On the diophantine equation $(x^m + 1)(x^n + 1) = y^2$

by

MAOHUA LE (Zhanjiang)

1. Introduction. Let \mathbb{Z} , \mathbb{N} , \mathbb{Q} be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation

(1) $(x^m + 1)(x^n + 1) = y^2, \quad x, y, m, n \in \mathbb{N}, \ x > 1, \ n > m \ge 1,$

has no solution (x, y, m, n) with 2 | x and (1) has only finitely many solutions (x, y, m, n) with $2 \nmid x$. Moreover, all solutions of (1) with $2 \nmid x$ satisfy $\max(x, m, n) < C$, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.

THEOREM. Equation (1) has only the solution (x, y, m, n) = (7, 20, 1, 2).

2. Preliminaries

LEMMA 1 ([4]). The equation (4)

$$X^2 - 2Y^4 = 1, \quad X, Y \in \mathbb{N},$$

has no solution (X, Y). The equation

$$X^2 - 2Y^4 = -1, \quad X, Y \in \mathbb{N},$$

has only the solutions (X, Y) = (1, 1) and (239, 13).

LEMMA 2 ([5]). Let a, D be positive integers with $2 \nmid a$. The equation

$$a^2 X^4 - DY^2 = -1, \quad X, Y \in \mathbb{N},$$

has at most one solution (X, Y).

LEMMA 3 ([1]). The equation (1)

$$X^n + 1 = Y^2, \quad X, Y, n \in \mathbb{N}, \ n > 1,$$

has only the solution (X, Y, n) = (2, 3, 3).

¹⁹⁹¹ Mathematics Subject Classification: 11D61, 11J86.

Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

^[17]

LEMMA 4 ([6]). The equation (6)

$$\frac{X^n + 1}{X + 1} = Y^2, \quad X, Y, n \in \mathbb{N}, \ X > 1, \ n > 1, \ 2 \nmid n,$$

has no solution (X, Y, n).

Let a, b be nonzero integers such that a > 0, gcd(a, b) = 1 and a-4b > 0. Let α , β be distinct zeros of the polynomial $z^2 - \sqrt{az} + b$. For any odd integer n, let $F(n) = (\alpha^n - \beta^n)/(\alpha - \beta)$. Then F(n) are nonzero integers if n > 0.

LEMMA 5 ([9]). If $4 \mid a, b \equiv 1 \pmod{4}$ and (a/b) = 1, where (a/b) is Jacobi's symbol, then the equation

$$F(n) = Y^2, \quad n, Y \in \mathbb{N}, \ n > 1, \ 2 \nmid n,$$

has no solution (n, Y). If $4 \mid a, b \equiv 3 \pmod{4}$ and (a/b) = 1, then the equation

$$F(n) = nY^2, \quad n, Y \in \mathbb{N}, \ n > 1, \ 2 \nmid n,$$

has no solution (n, Y).

LEMMA 6. The equation

(2)
$$\frac{X^n + 1}{X + 1} = nY^2, \quad X, Y, n \in \mathbb{N}, \ X > 1, \ n > 1, \ 2 \nmid n,$$

has no solution (X, Y, n) with $X \equiv 1 \pmod{4}$.

Proof. Let $\alpha = X$ and $\beta = -1$. Then α and β are distinct zeros of $z^2 - (X-1)z - X$. Since $X - 1 \equiv 0 \pmod{4}$ and $-X \equiv 3 \pmod{4}$ if $X \equiv 1 \pmod{4}$, by Lemma 5, (2) is impossible. The lemma is proved.

LEMMA 7. If (X, Y, n) is a solution of (2) with $X + 1 \equiv 0 \pmod{n}$, then n is squarefree.

Proof. Let (X, Y, n) be a solution of (2) with $X + 1 \equiv 0 \pmod{n}$. If n is not squarefree, then there exists an odd prime p satisfying $p^2 \mid n$. Since $X^{n/p} + 1 \equiv 0 \pmod{X+1}$ and $X + 1 \equiv 0 \pmod{n}$, we derive from (2) that

(3)
$$\frac{X^{n/p}+1}{X+1} = ndY_1^2, \quad \frac{(X^{n/p})^p+1}{X^{n/p}+1} = dY_2^2,$$

where d, Y_1 , Y_2 are positive integers satisfying $dY_1Y_2 = Y$. Since $d \mid p$, we get either d = 1 or d = p. By Lemma 4, (3) is impossible for d = 1. So we have d = p and

(4)
$$\frac{X^{n/p}+1}{X+1} = npY_1^2, \quad \frac{X^n+1}{X^{n/p}+1} = pY_2^2.$$

By the same argument, we infer from the first equality of (4) that

(5)
$$\frac{X^{n/p^2} + 1}{X + 1} = np^2 Y_{11}^2, \quad \frac{X^{n/p} + 1}{X^{n/p^2} + 1} = pY_{12}^2,$$

 $pY_{11}Y_{12} = Y_1, \ Y_{11}, Y_{12} \in \mathbb{N}.$

Combination of (4) and (5) yields

$$\frac{(X^{n/p^2})^{p^2} + 1}{X^{n/p^2} + 1} = (pY_{12}Y_2)^2.$$

However, by Lemma 4, this is impossible. The lemma is proved.

LEMMA 8. Let $\rho = 1 + \sqrt{2}$ and $\overline{\rho} = 1 - \sqrt{2}$. For any nonnegative integer k, let

(6)
$$U_k = \frac{\varrho^k + \overline{\varrho}^k}{2}, \quad V_k = \frac{\varrho^k - \overline{\varrho}^k}{2\sqrt{2}}.$$

Then U_k and V_k are nonnegative integers satisfying:

- (i) $gcd(U_k, V_k) = 1.$
- (ii) $gcd(U_k, U_{k+1}) = gcd(V_k, V_{k+1}) = 1.$
- (iii) If $U_k \equiv 7 \pmod{8}$, then $k \equiv 3 \pmod{4}$.
- (iv) The prime factors p of U_k satisfy

$$p \equiv \begin{cases} \pm 1 \pmod{8} & \text{if } 2 \nmid k, \\ 1, 3 \pmod{8} & \text{if } 2 \mid k. \end{cases}$$

- (v) If $2 \nmid k$, then the prime factors p of V_k satisfy $p \equiv 1 \pmod{4}$.
- (vi) U_k is a square if and only if k = 1.
- (vii) V_k is a square if and only if k = 1, 7.

Proof. Since U_k and V_k are integers satisfying

(7)
$$U_k^2 - 2V_k^2 = (-1)^k$$

we get (i), (iv) and (v) immediately. Moreover, by Lemmas 1 and 2, we obtain (vi) and (vii), respectively.

On the other hand, since U_k and V_k satisfy the recurrences

$$\begin{aligned} U_0 &= 1, \quad U_1 = 1, \quad U_{k+2} = 2U_{k+1} + U_k, \quad k \geq 0, \\ V_0 &= 0, \quad V_1 = 1, \quad V_{k+2} = 2V_{k+1} + V_k, \quad k \geq 0, \end{aligned}$$

respectively, we get (ii) and (iii) immediately. The lemma is proved.

LEMMA 9. The equation

(8)
$$U_{rs} = U_r Y^2, \quad r, s, Y \in \mathbb{N}, \ r > 1, \ s > 1, \ 2 \nmid r, \ 2 \nmid s,$$

has no solution (r, s, Y).

Proof. Let $\alpha = \rho^r$ and $\beta = \overline{\rho}^r$. Then α and β are distinct zeros of $z^2 - 2\sqrt{2}V_r z + 1$. If (r, s, Y) is a solution of (8), then we have

$$\frac{\alpha^s - \beta^s}{\alpha - \beta} = Y^2.$$

However, by Lemma 5, this is impossible.

LEMMA 10. Let n be a positive integer with n < 23. Then the equation (9) $U_r = nY^2, \quad r, Y \in \mathbb{N}, \ r > 1, \ 2 \nmid r, \ Y > 1$

has no solution (r, Y).

Proof. By (iv) of Lemma 8, we see from (9) that every prime factor p of n satisfies $p \equiv \pm 1 \pmod{8}$. Since n < 23, we have n = 7 or 17. Since $U_3 = 7$, by Lemma 9, (9) is impossible for n = 7. Notice that $U_4 = 17$ and $17 \nmid U_j$ for j = 1, 2, 3. We see that $17 \nmid U_r$ if $2 \nmid r$. This implies that (9) is impossible for n = 17. The lemma is proved.

LEMMA 11 ([8]). Let p be an odd prime with p < 1000. If $V_r = pY^2$ for some positive integers r, Y with $2 \nmid r$, then Y = 1.

Let α be an algebraic number with the minimal polynomial over \mathbb{Z}

$$a_0 z^d + a_1 z^{d-1} + \ldots + a_d = a_0 \prod_{i=1}^d (z - \sigma_i \alpha), \quad a_0 > 0,$$

where $\sigma_1 \alpha, \sigma_2 \alpha, \ldots, \sigma_d \alpha$ are all conjugates of α . Then

$$h(\alpha) = \frac{1}{d} \left(\log a_0 + \sum_{i=1}^d \log \max(1, |\sigma_i \alpha|) \right)$$

is called the *absolute logarithmic height* of α .

LEMMA 12 ([2, Corollary 2]). Let α_1 , α_2 be real algebraic numbers which exceed one and are multiplicatively independent. Further, let $\Lambda = b_1 \log \alpha_1 - b_2 \log \alpha_2$ for some positive integers b_1 , b_2 . Then

 $\log |A| \ge -24.34D^4 (\log A_1) (\log A_2) (\max(1/2, 21/D, 0.14 + \log B))^2,$

where $D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}], \log A_j = \max(h(\alpha_j), |\log \alpha_j|/D, 1/D) \ (j = 1, 2), B = b_1/(D \log A_2) + b_2/(D \log A_1).$

LEMMA 13. If (X, Y, n) is a solution of the equation

(10)
$$X^n + 1 = 2Y^2, \quad X, Y, n \in \mathbb{N}, \ X > 1, \ Y > 1, \ n > 1, \ 2 \nmid n,$$

then there exist suitable positive integers X_1, Y_1, s such that

(11)
$$-X = X_1^2 - 2Y_1^2$$
, $gcd(X_1, Y_1) = 1$, $1 < \left| \frac{X_1 + Y_1 \sqrt{2}}{X_1 - Y_1 \sqrt{2}} \right| < (3 + 2\sqrt{2})^2$,

On the diophantine equation $(x^m + 1)(x^n + 1) = y^2$

(12)
$$\left| n \log \frac{X_1 + Y_1 \sqrt{2}}{-X_1 + Y_1 \sqrt{2}} - s \log(3 + 2\sqrt{2})^2 \right| < \frac{2\sqrt{2}}{Y} < \frac{4}{X^{n/2}}, \quad s < n.$$

Proof. Since $2 \nmid n$, we see from (10) that

(13)
$$(-X)^n = 1 - 2Y^2.$$

Notice that the class number of $\mathbb{Q}(\sqrt{2})$ is equal to one. By much the same argument as in the proof of [3, Theorem 2], we can obtain (11) and (12) from (13). The lemma is proved.

LEMMA 14. All solutions (X, Y, n) of (10) satisfy n < 330000.

Proof. Let (X, Y, n) be a solution of (10). By Lemma 13, there exist positive integers X_1 , Y_1 , s satisfying (11) and (12). Let $\alpha_1 = (X_1 + Y_1\sqrt{2})/(-X_1+Y_1\sqrt{2})$, $\alpha_2 = (3+2\sqrt{2})^2$ and $\Lambda = n \log \alpha_1 - s \log \alpha_2$. Then α_1 and α_2 are multiplicatively independent and satisfy $X\alpha_1^2 - 2(X_1^2 + 2Y_1^2)\alpha_1 + X = 0$ and $\alpha_2^2 - 34\alpha_2 + 1 = 0$ respectively. So we have

(14)
$$h(\alpha_1) = \frac{1}{2} \left(\log X + \log \left| \frac{X_1 + Y_1 \sqrt{2}}{X_1 - Y_1 \sqrt{2}} \right| \right), \quad h(\alpha_2) = \log(3 + 2\sqrt{2}).$$

Further, by (11) and (14), we get

(15)
$$h(\alpha_1) < \frac{1}{2}(\log X + 2\log(3 + 2\sqrt{2})).$$

Since $[\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, by Lemma 12, we deduce from (14) and (15) that

(16)
$$\log |\Lambda| \ge -389.44 \left(\frac{1}{2} \log X + \log(3 + 2\sqrt{2})\right) \times (\log(3 + 2\sqrt{2}))(\max(10.5, 0.14 + \log B))^2$$

where

(17)
$$B = \frac{n}{2\log(3+2\sqrt{2})} + \frac{3}{\log X + 2\log(3+2\sqrt{2})}$$

Since s < n by (12), if $n \ge 330000$, then from (17) we get

 $\log B > \log(n/2\log(3+2\sqrt{2})) \ge \log(330000/2\log(3+2\sqrt{2})) > 10.5.$

Therefore, by (16) and (17), we obtain

(18)
$$\log |A| > -343.24 (\log X + 2\log(3 + 2\sqrt{2}))(0.14 + \log 0.5673n)^2.$$

Combination of (12) and (18) yields

(19)
$$\frac{2\log 4}{\log X} + 686.48 \left(1 + \frac{2\log(3 + 2\sqrt{2})}{\log X}\right) (0.14 + \log 0.5673n)^2 > n.$$

Since every prime factor p of X satisfies $p \equiv \pm 1 \pmod{8}$ by (11), we get $X \ge 7$ and (19) is impossible for $n \ge 330000$. The lemma is proved.

LEMMA 15. The equation

(20)
$$X^n + 1 = 2Y^2, \quad X, Y, n \in \mathbb{N}, \ X > 1, \ Y > 1, \ n > 2, \ 2 \mid n,$$

has no solution (X, Y, n).

Proof. Let (X, Y, n) be a solution of (20). Notice that (X', Y') = (1, 1) is a solution of the equation

$$X'^4 - 2Y'^2 = 1, \quad X', Y' \in \mathbb{N}.$$

Hence, by Lemma 2, we have $4 \nmid n$. This implies that n = 2t, where t is an odd integer with t > 1. Since t has an odd prime factor p if t > 1, we see from (20) that

(21)
$$X^{n/p} + 1 = 2dY_1^2,$$

(22)
$$\frac{X^n + 1}{X^{n/p} + 1} = dY_2^2,$$

where d, Y_1 , Y_2 are positive integers satisfying $dY_1Y_2 = Y$. By Lemma 4, if d = 1, then (22) is impossible. On the other hand, since $X^{n/p} \equiv -1 \pmod{d}$ by (21), we see from (22) that $d \mid p$. So we have d = p and

(23)
$$\frac{(X^{n/p})^p + 1}{X^{n/p} + 1} = pY_2^2,$$

by (22). Since $2 \mid n$ and $X^{n/p} \equiv 1 \pmod{4}$, by Lemma 6, (23) is impossible. The lemma is proved.

3. Proof of Theorem. By [7], it suffices to consider the solutions (x, y, m, n) of (1) with $2 \nmid x$.

Let (x, y, m, n) be a solution of (1) with $2 \nmid x$. Then we have

(24)
$$x^m + 1 = dy_1^2, \quad x^n + 1 = dy_2^2, \quad 1 \le m < n,$$

where d, y_1, y_2 are positive integers satisfying $dy_1y_2 = y$ and d is squarefree. By Lemma 3, (24) is impossible for d = 1. If d > 1 and d has an odd factor d_1 with $d_1 > 1$, let r denote the least positive integer with $x^r + 1 \equiv 0 \pmod{d_1}$. Then from (24) we get

$$(25) m = rm_1, n = rn_1,$$

where m_1 , n_1 are odd positive integers with $1 \le m_1 < n_1$. Further, let

(26)
$$s = \gcd(m, n), \quad m = sm', \quad n = sn'.$$

We see from (25) and (26) that $r \mid s$ and m', n' are odd positive integers satisfying $1 \leq m' < n'$ and gcd(m', n') = 1. Let $z = x^s$. Then (24) can be written as

(27)
$$z^{m'} + 1 = dy_1^2, \quad z^{n'} + 1 = dy_2^2.$$

Since $r \mid s, 2 \nmid s/r$ and $z + 1 = x^s + 1 \equiv 0 \pmod{x^r + 1}$, we derive from (27) that $z + 1 = d_1 d' y'^2$ and

(28)
$$\frac{z^{m'}+1}{z+1} = d'y_1^{\prime 2}, \quad \frac{z^{n'}+1}{z+1} = d'y_2^{\prime 2},$$

where d', y', y'_1 , y'_2 are positive integers satisfying $d'y'y'_1 = y_1$ and $d'y'y'_2 = y_2$. Since gcd(m', n') = 1, we have $gcd((z^{m'}+1)/(z+1), (z^{n'}+1)/(z+1)) = 1$. Hence, by (28), we get d' = 1 and

(29)
$$\frac{z^{n'}+1}{z+1} = y_2^{\prime 2}, \quad n' > 1, \ 2 \nmid n'.$$

However, by Lemma 3, (29) is impossible. So we have d = 2. Then (24) can be written as

(30)
$$x^m + 1 = 2y_1^2, \quad x^n + 1 = 2y_2^2.$$

Let s, m', n' be defined as in (26), and let $z = x^s$. If $m \equiv n \equiv 1 \pmod{2}$, then from (30) we get

(31)
$$z+1 = 2dy_{11}^2, \quad \frac{z^{m'}+1}{z+1} = dy_{12}^2, \quad \frac{z^{n'}+1}{z+1} = dy_{22}^2,$$

where d, y_{11} , y_{12} , y_{22} are positive integers satisfying $dy_{11}y_{12} = y_1$ and $dy_{11}y_{22} = y_2$. Since gcd(m', n') = 1 and $gcd((z^{m'}+1)/(z+1), (z^{n'}+1)/(z+1)) = 1$, we see from (31) that d = 1. Since n' > 1 and $2 \nmid n'$, by Lemma 3, (31) is impossible for d = 1. On the other hand, if $m \equiv n \equiv 0 \pmod{2}$, then n > 2 and $2 \mid n$. By Lemma 15, this is impossible. Therefore, the parities of m and n are distinct. Furthermore, by Lemma 15, we conclude from (30) that either m = 1 and n = 2, or m = 2 and $2 \nmid n$.

If m = 1 and n = 2, then from (30) we get

(32)
$$x + 1 = 2y_1^2, \quad x^2 + 1 = 2y_2^2.$$

Let $\rho = 1 + \sqrt{2}$ and $\overline{\rho} = 1 - \sqrt{2}$. For any nonnegative integer k, let U_k , V_k be defined as in (6). We see from the second equality of (32) that

(33)
$$x = \frac{\varrho^k + \overline{\varrho}^k}{2} = \frac{\varrho^k + \overline{\varrho}^k}{\varrho + \overline{\varrho}},$$

for some odd positive integers k. From (33), we get

(34)
$$x + 1 = \frac{\varrho^k + \overline{\varrho}^k}{\varrho + \overline{\varrho}} + (-\varrho \overline{\varrho})^{(k-1)/2}$$
$$= \begin{cases} 2U_{(k+1)/2}U_{(k-1)/2} & \text{if } k \equiv 1 \pmod{4}, \\ 4V_{(k+1)/2}V_{(k-1)/2} & \text{if } k \equiv 3 \pmod{4}. \end{cases}$$

Notice that $gcd(U_{(k+1)/2}, U_{(k-1)/2}) = 1$ by (ii) of Lemma 8. If $k \equiv 1 \pmod{4}$,

then from (34) and the first equality of (32) we get

(35) $U_{(k+1)/2} = y_{11}^2$, $U_{(k-1)/2} = y_{12}^2$, $y_{11}y_{12} = y_1$, $y_{11}, y_{12} \in \mathbb{N}$. However, by (vi) of Lemma 8, (35) is impossible. Similarly, if $k \equiv 3 \pmod{4}$, then from (32) and (35) we get

(36) $V_{(k+1)/2} = 2y_{11}^2$, $V_{(k-1)/2} = y_{12}^2$, $2y_{11}y_{12} = y_1$, $y_{11}, y_{12} \in \mathbb{N}$, since $2 \nmid (k-1)/2$ and $2 \nmid V_{(k-1)/2}$. Therefore, by (vii) of Lemma 8, we see from (36) that $(k, y_{11}, y_{12}) = (3, 1, 1)$. Further, by (32), we obtain (x, y, m, n) = (7, 20, 1, 2).

If m = 2 and $2 \nmid n$, then from (30) we get

(37)
$$x^2 + 1 = 2y_1^2,$$

(38)
$$x^n + 1 = 2y_2^2, \quad n > 2 \nmid n.$$

By the proof of [3, Theorem 2], we see from (38) that $x + 1 = 2ny'^2$ for some positive integer y'. Further, by Lemma 6, we get 2 | y' and

(39)
$$x+1 = 8ny_{21}^2$$
, $\frac{x^n+1}{x+1} = ny_{22}^2$, $2ny_{21}y_{22} = y_2$, $y_{21}, y_{22} \in \mathbb{N}$.

By Lemma 7 we find from (39) that n is squarefree.

On the other hand, since $x \equiv 7 \pmod{8}$, by (iii) of Lemma 8, we see from (37) that

(40)
$$x = U_{4k+3}, \quad k \ge 0, \ k \in \mathbb{Z}.$$

Combination of the first equality of (39) and (40) yields

(41)
$$V_{2k+1}V_{2k+2} = 2ny_{21}^2.$$

Notice that $gcd(V_{2k+1}, V_{2k+2}) = 1$ and $2 \nmid V_{2k+1}$. From (39) we get

(42)
$$V_{2k+2} = 2n_1 y_3^2,$$

(43)
$$V_{2k+1} = n_2 y_4^2,$$

where n_1, n_2, y_3, y_4 are positive integers satisfying

$$(44) n_1 n_2 = n, y_3 y_4 = y_{21}.$$

Since $n \geq 3$, by (vii) of Lemma 8, we see from (39) and (41)–(44) that if $n_2 = 1$, then k = 3, $n = n_1 = 51$, $y_3 = 2$, $y_4 = 13$ and x = 275807. Then the second equality of (39) is false. Moreover, if $n_1 = 1$, then from (42) we get

(45)
$$2y_3^2 = V_{2k+2} = 2U_{k+1}V_{k+1}.$$

Since $gcd(U_{k+1}, V_{k+1}) = 1$, we find from (45) that U_{k+1} and V_{k+1} are both squares. Hence, by (vi) and (vii) of Lemma 8, we deduce from (39), (40), (42), (43) and (45) that k = 0, $U_{k+1} = V_{k+1} = y_3 = y_4 = 1$, $x = U_3 = 7$ and n = 1, a contradiction. So we have $n_1 > 1$ and $n_2 > 1$.

From (42), we get

(46)
$$U_{k+1} = n_3 y_5^2,$$

(47)
$$V_{k+1} = n_4 y_6^2,$$

where n_3 , n_4 , y_5 , y_6 are positive integers satisfying

(48)
$$gcd(n_3, n_4) = 1, \quad n_3n_4 = n_1, \quad y_5y_6 = y_3.$$

By using the same method, we can prove that $n_3 > 1$ and $n_4 > 1$.

We now consider the case where 2 | k. By Lemma 10, we see from (46) that $n_3 \ge 23$. Moreover, we observe that if $y_4 = 1$ and n_2 is a prime with $n_2 < 1000$, then (39) is false. Recall that n is squarefree. Therefore, by Lemma 11, either n_2 has at least two distinct prime factors or n_2 is a prime with $n_2 > 1000$. Similarly, we see from (47) that n_4 has the same property. Since $gcd(V_{2k+1}, V_{2k+2}) = 1$, we have $gcd(V_{k+1}, V_{2k+1}) = 1$. Hence, by (43) and (47), we get $gcd(n_2, n_4) = 1$. Notice that every prime factor p of $V_{k+1}V_{2k+1}$ satisfies $p \equiv 1 \pmod{4}$. So we have

(49) $n = n_1 n_2 = n_2 n_3 n_4 \ge 23 n_2 n_4 \ge 23 \min(5 \cdot 13 \cdot 17 \cdot 29, 10^6) \ge 482885.$

But, by Lemma 14, from (38) and (39) we get n < 330000, a contradiction.

For the case where $2 \nmid k$, we have $V_{k+1} = 2U_{(k+1)/2}V_{(k+1)/2}$. Therefore, by much the same argument as in the proof of the case where $2 \mid k$, we can obtain a lower bound $n \geq 482885$ as in (49). By Lemma 14, this is impossible. The proof is complete.

Acknowledgements. The author is grateful to the referee for his valuable suggestions.

References

- [1] C. Ko, On the diophantine equation $x^2 = y^n + 1$, $xy \neq 0$, Sci. Sinica 14 (1964), 457–460.
- M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
- [3] M.-H. Le, A note on the diophantine equation $x^{2p} Dy^2 = 1$, Proc. Amer. Math. Soc. 107 (1989), 27–34.
- [4] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad. Oslo I 5 (1942), no. 5, 27 pp.
- [5] —, Sätze über unbestimmte Gleichungen, Skr. Norske Vid. Akad. Oslo I (1942), no. 9, 53 pp.
- [6] —, Noen setninger om ubestemte likninger av formen $(x^n 1)/(x 1) = y^q$, Norsk. Mat. Tidsskr. 25 (1943), 17–20.
- [7] P. Ribenboim, Square classes of $(a^n-1)/(a-1)$ and a^n+1 , Sichuan Daxue Xuebao, Special Issue, 26 (1989), 196–199.
- [8] N. Robbins, On Pell numbers of the form px^2 , where p is a prime, Fibonacci Quart. 22 (1984), 340–348.

 [9] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.

Department of Mathematics Zhanjiang Teachers College 524048 Zhanjiang, Guangdong P.R. China

> Received on 19.2.1996 and in revised form on 19.9.1996

(2934)

26