(i)} q^n$, we give its Fourier coefficients by $(a_1^{(i)}, a_2^{(i)}, \ldots, a_r^{(i)})$ with r = 3g + 3. Note that for all N in Table 6, the f_i 's are of the form (6), and r = 3g + 3 is the lowest bound to be able to calculate d_1 (see (9) and Proposition 8). We have $d_1 \neq 0$ for all N in (8).

Acknowledgements. The author would like to express his thanks to Professors K. Hashimoto and F. Momose for their valuable suggestions and warm encouragement.

References

- [1] A. O. L. Atkin and J. Lehner, *Hecke operators on* $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
- [2] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 74–144.
- [3] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, P. Deligne and W. Kuyk (eds.), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143–316.
- [4] R. Fricke, *Die Elliptischen Funktionen und ihre Anwendungen*, Teubner, Leipzig and Berlin, 1916.
- [5] Y. Hasegawa, Table of quotient curves of modular curves $X_0(N)$ with genus 2, Proc. Japan Acad. Ser. A 71 (1995), 235–239.
- [6] —, Modular abelian surfaces and hyperelliptic curves of genus two, preprint.
- [7] Y. Hasegawa and K. Hashimoto, Hyperelliptic modular curves $X_0^*(N)$ with square-free levels, Acta Arith. 77 (1996), 179–193.
- [8] H. Hijikata, Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan 26 (1974), 56–82.
- [9] P. G. Kluit, Hecke operators on $\Gamma^*(N)$ and their traces, Dissertation of Vrije Universiteit, Amsterdam, 1979.
- [10] J. Lehner and M. Newman, Weierstrass points of $\Gamma_0(N)$, Ann. of Math. 79 (1964), 360–368.
- [11] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405–418.
- [12] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449– 462.
- [13] M. Yamauchi, On the traces of Hecke operators for a normalizer of $\Gamma_0(N)$, J. Math. Kyoto Univ. 13 (1973), 403–411.

Department of Mathematics Waseda University 3-4-1, Okubo Shinjuku-ku Tokyo 169, Japan E-mail: hase@mn.waseda.ac.jp

> Received on 22.11.1996 and in revised form on 21.2.1997

(3082)