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1. Introduction. Louboutin [L1] and Yamamura [Y] have determined
all imaginary abelian sextic number fields with class number one. There are
exactly 17 such fields and their conductors are < 129. The determination of
all CM-fields with a given class number and given degree stems from lower
bounds for the relative class number. In particular, the lower bounds for the
relative class number established by Louboutin [L1] enable us to give reason-
able upper bounds for the conductors of abelian sextic CM-fields with small
class number. Moreover, these lower bounds for the relative class number
can be improved, using Theorem 2 in [L3]: in other words, we need less com-
puter calculations. We thus make a finite list of all possible conductors for
a given class number. We shorten this list using the divisibility properties
of the relative class number. Thus in this paper we prove the following:

THEOREM 1. There are precisely 17 imaginary abelian sextic number
fields of class number 1; 5 fields of class number 2; 23 fields of class number
3; 15 fields of class number 4; 2 fields of class number 5; 6 fields of class
number 6; 14 fields of class number 7; 6 fields of class number 8; 33 fields of
class number 9; 2 fields of class number 10; 1 field of class number 11; these
fields are listed in Tables 3 and 4.

THEOREM 2. There are precisely 26 imaginary abelian sextic number
fields of relative class number 1; 7 fields of relative class number 2; 27 fields
of relative class number 3; 20 fields of relative class number 4; these fields
are listed in Table 3.

In Section 2, we review some well-known facts about the cyclic cubic
number fields which will be used in the next sections. In Section 3, we
obtain lower bounds for the relative class number of an imaginary abelian
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sextic number field K in terms of the conductor f, hence an upper bound for
the conductors f of K when the relative class number is given. In Section 4,
we study the arithmetic properties of the relative class number which allow
us to find a finite list of all possible conductors f with a given relative
class number. In Section 5, we illustrate how to determine all fields of class
number 3; in that case we have several cases to consider. Ultimately, we
list all fields with relative class number h*(K) < 4 and all fields with class
number hA(K) < 11 in Tables 3 and 4, respectively.

2. Cyclic cubic extension of (). In this section we recall a few
standard facts concerning cyclic cubic extensions of Q. Let k be a cyclic
cubic extension of Q, and fj, the conductor of k. Then

fk:{pl...pr if 31 fx,
2p, . p, i3] fi,

where p;’s are distinct prime numbers with p; = 1 mod 6 and r is the num-
ber of prime divisors of f;. Moreover, there exist 2"~! extensions of the
conductor f; and we have

h(k)=1mod3 ifr=1,
31 divides h(k) ifr > 2.

Therefore, if 3 does not divide h(k) then f;, = 3% or fx = 1 mod 6 is prime,
and k is well determined by fi. In addition, we can easily obtain a cubic
polynomial defining k as follows. Let x be a primitive Dirichlet character
modulo fi of order 3 such that the cyclic group {x* : 0 < i < 2} is the
group of characters associated with k. For a positive integer [ we let (; =
exp(2im/l). Then the element

fr—1

-3

gi
x(g)=1

is a primitive element of the extension k of QQ, and
' fr—1
00 = > ¢, i=0,12
g=1
x(9)=C3

are the conjugates of 6. In this way, from the character y we can calculate
explicitly an irreducible polynomial defining the number field k. Note that
M.-N. Gras ([M.N.G]) has explained the cyclic cubic fields in detail and
has determined all cyclic cubic fields of conductor < 4000 (see also G. Gras
[G.G]).
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3. Lower bounds for relative class number. Let X be a group of
Dirichlet characters and IV the associated abelian number field. We assume
N is a CM-field. We denote by N, its maximal real subfield. The relative
class number A*(N) can be written as

vy QuIN) [dN)  Resa(Gy)
WIN) = g \[dNy) * Resem ()

- I 8) " L

x odd x odd

where 2n = [N : Q], w(N) is the number of roots of unity in N, @ is the
Hasse unit index of N, f, is the conductor of the character x, and (x and
Cn, are the Dedekind zeta functions of N and N, respectively (see Chapter
4 of [Ws]). For lower bounds for the relative class number we need upper
bounds for Res;—;((n, ) and lower bounds for Res;—1(C(n).

PROPOSITION 1. Let N be a CM-field of degree 2n. Then € [1 —
2/logdy, 1[ and (N (B) < 0 imply

Res,—1(Cn) > €

Nelong
where
_q 2mrnel/m 2 2mn
en=1-— 7d%(2”) or gexp - T\{(M) .

Proof. This is the content of Proposition A of [L3]. m

PROPOSITION 2. Let x be a nontrivial even primitive Dirichlet character
mod fy. Then

1
IL(1, )] < 5 (log fy +0.05).
Proof. This is the content of Theorem of [L2]. m

We now turn to the relative class number of an imaginary abelian sex-
tic number field. Let K be an imaginary abelian sextic number field, K
the real cubic subfield of K and k;,, the imaginary quadratic subfield of K.
We let f, f1 and m denote the conductors of K, K| and ki, respectively.
For a number field F', we let h(F') and d(F) be the class number of F' and
the discriminant of F, respectively. We have d(K) = —f2- 7 - m by the
conductor-discriminant formula. Let y be a primitive odd Dirichlet charac-
ter modulo f of order 6 such that {x?:0< i< 5} is the group of characters
associated with K. Let xiy be the odd primitive character modulo m which
induces x* and let x4 be the even primitive character modulo f, which
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induces x2. The relative class number h*(K) is rewritten as

Qu(K) FIL(L )2

W (K) = L0 g TIEAL X0
where w(K) and w(kiy,) are the number of roots of unity in K and kiy,
respectively. Louboutin [L1] has estimated L(1,x) from below in terms of

the conductor f and obtained the following theorem:

THEOREM 3. Let K/Q be an imaginary abelian sextic extension of con-
ductor f. We have the following lower bounds for h*(K):

1 f , 5
h*(K) > : if f>5-10%;
) = 7300 log®(f/m) 1=
1 f : 5 .
“(K) > : >5-1 :
h*(K) > 200 Tog(f/m) if f>5-10° and 3 divides f;
1
h*(K) > / if f>5-10° and 2 divides f.

= 3300 log?(f/m)
Therefore
R*(K)>11 if f>2.0-107;
if f£>1.1-107 and 3 divides f;
if £>7.9-10% and 2 divides f.
Proof. See Theorem 2 of [L1]. m

This estimate shows that the computations can be done on a PC or a
Workstation. However, we shall show below (Theorem 6) that these upper
bounds can be improved using Propositions 1 and 2.

Furthermore, using generalized Bernoulli numbers we can evaluate ex-
plicitly the relative class number for K:

Qu(K)
w(kim)

From this formula we obtain

f—1
. . 1
h(K) = hkim) |7y |2 with 7, = 37 > ax(a).
a=1

PROPOSITION 3. Let K/Q be an imaginary abelian sextic extension of
conductor f.

() h*(K) = h(km)lry[? for K # Q(Cr), QGo), where G, = exp(2i/n)
forn > 2.
(b) h(kim) divides h*(K).

Proof. See Lemma A and Corollary D of [L1]. m

The fields Q(¢7) and Q((9) have class number one. Thus they can be
omitted from all future considerations, and we have h*(K) = h(kin)|7y|?
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from this point on. In order to determine all imaginary abelian sextic num-
ber fields having class number less than or equal to 11, we need to de-
termine all imaginary quadratic number fields ki, with h(ky,) < 11 and
|d(kim)| < 2-107. For convenience we list the computational results here.

THEOREM 4. There are 497 imaginary quadratic fields of conductor m <

2107 with class number less than or equal to 11, and their conductors are
less than or equal to 15667.

Remark. Some of the class number problems for imaginary quadratic
number fields have been solved: Stark [S1, S2] for class number 1 and 2;
Montgomery and Weinberger [MW] for class number 3; Arno [A1l] for class
number 4; Wagner [Wg] for class numbers 5, 6 and 7 and Arno [A2] for all
odd class numbers from 5 to 23.

We now turn our attention to the evaluation of the L-functions at s = 1.

THEOREM 5. Let x be an odd quadratic Dirichlet character of conductor
f. If f <593000, then L(s,x) >0 for s > 0.

Proof. See [Low]. =

COROLLARY 1. Let K/Q be an imaginary abelian sextic extension.

(i) If h(K) < 11 then |d(kim)| < 15667.
(i) If h(K) < 11 then L(s,x3) > 0 for s > 0.

Proof. (i) follows from Theorem 4.
(ii) follows from (i) and Theorem 5. m

Consider the Dedekind zeta function
Cre(8) = Ca(8)L(s, X*)L(s, x*)L(s, x*)L(s, x)L(s, x°).
It is known that {g(s) < 0 on |0, 1]. For real s, we have
L(s,x*) = L(s,x?) and L(s,x”) = L(s,x).

Therefore, (x(s) has the same sign as (g(s)L(s, x*) = (k. (s). By Corol-
lary 1, if h(K) < 11, then (x(s) < 0 for 0 < s < 1. At this point, we apply
Proposition 1 to improve the lower bound for Ress—1((x), so we obtain the
following:

THEOREM 6 (Louboutin). Let K/Q be an imaginary abelian sextic ex-
tension. If h(kiy,) < 11, then

W (K) > w(K)ek fvm
S5em3  (log f +0.05)3"
Here, ejc = 1 — 6m¢/e/d(K)Y/S. Thus h*(K) > 11 if f >3- 10°.

Proof. This follows from Propositions 1 and 2. =
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4. Arithmetic properties of the relative class number. In this
section, we shall study some divisibility properties of the relative class num-
ber, which allow us to reduce the amount of the computations.

LEMMA 1. Let N be a CM-field and N its mazimal totally real subfield.
Let t be the number of prime ideals of N that are ramified in the quadratic
extension N/N,. Then 2t=% divides h*(N).

Proof. See Proposition 2 of [LO|. m

PROPOSITION 4. If a prime number q is ramified in kin /Q and if q splits
in K+/Q, then 4|h*(K). Consequently, if h*(K) is not divisible by 4 and
if q is ramified in ki, /Q, then x4+ (q) # 1.

Proof. This is clear by Lemma 1. =

For the fields having class number 3, 6 and 9, we make use of the following
result.

THEOREM 7. Let K be an imaginary abelian sextic number field. Let T
denote the number of primes dividing f1 which split in ki, and sete =1 or
0 according as kim = Q(v/=3) or not. Then 3T ~h (ki) divides h*(K).

Proof. See Proposition 8 of [LOO]. m

According to Proposition 3, in order to determine all imaginary abelian
sextic number fields K with h(K) < 11 we need to consider the following
28 cases:

Table 1
h(K) 123334445¢6¢666
hM(Ky) 1111311411136
K'(K) 1233144156¢6 21
|TX|21113114111311
hkpm) 1231141156211
Table 2
h(K) 777888999999 10 10 11
h(Ky) 117114111339 1 101
R'(K) 77 188299933110 1 11
|7x| 1711411391311 1 1
hkim) 71 182293131110 1 11

LEMMA 2. Assume that 7, is an algebraic integer. For any positive prime
q, let vg(n) denote the exponent of q in the prime factorization of n > 1. If
ITx|? = n, ¢ divides n and if (_73) = —1, then vy(n) = 0 mod 2. Note that

(773) = —1 if and only if ¢ = 2 or ¢ = —1 mod 6. Therefore,



Imaginary abelian sextic number fields 33

Iy |> =1 implies |1, + 7| =1 or 2;
7|2 =3 implies |1, +7Ty| =0 or 3;
|| =4 implies |1, +7Ty| =2 or 4;
I |> =7 implies |1, +7y| = 1,4 or 5;
|7 |? =9 implies |1, + 75| =3 or 6.
Proof. Set 7, = (a+bv/=3)/2, a,b € Z. Then 4|1, |? = |1, + T |> +
3%, =
PROPOSITION 5 (see [L1]). Assume fy = p = 1 mod 6 and ged(m, p)
=1. Then

im -1 .
h(kim)w mod 3 if m # 3,4,

2
-1
TX+FXE meOdg me:?),
Xim(i) —P mod 3 ifm=4.

Therefore,

(1) if 3 divides h(kim) then 9 divides h*(K);
(2) if Xim(p) =1 and m # 3 then 3 divides h*(K);
(3) if p=1mod 18 and m = 3 then 3 divides h*(K).

Moreover, T, is an algebraic integer and we have the following formula suit-
able for computations:

1 (p—1)/2

_ le(p) —1
Tt Ty = ki) M2 — S

—(p)
Sm(z3" ", p
w(k'im) —1 ( )

where TP) is the congruent class of  modulo p and

m—1
Smlc, 8) =Y bxim(c + b3)
b=0

depends on a and 3 modulo m only.

Note that our formula given in Proposition 5 makes it much easier to
compute 7, + 7, than to compute 7,. Therefore, according to Tables 1 and
2, in using Lemma 2 as a necessary condition, and since we will be able to
reduce the determination of all the imaginary abelian sextic number fields
of class number prime to 3 to those of conductor f = mf, with f, =p=1
mod 6 and ged(m, f1) = 1, Proposition 5 and Theorem 6 will enable us
to get fast a very short list of possible fields, and we will have to compute
h*(K) only for the few fields of that list.
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THEOREM 8 (Louboutin). Assume ged(m, f1) = 1 and for any relative
integer a € 7 let ay denote the only relative integer such that fray =
amodm and 0 < ay <m—1. Then

h kim h kim
ret = = 2l T 1 ) + 2L )1

plf+

a+—1
- 3Xim(f+) Z Z Xim(b)'
1<a<fy/2 b=1
x+(a)=1

In particular, T, is an algebraic integer in Q(v/—3). Therefore 3 divides
|Tx|? if and only if 3 divides T + 7. We then have 1, + T, = 0 mod 3 if
and only if we are in one of the following five cases:

3| h(Kim) and m # 3,4,
{p:plfy and Xim(p) =1} #0 and m # 3,4,
{p:p|fi}H =2 and m = 3,

{p:p|fy andp=1mod 18} #0 and m = 3,
{p:p|fr andp=1mod 12} #0 and m = 4.
Proof. We argue as in [L1]. Since ged(m, f1) = 1 implies x(z) =
X+ () Xim (2), we get

ged(z, f+) = 1 implies y(2) +X(z) + Xim (z) = {(i’;xim(a:) if o (z) = 1,

otherwise,
and
1 =
Tx +Tx = Y Z z(x(z) + X(x))
x=1
ng(mmfﬁ-):l
1 A 3 A
=37 Zl Xim(¥) = 3 Zl Xim ().
ged(z, f4+)=1 X+ (z)=1

First, we have

f—1 f-1
S axim(@) = D p(d) Y wxim(2)

=1 =
ged(z, f4)=1 i dlz
mfy/d—1

=Y dxim(@p(d) D mxm(@).

d|f+ r=1
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However, for any k > 1 we have

km—1 m—1k—1
walm ZZZa+mbxlma+mb)
rx=1 a=10b

m—1
ke (ki)
=k axim(a) = Tl
a=1 1m

Therefore, using f = fim, we get

F-1 .
LS ) = - Mm) S )

2f w(k:im)
r=1
ged(z, f4)=1 A
h(kim)
= - 1- im
o) 11— xim(p)
plf+
Second, we have
3 f-1 3 f+=1 m—
- TXim(T) = — a+bfy)xim(a +bf
27 ; @) =57 2 bZ:: + +)
x+(z)=1 X+ (a)=1
3 f+=1 m—1
:_% ; go Xim a+bf+)
x+(a)=1
3 f+—1
= Sm(a, £+).
om 2 (a, f+)
X+ (a)=1
Since Sp,(f+ — a, f+) = Sm(a, f1) we get
3 f-1 3 fr—1
—ﬁ Z TXim (T) = m Z Sm(a, f+)-
e=1 1<a<fy/2
X+ (z)=1 X+ (a)=1

Now, we claim that

Sm<a,f+>:xim<f+>( ) lexlm )

which provides us with the desired first result (upon using [{a : 1 < a < f} /2
and x4 (a) =1} = ¢(f+)/6). Indeed, we have
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m—1
Sm(aa f+ = Xim f—i— Z bxlm a4 +b
=0

m—1
= Xim(f+) D _ (a4 4+ b)Xim (a4 + D)
jjimfl
= Xim(f+) Z inm(b)
b=a4
m— ar +m—1
= Xim (/) Z bXim (b) + Xim (f+) Z bXim (D)
b=ay b=m+1
m—1 at—1
= Xim (f+) Z bXim (b) + Xim (f+) Z (b4 m)Xim (b + m)
b=ay b=1

a+—1

() S bxim(®) + > inl®
b=1
omh(kim)  t=
= im(f ) — Y +tm 1m
X * < w(kim) ; Xi >

To get the second desired result, we notice that 6 always divides ¢(f4),
which yields

h(kim h(kin,
T TS _w((k:im)) L (1= Xim(p)) + %Xim(er) mod 3,
and implies
_h(lgm> ]l_;[ (1 - Xim(p)) mod 3 if m ?g 3’4’
plJ+
Ty +Tx = (Z)(é +) mod 3 fm—3
i 1;[ ¢(£+)Xim(f+) mod 3 if m =4,

(for m = 3 implies xim(p) = 1 for all primes p dividing f4). =

5. Numerical computations and proofs of Theorems 1 and 2.
We show how to determine all imaginary abelian sextic number fields K
having h(K) = 3. In a similar fashion we will obtain all imaginary abelian
sextic number fields K having h(K) < 11, and those with h*(K) < 4. From
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Table 3. h*(K) <4
h*(K) =1
f L] h(K ) m | h(kim) || £ [ f2 ] h(Ky) m | h(kim)
polynomial defining K4 polynomial defining K
717 1 7 1 67 | 67 1 67] 1
99 1 3 1 76 | 19 1 4 1
19119 1 19 1 7|7 1 11 1
21| 7 1 3 1 91 | 13 1 7 1
28] 7 1 4 1 91 | 91 3 7 1
x° — 22 — 300 — 27
36| 9 1 4 1 93 | 31 1 3 1
3913 1 3 1 104 | 13 1 8 1
431 43 1 43 1 117 | 117 3 3 1
z3 — 39z + 26
56 | 7 1 8 1 129 | 43 1 3 1
63| 9 1 7 1 133133 3 7 1
25 — 22 — 44z — 69
63| 63 3 3 1 171171 ] 3 9 1
2% — 21z — 28 23 — 57z + 152
63 ] 63 | 3 3 1 217 [ 217 ] 3 7] 1
2° — 21z + 35 2% — 2% — 722 + 225
63| 63 | 3 7 1 247 [ 247 | 3 9] 1
22 — 21z + 35 z2 — 2% — 82z + 64
R (K) =2
flfe] h(Ky) m [ h(kim) || £ [ 2] h(Ky) m | h(kim)
polynomial defining K polynomial defining K
35] 7 1 3] 2 91 [ 91| 3 91] 2
z3 — 1% — 302 — 27
45| 9 1 5] 2 91 [ 91 ] 3 91| 2
% — 22 — 30x + 64
52113 1 52| 2 105 7 | 1 15| 2
7219 1 24| 2
Theorem 6 we obtain
h*(K)>3 if f>5.9-10°.

We consider two cases:

(A) (m, f+) =1, and
(B) (m, f1) > 1.

For each case we consider three possible types in Table 1. Our strategy
is now as follows. First, for a given m we compute an upper bound for f.
Second, we find all possible conductors f; (Propositions 4, 5 and Theorems
7, 8). Third, we compute |7, + 75| and |7, |?. Finally, we verify the class
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Table 3 (cont.)

K (K) =3
F LA h(K+) m | hkim) || £ [ f2 ] h(K+) m | A(Kim)
polynomial defining K4 polynomial defining K
52 | 13 1 4 1 2731 91 | 3 3 1
23 — 2% — 30z + 64
57 | 19 1 3 1 292 | 73 1 4 1
219 1 8 1 301 | 301 3 7 1
22 — 22 — 100z — 223
9 [ 9 1 1] 1 301301 | 3 7 1
22 — 22 — 100z + 379
111 37 1 3 1 327109 1 3 1
133133 3 19 1 333333 3 3 1
23 — 2% — 442 — 69 23 — 111z — 370
133133 ] 3 9] 1 341 31 1 | 1
% — 22 — 44x + 64
133 7 1 19] 1 364 | 91 3 4 1
2% — 22 — 30z — 27
148 | 37 1 4 1 381 127 1 3 1
152 19 1 8 1 399 | 133 3 3 1
z° — % — 442 + 64
171171 3 3 1 469 | 67 1 7 1
23 — 57z — 19
171171 ] 3 3 1 553 | 553 3 7 1
3 — 57z + 152 23 — 2% — 184z — 41
244 61 1 41 1 657 | 657 | 9 3 1
z3 — 219z — 730
259 | 259 3 7 1
% — 2% — 862 + 211

number h(K ) by Gras’s Table [M.N.G] and compute the cubic polynomials
if 3 divides h(K).

Case (A): (m, f4) =1

(i) If h(Ky) =1, h*(K) = 3 and h(kjn) = 3, then A(K) = 3 is impos-
sible: by Proposition 5(1), fi = 32, so it suffices to compute 7, for the 16
conductors f = 3%m, with h(Q(/—m)) = 3.

(ii) If h(K4+) =1, h*(K) = 3 and h(kim) = 1, then for each one of the
9 imaginary quadratic fields having class number one we compute upper
bounds for the conductor f of K/Q:

|7'x’2 >3

|TX]2 >3

for f >3.5-10°
for f > 5.4-10°
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Table 3 (cont.)

h*(K) =4
Ffe ] h(K4) m [hk) || £ [ F ] h(K+) m (ki)
polynomial defining K polynomial defining K
39 | 13 1 39 4 1721 43 1 4 1
56 | 7 1 56 4 183 | 61 1 3 1
84 | 7 1 84 4 201 | 67 1 3 1
1171 9 1 39 4 209 19 1 11 1
117|117 3 39 4 248 | 31 1 8 1
2% — 39z — 91
124 | 31 1 4 1 252 63 3 4 1
a® — 21z — 28
133| 19 1 7 1 259 [ 259 | 3 259 4
x> — 2% — 86z — 48
155| 31 1 155 4 473 | 43 1 11 1
163|163 4 163 1 511 73 1 7 1
1711 9 1 19 1 711|711 12 3 1
x® — 237z — 316

N

T[> >3 for f>25-10° if ki = Q(v-3);
I 2 >3 for f>59-10° if ki = Q(V=7);

I |? >3 for f>45-10° if ki =Q :

|7 [? >3 for f>1.9-10° if by =Q

?

T[> >3 for f>14-10° if by =Q

(

(

( )
I >3 for f>32-10° if ki = Q(v/—19);

( )

( )

(

|7y |> >3  for f>80-10* if ki = Q(v/—163).

We summarize our computational results when ki, = Q(v/—1). (For the
other fields the computation is exactly the same.) By Theorem 8 we have
f=4p, p=1mod 12.

1) There are 2098 prime p’s such that p = 1 mod 12 and p < 87500.

2) There are 1413 prime p’s such that 2(P=1/3 % 1 mod p (Proposi-
tion 4).

3) There are 57 prime p’s such that |7, +7y| =0 or 3 (Lemma 2).

4) For these 57 prime p’s we compute |7, |?.

There are exactly 4 fields having class number 3: f = 52,148,244 and 292.

(iii) If h(K4+) = 3, h*(K) = 1 and h(kin) = 1, the same argument
applies to each of the nine fields. We proceed as follows: for example let
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Table 4. h(K) <11
The fields with h(K) < 4 are listed in Table 3.

FLf ] h(K ) m [h(km) || £ [ fe] h(K+) m | A(kim)
polynomial defining K polynomial defining K
hWK)=5
79 [ 79 | 1 [79] 5 ][ 103]103] 1 [103] 5
h(K)=6
91 [ 91 | 3 o1 2 Jl1es] 7 1 24| 2
23 — 2% — 30z — 27
91 | 91 | 3 91| 2 180 | 9 1 20| 2
23 — 2% — 307 + 64
140 7 | 1 20| 2 |[285]19 1 15| 2
hK)="17
143] 13 1 1] 1 [[471[157 1 3] 1
151 151 1 151| 7 || 589 | 31 1 9] 1
237 79 1 3 1 604151 1 4 1
268 | 67 1 4 1 |[687 229 1 3| 1
296 | 37 1 8| 1 |[721]103 1 7 1
412103 1 4 1 |[1199]109 1 1] 1
427 61 1 7 | 1 ||1371]457 1 3 1
hK) =8
91 | 7 1 91| 2 [[153] 9 1 51| 2
95 [ 19 1 95 | 8 || 19513 1 15| 2
111 37 1 111 8 |[260] 13 1 20| 2

kim = Q(v/—7). We have
Iy >1 for f>1.5-10° if ki, = Q(v/~T).
1) There are 650 conductors fy such that

ng(f+77) = 17
fr <22-10%,

f+=3*por fr =pip2, p,p1,p2 =1mod6.
2) There are 267 f.’s such that
Xim(p) = (j) =-1 if f4 = 3%p,
Xim(P1) = —1 and Xim(p2) = —1 if f1 = p1p2 (Theorem 7).

For a given fy = 32p or pips, with p,p;,p2 = 1 mod 6, there are then two
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Table 4 (cont.)
Flf] h(K+) m |h(kim) || £ [ f+] h(K+) m | h(kim)
polynomial defining K polynomial defining K
h(K)=9
31 | 31 1 31 307 | 307 1 307 3
133[133 3 19 1 333 [333 3 3 1
23 — 2% — 44z — 69 23 — 111z — 370
133[133 3 19 1 364 | 91 3 4 1
23 — 2% — 44z + 64 a3 — 2% — 30z — 27
139]139 1 139 3 388 | 97 1 4 1
161] 7 1 23| 3 399 [133 3 3
23 — 2% — 44z + 64
171171 3 3 1 437 [ 19 1 23| 3
a3 —57x —19
171[171] 3 3 1 499 [499 1 499 3
a3 — 572 + 152
207 9 1 23| 3 553 | 79 1 7 1
217 7 1 31| 3 553 | 553 3 7
a3 — 2% — 184z — 41
259 | 37 1 7 1 597 [199 1 3 1
259 [ 259 3 7 1 643 643 1 643
x5 — 2% — 86z + 211
2731 91 | 3 3 1 772 [193 1 4 1
22 — 22 — 30z + 64
279 9 1 31| 3 817 | 43 1 9] 1
283283 1 283 3 [[1057[151 1 7 1
299 13 1 23| 3 |[[1727]157 1 ] 1
301301 3 7 1 [[2453]223 1 1| 1
3 — 2% — 100z — 223
301301 3 7 1
a3 — 2% — 100z + 379
h(K) =10
119] 7 | 1 [119] 10 [[143]13] 1 [143] 10
h(K) =11 [
271271 ] 1 l271] 11 ]
nonconjugate cubic characters, i.e.
X+ = X32Xp OF X32X;2, if £ = 3%p,

{

Here, for ¢ € {32,p,p1,p2} we let x,(g9) = exp(2im/3), with g a primitive
root modulo gq.

X+ = Xp1 Xps OF X+ = Xp1 Xo, if f4 = p1po2.
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Consequently, for 534 pairs (f, x+) we have to test whether x4 (7) # 1
or not.

3) There are 358 pairs (fy, x+) such that x4 (7) # 1 (Proposition 4).

4) Using Theorem 8 we compute 7, + 7, and choose 7, + T, such that
|7y + Ty| =1 or 2. (Since h*(K) = 1, we have |7, + Ty |=1 or 2 by Lemma
2.) There are 11 pairs (f4, x+) such that |7, +7,| =1 or 2.

5) Finally, we compute |, |? for these 11 pairs (fy, x+) of 4).

We verify that there are no such fields having class number 3.

Case (B): (m, fy) > 1. We have f < 5.9-10°. First, we make a finite
list of possible conductors f; which are less than 5.9-10°. Second, we select
those satisfying Proposition 4 and Theorem 7. Finally, we compute |7, |?.
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