On the diophantine equation $\left(x^{m}+1\right)\left(x^{n}+1\right)=y^{2}$

by

Maohua Le (Zhanjiang)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation
(1) $\quad\left(x^{m}+1\right)\left(x^{n}+1\right)=y^{2}, \quad x, y, m, n \in \mathbb{N}, x>1, n>m \geq 1$,
has no solution (x, y, m, n) with $2 \mid x$ and (1) has only finitely many solutions (x, y, m, n) with $2 \nmid x$. Moreover, all solutions of (1) with $2 \nmid x$ satisfy $\max (x, m, n)<C$, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.

Theorem. Equation (1) has only the solution $(x, y, m, n)=(7,20,1,2)$.

2. Preliminaries

Lemma 1 ([4]). The equation

$$
X^{2}-2 Y^{4}=1, \quad X, Y \in \mathbb{N}
$$

has no solution (X, Y). The equation

$$
X^{2}-2 Y^{4}=-1, \quad X, Y \in \mathbb{N}
$$

has only the solutions $(X, Y)=(1,1)$ and $(239,13)$.
Lemma 2 ([5]). Let a, D be positive integers with $2 \nmid a$. The equation

$$
a^{2} X^{4}-D Y^{2}=-1, \quad X, Y \in \mathbb{N}
$$

has at most one solution (X, Y).
Lemma 3 ([1]). The equation

$$
X^{n}+1=Y^{2}, \quad X, Y, n \in \mathbb{N}, n>1
$$

has only the solution $(X, Y, n)=(2,3,3)$.

[^0]Lemma 4 ([6]). The equation

$$
\frac{X^{n}+1}{X+1}=Y^{2}, \quad X, Y, n \in \mathbb{N}, X>1, n>1,2 \nmid n,
$$

has no solution (X, Y, n).
Let a, b be nonzero integers such that $a>0, \operatorname{gcd}(a, b)=1$ and $a-4 b>0$. Let α, β be distinct zeros of the polynomial $z^{2}-\sqrt{a} z+b$. For any odd integer n, let $F(n)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$. Then $F(n)$ are nonzero integers if $n>0$.

Lemma $5([9])$. If $4 \mid a, b \equiv 1(\bmod 4)$ and $(a / b)=1$, where (a / b) is Jacobi's symbol, then the equation

$$
F(n)=Y^{2}, \quad n, Y \in \mathbb{N}, n>1,2 \nmid n,
$$

has no solution (n, Y). If $4 \mid a, b \equiv 3(\bmod 4)$ and $(a / b)=1$, then the equation

$$
F(n)=n Y^{2}, \quad n, Y \in \mathbb{N}, n>1,2 \nmid n,
$$

has no solution (n, Y).
Lemma 6. The equation

$$
\begin{equation*}
\frac{X^{n}+1}{X+1}=n Y^{2}, \quad X, Y, n \in \mathbb{N}, X>1, n>1,2 \nmid n, \tag{2}
\end{equation*}
$$

has no solution (X, Y, n) with $X \equiv 1(\bmod 4)$.
Proof. Let $\alpha=X$ and $\beta=-1$. Then α and β are distinct zeros of $z^{2}-(X-1) z-X$. Since $X-1 \equiv 0(\bmod 4)$ and $-X \equiv 3(\bmod 4)$ if $X \equiv 1$ $(\bmod 4)$, by Lemma $5,(2)$ is impossible. The lemma is proved.

Lemma 7. If (X, Y, n) is a solution of (2) with $X+1 \equiv 0(\bmod n)$, then n is squarefree.

Proof. Let (X, Y, n) be a solution of (2) with $X+1 \equiv 0(\bmod n)$. If n is not squarefree, then there exists an odd prime p satisfying $p^{2} \mid n$. Since $X^{n / p}+1 \equiv 0(\bmod X+1)$ and $X+1 \equiv 0(\bmod n)$, we derive from (2) that

$$
\begin{equation*}
\frac{X^{n / p}+1}{X+1}=n d Y_{1}^{2}, \quad \frac{\left(X^{n / p}\right)^{p}+1}{X^{n / p}+1}=d Y_{2}^{2}, \tag{3}
\end{equation*}
$$

where d, Y_{1}, Y_{2} are positive integers satisfying $d Y_{1} Y_{2}=Y$. Since $d \mid p$, we get either $d=1$ or $d=p$. By Lemma 4, (3) is impossible for $d=1$. So we have $d=p$ and

$$
\begin{equation*}
\frac{X^{n / p}+1}{X+1}=n p Y_{1}^{2}, \quad \frac{X^{n}+1}{X^{n / p}+1}=p Y_{2}^{2} . \tag{4}
\end{equation*}
$$

By the same argument, we infer from the first equality of (4) that

$$
\begin{align*}
& \frac{X^{n / p^{2}}+1}{X+1}=n p^{2} Y_{11}^{2}, \quad \frac{X^{n / p}+1}{X^{n / p^{2}}+1}=p Y_{12}^{2}, \tag{5}\\
& p Y_{11} Y_{12}=Y_{1}, Y_{11}, Y_{12} \in \mathbb{N} .
\end{align*}
$$

Combination of (4) and (5) yields

$$
\frac{\left(X^{n / p^{2}}\right)^{p^{2}}+1}{X^{n / p^{2}}+1}=\left(p Y_{12} Y_{2}\right)^{2}
$$

However, by Lemma 4, this is impossible. The lemma is proved.
Lemma 8. Let $\varrho=1+\sqrt{2}$ and $\bar{\varrho}=1-\sqrt{2}$. For any nonnegative integer k, let

$$
\begin{equation*}
U_{k}=\frac{\varrho^{k}+\bar{\varrho}^{k}}{2}, \quad V_{k}=\frac{\varrho^{k}-\bar{\varrho}^{k}}{2 \sqrt{2}} \tag{6}
\end{equation*}
$$

Then U_{k} and V_{k} are nonnegative integers satisfying:
(i) $\operatorname{gcd}\left(U_{k}, V_{k}\right)=1$.
(ii) $\operatorname{gcd}\left(U_{k}, U_{k+1}\right)=\operatorname{gcd}\left(V_{k}, V_{k+1}\right)=1$.
(iii) If $U_{k} \equiv 7(\bmod 8)$, then $k \equiv 3(\bmod 4)$.
(iv) The prime factors p of U_{k} satisfy

$$
p \equiv \begin{cases} \pm 1(\bmod 8) & \text { if } 2 \nmid k \\ 1,3(\bmod 8) & \text { if } 2 \mid k\end{cases}
$$

(v) If $2 \nmid k$, then the prime factors p of V_{k} satisfy $p \equiv 1(\bmod 4)$.
(vi) U_{k} is a square if and only if $k=1$.
(vii) V_{k} is a square if and only if $k=1,7$.

Proof. Since U_{k} and V_{k} are integers satisfying

$$
\begin{equation*}
U_{k}^{2}-2 V_{k}^{2}=(-1)^{k} \tag{7}
\end{equation*}
$$

we get (i), (iv) and (v) immediately. Moreover, by Lemmas 1 and 2, we obtain (vi) and (vii), respectively.

On the other hand, since U_{k} and V_{k} satisfy the recurrences

$$
\begin{array}{ll}
U_{0}=1, & U_{1}=1,
\end{array} \quad U_{k+2}=2 U_{k+1}+U_{k}, \quad k \geq 0, ~ \begin{array}{ll}
V_{0}=0, & V_{1}=1,
\end{array} V_{k+2}=2 V_{k+1}+V_{k}, \quad k \geq 0, ~ l
$$

respectively, we get (ii) and (iii) immediately. The lemma is proved.
Lemma 9. The equation

$$
\begin{equation*}
U_{r s}=U_{r} Y^{2}, \quad r, s, Y \in \mathbb{N}, r>1, s>1,2 \nmid r, 2 \nmid s, \tag{8}
\end{equation*}
$$

has no solution (r, s, Y).

Proof. Let $\alpha=\varrho^{r}$ and $\beta=\bar{\varrho}^{r}$. Then α and β are distinct zeros of $z^{2}-2 \sqrt{2} V_{r} z+1$. If (r, s, Y) is a solution of (8), then we have

$$
\frac{\alpha^{s}-\beta^{s}}{\alpha-\beta}=Y^{2} .
$$

However, by Lemma 5, this is impossible.
Lemma 10. Let n be a positive integer with $n<23$. Then the equation

$$
\begin{equation*}
U_{r}=n Y^{2}, \quad r, Y \in \mathbb{N}, r>1,2 \nmid r, Y>1 \tag{9}
\end{equation*}
$$

has no solution (r, Y).
Proof. By (iv) of Lemma 8, we see from (9) that every prime factor p of n satisfies $p \equiv \pm 1(\bmod 8)$. Since $n<23$, we have $n=7$ or 17 . Since $U_{3}=7$, by Lemma $9,(9)$ is impossible for $n=7$. Notice that $U_{4}=17$ and $17 \nmid U_{j}$ for $j=1,2,3$. We see that $17 \nmid U_{r}$ if $2 \nmid r$. This implies that (9) is impossible for $n=17$. The lemma is proved.

Lemma 11 ([8]). Let p be an odd prime with $p<1000$. If $V_{r}=p Y^{2}$ for some positive integers r, Y with $2 \nmid r$, then $Y=1$.

Let α be an algebraic number with the minimal polynomial over \mathbb{Z}

$$
a_{0} z^{d}+a_{1} z^{d-1}+\ldots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\sigma_{i} \alpha\right), \quad a_{0}>0,
$$

where $\sigma_{1} \alpha, \sigma_{2} \alpha, \ldots, \sigma_{d} \alpha$ are all conjugates of α. Then

$$
h(\alpha)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left(1,\left|\sigma_{i} \alpha\right|\right)\right)
$$

is called the absolute logarithmic height of α.
Lemma 12 ([2, Corollary 2]). Let α_{1}, α_{2} be real algebraic numbers which exceed one and are multiplicatively independent. Further, let $\Lambda=b_{1} \log \alpha_{1}-$ $b_{2} \log \alpha_{2}$ for some positive integers b_{1}, b_{2}. Then

$$
\log |\Lambda| \geq-24.34 D^{4}\left(\log A_{1}\right)\left(\log A_{2}\right)(\max (1 / 2,21 / D, 0.14+\log B))^{2}
$$

where $D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right], \log A_{j}=\max \left(h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right| / D, 1 / D\right)(j=1,2)$, $B=b_{1} /\left(D \log A_{2}\right)+b_{2} /\left(D \log A_{1}\right)$.

Lemma 13. If (X, Y, n) is a solution of the equation

$$
\begin{equation*}
X^{n}+1=2 Y^{2}, \quad X, Y, n \in \mathbb{N}, X>1, Y>1, n>1,2 \nmid n, \tag{10}
\end{equation*}
$$

then there exist suitable positive integers X_{1}, Y_{1}, s such that
(11) $-X=X_{1}^{2}-2 Y_{1}^{2}, \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, \quad 1<\left|\frac{X_{1}+Y_{1} \sqrt{2}}{X_{1}-Y_{1} \sqrt{2}}\right|<(3+2 \sqrt{2})^{2}$,

$$
\begin{equation*}
\left|n \log \frac{X_{1}+Y_{1} \sqrt{2}}{-X_{1}+Y_{1} \sqrt{2}}-s \log (3+2 \sqrt{2})^{2}\right|<\frac{2 \sqrt{2}}{Y}<\frac{4}{X^{n / 2}}, \quad s<n \tag{12}
\end{equation*}
$$

Proof. Since $2 \nmid n$, we see from (10) that

$$
\begin{equation*}
(-X)^{n}=1-2 Y^{2} \tag{13}
\end{equation*}
$$

Notice that the class number of $\mathbb{Q}(\sqrt{2})$ is equal to one. By much the same argument as in the proof of [3, Theorem 2], we can obtain (11) and (12) from (13). The lemma is proved.

Lemma 14. All solutions (X, Y, n) of (10) satisfy $n<330000$.
Proof. Let (X, Y, n) be a solution of (10). By Lemma 13, there exist positive integers X_{1}, Y_{1}, s satisfying (11) and (12). Let $\alpha_{1}=\left(X_{1}+\right.$ $\left.Y_{1} \sqrt{2}\right) /\left(-X_{1}+Y_{1} \sqrt{2}\right), \alpha_{2}=(3+2 \sqrt{2})^{2}$ and $\Lambda=n \log \alpha_{1}-s \log \alpha_{2}$. Then α_{1} and α_{2} are multiplicatively independent and satisfy $X \alpha_{1}^{2}-2\left(X_{1}^{2}+2 Y_{1}^{2}\right) \alpha_{1}+$ $X=0$ and $\alpha_{2}^{2}-34 \alpha_{2}+1=0$ respectively. So we have

$$
\begin{equation*}
h\left(\alpha_{1}\right)=\frac{1}{2}\left(\log X+\log \left|\frac{X_{1}+Y_{1} \sqrt{2}}{X_{1}-Y_{1} \sqrt{2}}\right|\right), \quad h\left(\alpha_{2}\right)=\log (3+2 \sqrt{2}) . \tag{14}
\end{equation*}
$$

Further, by (11) and (14), we get

$$
\begin{equation*}
h\left(\alpha_{1}\right)<\frac{1}{2}(\log X+2 \log (3+2 \sqrt{2})) . \tag{15}
\end{equation*}
$$

Since $\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]=[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, by Lemma 12 , we deduce from (14) and (15) that

$$
\begin{align*}
\log |\Lambda| \geq & -389.44\left(\frac{1}{2} \log X+\log (3+2 \sqrt{2})\right) \tag{16}\\
& \times(\log (3+2 \sqrt{2}))(\max (10.5,0.14+\log B))^{2}
\end{align*}
$$

where

$$
\begin{equation*}
B=\frac{n}{2 \log (3+2 \sqrt{2})}+\frac{s}{\log X+2 \log (3+2 \sqrt{2})} \tag{17}
\end{equation*}
$$

Since $s<n$ by (12), if $n \geq 330000$, then from (17) we get

$$
\log B>\log (n / 2 \log (3+2 \sqrt{2})) \geq \log (330000 / 2 \log (3+2 \sqrt{2}))>10.5
$$

Therefore, by (16) and (17), we obtain
(18) $\quad \log |\Lambda|>-343.24(\log X+2 \log (3+2 \sqrt{2}))(0.14+\log 0.5673 n)^{2}$.

Combination of (12) and (18) yields

$$
\begin{equation*}
\frac{2 \log 4}{\log X}+686.48\left(1+\frac{2 \log (3+2 \sqrt{2})}{\log X}\right)(0.14+\log 0.5673 n)^{2}>n \tag{19}
\end{equation*}
$$

Since every prime factor p of X satisfies $p \equiv \pm 1(\bmod 8)$ by (11), we get $X \geq 7$ and (19) is impossible for $n \geq 330000$. The lemma is proved.

Lemma 15. The equation

$$
\begin{equation*}
X^{n}+1=2 Y^{2}, \quad X, Y, n \in \mathbb{N}, X>1, Y>1, n>2,2 \mid n \tag{20}
\end{equation*}
$$

has no solution (X, Y, n).
Proof. Let (X, Y, n) be a solution of (20). Notice that $\left(X^{\prime}, Y^{\prime}\right)=(1,1)$ is a solution of the equation

$$
X^{\prime 4}-2 Y^{\prime 2}=1, \quad X^{\prime}, Y^{\prime} \in \mathbb{N}
$$

Hence, by Lemma 2, we have $4 \nmid n$. This implies that $n=2 t$, where t is an odd integer with $t>1$. Since t has an odd prime factor p if $t>1$, we see from (20) that

$$
\begin{align*}
X^{n / p}+1 & =2 d Y_{1}^{2} \tag{21}\\
\frac{X^{n}+1}{X^{n / p}+1} & =d Y_{2}^{2} \tag{22}
\end{align*}
$$

where d, Y_{1}, Y_{2} are positive integers satisfying $d Y_{1} Y_{2}=Y$. By Lemma 4, if $d=1$, then (22) is impossible. On the other hand, since $X^{n / p} \equiv-1$ $(\bmod d)$ by (21), we see from (22) that $d \mid p$. So we have $d=p$ and

$$
\begin{equation*}
\frac{\left(X^{n / p}\right)^{p}+1}{X^{n / p}+1}=p Y_{2}^{2} \tag{23}
\end{equation*}
$$

by (22). Since $2 \mid n$ and $X^{n / p} \equiv 1(\bmod 4)$, by Lemma $6,(23)$ is impossible. The lemma is proved.
3. Proof of Theorem. By [7], it suffices to consider the solutions (x, y, m, n) of (1) with $2 \nmid x$.

Let (x, y, m, n) be a solution of (1) with $2 \nmid x$. Then we have

$$
\begin{equation*}
x^{m}+1=d y_{1}^{2}, \quad x^{n}+1=d y_{2}^{2}, \quad 1 \leq m<n, \tag{24}
\end{equation*}
$$

where d, y_{1}, y_{2} are positive integers satisfying $d y_{1} y_{2}=y$ and d is squarefree. By Lemma 3, (24) is impossible for $d=1$. If $d>1$ and d has an odd factor d_{1} with $d_{1}>1$, let r denote the least positive integer with $x^{r}+1 \equiv 0$ $\left(\bmod d_{1}\right)$. Then from (24) we get

$$
\begin{equation*}
m=r m_{1}, \quad n=r n_{1}, \tag{25}
\end{equation*}
$$

where m_{1}, n_{1} are odd positive integers with $1 \leq m_{1}<n_{1}$. Further, let

$$
\begin{equation*}
s=\operatorname{gcd}(m, n), \quad m=s m^{\prime}, \quad n=s n^{\prime} \tag{26}
\end{equation*}
$$

We see from (25) and (26) that $r \mid s$ and m^{\prime}, n^{\prime} are odd positive integers satisfying $1 \leq m^{\prime}<n^{\prime}$ and $\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=1$. Let $z=x^{s}$. Then (24) can be written as

$$
\begin{equation*}
z^{m^{\prime}}+1=d y_{1}^{2}, \quad z^{n^{\prime}}+1=d y_{2}^{2} . \tag{27}
\end{equation*}
$$

Since $r \mid s, 2 \nmid s / r$ and $z+1=x^{s}+1 \equiv 0\left(\bmod x^{r}+1\right)$, we derive from (27) that $z+1=d_{1} d^{\prime} y^{\prime 2}$ and

$$
\begin{equation*}
\frac{z^{m^{\prime}}+1}{z+1}=d^{\prime} y_{1}^{\prime 2}, \quad \frac{z^{n^{\prime}}+1}{z+1}=d^{\prime} y_{2}^{\prime 2} \tag{28}
\end{equation*}
$$

where $d^{\prime}, y^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$ are positive integers satisfying $d^{\prime} y^{\prime} y_{1}^{\prime}=y_{1}$ and $d^{\prime} y^{\prime} y_{2}^{\prime}$ $=y_{2}$. Since $\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=1$, we have $\operatorname{gcd}\left(\left(z^{m^{\prime}}+1\right) /(z+1),\left(z^{n^{\prime}}+1\right) /(z+1)\right)$ $=1$. Hence, by (28), we get $d^{\prime}=1$ and

$$
\begin{equation*}
\frac{z^{n^{\prime}}+1}{z+1}=y_{2}^{\prime 2}, \quad n^{\prime}>1,2 \nmid n^{\prime} \tag{29}
\end{equation*}
$$

However, by Lemma 3, (29) is impossible. So we have $d=2$. Then (24) can be written as

$$
\begin{equation*}
x^{m}+1=2 y_{1}^{2}, \quad x^{n}+1=2 y_{2}^{2} \tag{30}
\end{equation*}
$$

Let $s, m^{\prime}, n^{\prime}$ be defined as in (26), and let $z=x^{s}$. If $m \equiv n \equiv 1$ $(\bmod 2)$, then from (30) we get

$$
\begin{equation*}
z+1=2 d y_{11}^{2}, \quad \frac{z^{m^{\prime}}+1}{z+1}=d y_{12}^{2}, \quad \frac{z^{n^{\prime}}+1}{z+1}=d y_{22}^{2} \tag{31}
\end{equation*}
$$

where $d, y_{11}, y_{12}, y_{22}$ are positive integers satisfying $d y_{11} y_{12}=y_{1}$ and $d y_{11} y_{22}=y_{2}$. Since $\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=1$ and $\operatorname{gcd}\left(\left(z^{m^{\prime}}+1\right) /(z+1),\left(z^{n^{\prime}}+1\right) /(z+\right.$ $1))=1$, we see from (31) that $d=1$. Since $n^{\prime}>1$ and $2 \nmid n^{\prime}$, by Lemma 3 , (31) is impossible for $d=1$. On the other hand, if $m \equiv n \equiv 0(\bmod 2)$, then $n>2$ and $2 \mid n$. By Lemma 15, this is impossible. Therefore, the parities of m and n are distinct. Furthermore, by Lemma 15, we conclude from (30) that either $m=1$ and $n=2$, or $m=2$ and $2 \nmid n$.

If $m=1$ and $n=2$, then from (30) we get

$$
\begin{equation*}
x+1=2 y_{1}^{2}, \quad x^{2}+1=2 y_{2}^{2} \tag{32}
\end{equation*}
$$

Let $\varrho=1+\sqrt{2}$ and $\bar{\varrho}=1-\sqrt{2}$. For any nonnegative integer k, let U_{k}, V_{k} be defined as in (6). We see from the second equality of (32) that

$$
\begin{equation*}
x=\frac{\varrho^{k}+\bar{\varrho}^{k}}{2}=\frac{\varrho^{k}+\bar{\varrho}^{k}}{\varrho+\bar{\varrho}}, \tag{33}
\end{equation*}
$$

for some odd positive integers k. From (33), we get

$$
\begin{align*}
x+1 & =\frac{\varrho^{k}+\bar{\varrho}^{k}}{\varrho+\bar{\varrho}}+(-\varrho \bar{\varrho})^{(k-1) / 2} \tag{34}\\
& = \begin{cases}2 U_{(k+1) / 2} U_{(k-1) / 2} & \text { if } k \equiv 1(\bmod 4), \\
4 V_{(k+1) / 2} V_{(k-1) / 2} & \text { if } k \equiv 3(\bmod 4)\end{cases}
\end{align*}
$$

Notice that $\operatorname{gcd}\left(U_{(k+1) / 2}, U_{(k-1) / 2}\right)=1$ by (ii) of Lemma 8 . If $k \equiv 1(\bmod 4)$,
then from (34) and the first equality of (32) we get

$$
\begin{equation*}
U_{(k+1) / 2}=y_{11}^{2}, \quad U_{(k-1) / 2}=y_{12}^{2}, \quad y_{11} y_{12}=y_{1}, \quad y_{11}, y_{12} \in \mathbb{N} . \tag{35}
\end{equation*}
$$

However, by (vi) of Lemma 8, (35) is impossible. Similarly, if $k \equiv 3(\bmod 4)$, then from (32) and (35) we get

$$
\begin{equation*}
V_{(k+1) / 2}=2 y_{11}^{2}, \quad V_{(k-1) / 2}=y_{12}^{2}, \quad 2 y_{11} y_{12}=y_{1}, \quad y_{11}, y_{12} \in \mathbb{N}, \tag{36}
\end{equation*}
$$

since $2 \nmid(k-1) / 2$ and $2 \nmid V_{(k-1) / 2}$. Therefore, by (vii) of Lemma 8 , we see from (36) that $\left(k, y_{11}, y_{12}\right)=(3,1,1)$. Further, by (32), we obtain $(x, y, m, n)=(7,20,1,2)$.

If $m=2$ and $2 \nmid n$, then from (30) we get

$$
\begin{align*}
& x^{2}+1=2 y_{1}^{2}, \tag{37}\\
& x^{n}+1=2 y_{2}^{2}, \quad n>2,2 \nmid n . \tag{38}
\end{align*}
$$

By the proof of [3, Theorem 2], we see from (38) that $x+1=2 n y^{\prime 2}$ for some positive integer y^{\prime}. Further, by Lemma 6 , we get $2 \mid y^{\prime}$ and

$$
\begin{equation*}
x+1=8 n y_{21}^{2}, \quad \frac{x^{n}+1}{x+1}=n y_{22}^{2}, \quad 2 n y_{21} y_{22}=y_{2}, \quad y_{21}, y_{22} \in \mathbb{N} . \tag{39}
\end{equation*}
$$

By Lemma 7 we find from (39) that n is squarefree.
On the other hand, since $x \equiv 7(\bmod 8)$, by (iii) of Lemma 8 , we see from (37) that

$$
\begin{equation*}
x=U_{4 k+3}, \quad k \geq 0, k \in \mathbb{Z} . \tag{40}
\end{equation*}
$$

Combination of the first equality of (39) and (40) yields

$$
\begin{equation*}
V_{2 k+1} V_{2 k+2}=2 n y_{21}^{2} . \tag{41}
\end{equation*}
$$

Notice that $\operatorname{gcd}\left(V_{2 k+1}, V_{2 k+2}\right)=1$ and $2 \nmid V_{2 k+1}$. From (39) we get

$$
\begin{align*}
& V_{2 k+2}=2 n_{1} y_{3}^{2}, \tag{42}\\
& V_{2 k+1}=n_{2} y_{4}^{2}, \tag{43}
\end{align*}
$$

where $n_{1}, n_{2}, y_{3}, y_{4}$ are positive integers satisfying

$$
\begin{equation*}
n_{1} n_{2}=n, \quad y_{3} y_{4}=y_{21} . \tag{44}
\end{equation*}
$$

Since $n \geq 3$, by (vii) of Lemma 8, we see from (39) and (41)-(44) that if $n_{2}=1$, then $k=3, n=n_{1}=51, y_{3}=2, y_{4}=13$ and $x=275807$. Then the second equality of (39) is false. Moreover, if $n_{1}=1$, then from (42) we get

$$
\begin{equation*}
2 y_{3}^{2}=V_{2 k+2}=2 U_{k+1} V_{k+1} . \tag{45}
\end{equation*}
$$

Since $\operatorname{gcd}\left(U_{k+1}, V_{k+1}\right)=1$, we find from (45) that U_{k+1} and V_{k+1} are both squares. Hence, by (vi) and (vii) of Lemma 8, we deduce from (39), (40), (42), (43) and (45) that $k=0, U_{k+1}=V_{k+1}=y_{3}=y_{4}=1, x=U_{3}=7$ and $n=1$, a contradiction. So we have $n_{1}>1$ and $n_{2}>1$.

From (42), we get

$$
\begin{align*}
U_{k+1} & =n_{3} y_{5}^{2}, \tag{46}\\
V_{k+1} & =n_{4} y_{6}^{2}, \tag{47}
\end{align*}
$$

where $n_{3}, n_{4}, y_{5}, y_{6}$ are positive integers satisfying

$$
\begin{equation*}
\operatorname{gcd}\left(n_{3}, n_{4}\right)=1, \quad n_{3} n_{4}=n_{1}, \quad y_{5} y_{6}=y_{3} . \tag{48}
\end{equation*}
$$

By using the same method, we can prove that $n_{3}>1$ and $n_{4}>1$.
We now consider the case where $2 \mid k$. By Lemma 10, we see from (46) that $n_{3} \geq 23$. Moreover, we observe that if $y_{4}=1$ and n_{2} is a prime with $n_{2}<1000$, then (39) is false. Recall that n is squarefree. Therefore, by Lemma 11, either n_{2} has at least two distinct prime factors or n_{2} is a prime with $n_{2}>1000$. Similarly, we see from (47) that n_{4} has the same property. Since $\operatorname{gcd}\left(V_{2 k+1}, V_{2 k+2}\right)=1$, we have $\operatorname{gcd}\left(V_{k+1}, V_{2 k+1}\right)=1$. Hence, by (43) and (47), we get $\operatorname{gcd}\left(n_{2}, n_{4}\right)=1$. Notice that every prime factor p of $V_{k+1} V_{2 k+1}$ satisfies $p \equiv 1(\bmod 4)$. So we have
(49) $n=n_{1} n_{2}=n_{2} n_{3} n_{4} \geq 23 n_{2} n_{4} \geq 23 \min \left(5 \cdot 13 \cdot 17 \cdot 29,10^{6}\right) \geq 482885$.

But, by Lemma 14, from (38) and (39) we get $n<330000$, a contradiction.
For the case where $2 \nmid k$, we have $V_{k+1}=2 U_{(k+1) / 2} V_{(k+1) / 2}$. Therefore, by much the same argument as in the proof of the case where $2 \mid k$, we can obtain a lower bound $n \geq 482885$ as in (49). By Lemma 14, this is impossible. The proof is complete.

Acknowledgements. The author is grateful to the referee for his valuable suggestions.

References

[1] C. Ko, On the diophantine equation $x^{2}=y^{n}+1$, $x y \neq 0$, Sci. Sinica 14 (1964), 457-460.
[2] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[3] M.-H. Le, A note on the diophantine equation $x^{2 p}-D y^{2}=1$, Proc. Amer. Math. Soc. 107 (1989), 27-34.
[4] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid. Akad. Oslo I 5 (1942), no. 5, 27 pp.
[5] -, Sätze über unbestimmte Gleichungen, Skr. Norske Vid. Akad. Oslo I (1942), no. 9, 53 pp.
[6] -, Noen setninger om ubestemte likninger av formen $\left(x^{n}-1\right) /(x-1)=y^{q}$, Norsk. Mat. Tidsskr. 25 (1943), 17-20.
[7] P. Ribenboim, Square classes of $\left(a^{n}-1\right) /(a-1)$ and $a^{n}+1$, Sichuan Daxue Xuebao, Special Issue, 26 (1989), 196-199.
[8] N. Robbins, On Pell numbers of the form $p x^{2}$, where p is a prime, Fibonacci Quart. 22 (1984), 340-348.
[9] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.

Department of Mathematics
Zhanjiang Teachers College
524048 Zhanjiang, Guangdong
P.R. China

Received on 19.2.1996
and in revised form on 19.9.1996

[^0]: 1991 Mathematics Subject Classification: 11D61, 11J86.
 Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

