
ACTA ARITHMETICA
LXXXII.1 (1997)

Determination of all imaginary abelian sextic number
fields with class number ≤ 11
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1. Introduction. Louboutin [L1] and Yamamura [Y] have determined
all imaginary abelian sextic number fields with class number one. There are
exactly 17 such fields and their conductors are ≤ 129. The determination of
all CM-fields with a given class number and given degree stems from lower
bounds for the relative class number. In particular, the lower bounds for the
relative class number established by Louboutin [L1] enable us to give reason-
able upper bounds for the conductors of abelian sextic CM-fields with small
class number. Moreover, these lower bounds for the relative class number
can be improved, using Theorem 2 in [L3]: in other words, we need less com-
puter calculations. We thus make a finite list of all possible conductors for
a given class number. We shorten this list using the divisibility properties
of the relative class number. Thus in this paper we prove the following:

Theorem 1. There are precisely 17 imaginary abelian sextic number
fields of class number 1; 5 fields of class number 2; 23 fields of class number
3; 15 fields of class number 4; 2 fields of class number 5; 6 fields of class
number 6; 14 fields of class number 7; 6 fields of class number 8; 33 fields of
class number 9; 2 fields of class number 10; 1 field of class number 11; these
fields are listed in Tables 3 and 4.

Theorem 2. There are precisely 26 imaginary abelian sextic number
fields of relative class number 1; 7 fields of relative class number 2; 27 fields
of relative class number 3; 20 fields of relative class number 4; these fields
are listed in Table 3.

In Section 2, we review some well-known facts about the cyclic cubic
number fields which will be used in the next sections. In Section 3, we
obtain lower bounds for the relative class number of an imaginary abelian
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sextic number field K in terms of the conductor f , hence an upper bound for
the conductors f of K when the relative class number is given. In Section 4,
we study the arithmetic properties of the relative class number which allow
us to find a finite list of all possible conductors f with a given relative
class number. In Section 5, we illustrate how to determine all fields of class
number 3; in that case we have several cases to consider. Ultimately, we
list all fields with relative class number h∗(K) ≤ 4 and all fields with class
number h(K) ≤ 11 in Tables 3 and 4, respectively.

2. Cyclic cubic extension of Q. In this section we recall a few
standard facts concerning cyclic cubic extensions of Q. Let k be a cyclic
cubic extension of Q, and fk the conductor of k. Then

fk =
{

p1 . . . pr if 3 - fk,
32p2 . . . pr if 3 | fk,

where pi’s are distinct prime numbers with pi ≡ 1 mod 6 and r is the num-
ber of prime divisors of fk. Moreover, there exist 2r−1 extensions of the
conductor fk and we have{

h(k) ≡ 1 mod 3 if r = 1,
3r−1 divides h(k) if r ≥ 2.

Therefore, if 3 does not divide h(k) then fk = 32 or fk ≡ 1 mod 6 is prime,
and k is well determined by fk. In addition, we can easily obtain a cubic
polynomial defining k as follows. Let χ be a primitive Dirichlet character
modulo fk of order 3 such that the cyclic group {χi : 0 ≤ i ≤ 2} is the
group of characters associated with k. For a positive integer l we let ζl =
exp(2iπ/l). Then the element

θ =
fk−1∑
g=1

χ(g)=1

ζg
fk

is a primitive element of the extension k of Q, and

θ(i) =
fk−1∑
g=1

χ(g)=ζi
3

ζg
fk

, i = 0, 1, 2,

are the conjugates of θ. In this way, from the character χ we can calculate
explicitly an irreducible polynomial defining the number field k. Note that
M.-N. Gras ([M.N.G]) has explained the cyclic cubic fields in detail and
has determined all cyclic cubic fields of conductor ≤ 4000 (see also G. Gras
[G.G]).
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3. Lower bounds for relative class number. Let X be a group of
Dirichlet characters and N the associated abelian number field. We assume
N is a CM-field. We denote by N+ its maximal real subfield. The relative
class number h∗(N) can be written as

h∗(N) =
Qw(N)
(2π)n

√
d(N)
d(N+)

· Ress=1(ζN )
Ress=1(ζN+)

=
Qw(N)
(2π)n

( ∏
χ odd

fχ

)1/2 ∏
χ odd

L(1, χ)

where 2n = [N : Q], w(N) is the number of roots of unity in N , Q is the
Hasse unit index of N , fχ is the conductor of the character χ, and ζN and
ζN+ are the Dedekind zeta functions of N and N+, respectively (see Chapter
4 of [Ws]). For lower bounds for the relative class number we need upper
bounds for Ress=1(ζN+) and lower bounds for Ress=1(ζN ).

Proposition 1. Let N be a CM-field of degree 2n. Then β ∈ [1 −
2/ log dN , 1[ and ζN (β) ≤ 0 imply

Ress=1(ζN ) ≥ εN
2

e log dN

where

εN = 1− 2πne1/n

d
1/(2n)
N

or
2
5

exp
(
− 2πn

d
1/(2n)
N

)
.

P r o o f. This is the content of Proposition A of [L3].

Proposition 2. Let χ be a nontrivial even primitive Dirichlet character
mod fχ. Then

|L(1, χ)| ≤ 1
2
(log fχ + 0.05).

P r o o f. This is the content of Theorem of [L2].

We now turn to the relative class number of an imaginary abelian sex-
tic number field. Let K be an imaginary abelian sextic number field, K+

the real cubic subfield of K and kim the imaginary quadratic subfield of K.
We let f, f+ and m denote the conductors of K, K+ and kim, respectively.
For a number field F , we let h(F ) and d(F ) be the class number of F and
the discriminant of F , respectively. We have d(K) = −f2 · f2

+ · m by the
conductor-discriminant formula. Let χ be a primitive odd Dirichlet charac-
ter modulo f of order 6 such that {χi : 0≤ i≤ 5} is the group of characters
associated with K. Let χim be the odd primitive character modulo m which
induces χ3 and let χ+ be the even primitive character modulo f+ which
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induces χ2. The relative class number h∗(K) is rewritten as

h∗(K) =
Qw(K)
w(kim)

h(kim)
f |L(1, χ)|2

4π2
,

where w(K) and w(kim) are the number of roots of unity in K and kim,
respectively. Louboutin [L1] has estimated L(1, χ) from below in terms of
the conductor f and obtained the following theorem:

Theorem 3. Let K/Q be an imaginary abelian sextic extension of con-
ductor f . We have the following lower bounds for h∗(K):

h∗(K) ≥ 1
7300

· f

log2(f/π)
if f ≥ 5 · 105;

h∗(K) ≥ 1
4200

· f

log2(f/π)
if f ≥ 5 · 105 and 3 divides f ;

h∗(K) ≥ 1
3300

· f

log2(f/π)
if f ≥ 5 · 105 and 2 divides f.

Therefore

h∗(K) > 11 if f ≥ 2.0 · 107;

if f ≥ 1.1 · 107 and 3 divides f ;

if f ≥ 7.9 · 106 and 2 divides f.

P r o o f. See Theorem 2 of [L1].

This estimate shows that the computations can be done on a PC or a
Workstation. However, we shall show below (Theorem 6) that these upper
bounds can be improved using Propositions 1 and 2.

Furthermore, using generalized Bernoulli numbers we can evaluate ex-
plicitly the relative class number for K:

h∗(K) =
Qw(K)
w(kim)

h(kim)|τχ|2 with τχ = − 1
2f

f−1∑
a=1

aχ(a).

From this formula we obtain

Proposition 3. Let K/Q be an imaginary abelian sextic extension of
conductor f .

(a) h∗(K) = h(kim)|τχ|2 for K 6= Q(ζ7), Q(ζ9), where ζn = exp(2iπ/n)
for n > 2.

(b) h(kim) divides h∗(K).

P r o o f. See Lemma A and Corollary D of [L1].

The fields Q(ζ7) and Q(ζ9) have class number one. Thus they can be
omitted from all future considerations, and we have h∗(K) = h(kim)|τχ|2
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from this point on. In order to determine all imaginary abelian sextic num-
ber fields having class number less than or equal to 11, we need to de-
termine all imaginary quadratic number fields kim with h(kim) ≤ 11 and
|d(kim)| ≤ 2 · 107. For convenience we list the computational results here.

Theorem 4. There are 497 imaginary quadratic fields of conductor m ≤
2 · 107 with class number less than or equal to 11, and their conductors are
less than or equal to 15667.

R e m a r k. Some of the class number problems for imaginary quadratic
number fields have been solved: Stark [S1, S2] for class number 1 and 2;
Montgomery and Weinberger [MW] for class number 3; Arno [A1] for class
number 4; Wagner [Wg] for class numbers 5, 6 and 7 and Arno [A2] for all
odd class numbers from 5 to 23.

We now turn our attention to the evaluation of the L-functions at s = 1.

Theorem 5. Let χ be an odd quadratic Dirichlet character of conductor
f . If f ≤ 593000, then L(s, χ) > 0 for s > 0.

P r o o f. See [Low].

Corollary 1. Let K/Q be an imaginary abelian sextic extension.

(i) If h(K) ≤ 11 then |d(kim)| ≤ 15667.
(ii) If h(K) ≤ 11 then L(s, χ3) > 0 for s > 0.

P r o o f. (i) follows from Theorem 4.
(ii) follows from (i) and Theorem 5.

Consider the Dedekind zeta function

ζK(s) = ζQ(s)L(s, χ3)L(s, χ2)L(s, χ4)L(s, χ)L(s, χ5).

It is known that ζQ(s) ≤ 0 on ]0, 1[. For real s, we have

L(s, χ4) = L(s, χ2) and L(s, χ5) = L(s, χ).

Therefore, ζK(s) has the same sign as ζQ(s)L(s, χ3) = ζkim(s). By Corol-
lary 1, if h(K) ≤ 11, then ζK(s) ≤ 0 for 0 < s < 1. At this point, we apply
Proposition 1 to improve the lower bound for Ress=1(ζK), so we obtain the
following:

Theorem 6 (Louboutin). Let K/Q be an imaginary abelian sextic ex-
tension. If h(kim) ≤ 11, then

h∗(K) >
w(K)εK

5eπ3
· f

√
m

(log f + 0.05)3
.

Here, εK = 1− 6π 3
√

e/d(K)1/6. Thus h∗(K) > 11 if f ≥ 3 · 106.

P r o o f. This follows from Propositions 1 and 2.
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4. Arithmetic properties of the relative class number. In this
section, we shall study some divisibility properties of the relative class num-
ber, which allow us to reduce the amount of the computations.

Lemma 1. Let N be a CM-field and N+ its maximal totally real subfield.
Let t be the number of prime ideals of N that are ramified in the quadratic
extension N/N+. Then 2t−1 divides h∗(N).

P r o o f. See Proposition 2 of [LO].

Proposition 4. If a prime number q is ramified in kim/Q and if q splits
in K+/Q, then 4 |h∗(K). Consequently , if h∗(K) is not divisible by 4 and
if q is ramified in kim/Q, then χ+(q) 6= 1.

P r o o f. This is clear by Lemma 1.

For the fields having class number 3, 6 and 9, we make use of the following
result.

Theorem 7. Let K be an imaginary abelian sextic number field. Let T
denote the number of primes dividing f+ which split in kim and set ε = 1 or
0 according as kim = Q(

√
−3) or not. Then 3T−εh(kim) divides h∗(K).

P r o o f. See Proposition 8 of [LOO].

According to Proposition 3, in order to determine all imaginary abelian
sextic number fields K with h(K) ≤ 11 we need to consider the following
28 cases:

Table 1

h(K) 1 2 3 3 3 4 4 4 5 6 6 6 6
h(K+) 1 1 1 1 3 1 1 4 1 1 1 3 6
h∗(K) 1 2 3 3 1 4 4 1 5 6 6 2 1
|τχ|2 1 1 1 3 1 1 4 1 1 1 3 1 1
h(kim) 1 2 3 1 1 4 1 1 5 6 2 1 1

Table 2

h(K) 7 7 7 8 8 8 9 9 9 9 9 9 10 10 11
h(K+) 1 1 7 1 1 4 1 1 1 3 3 9 1 10 1
h∗(K) 7 7 1 8 8 2 9 9 9 3 3 1 10 1 11
|τχ|2 1 7 1 1 4 1 1 3 9 1 3 1 1 1 1
h(kim) 7 1 1 8 2 2 9 3 1 3 1 1 10 1 11

Lemma 2. Assume that τχ is an algebraic integer. For any positive prime
q, let vq(n) denote the exponent of q in the prime factorization of n ≥ 1. If
|τχ|2 = n, q divides n and if

(−3
q

)
= −1, then vq(n) ≡ 0 mod 2. Note that(−3

q

)
= −1 if and only if q = 2 or q ≡ −1 mod 6. Therefore,
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|τχ|2 = 1 implies |τχ + τχ| = 1 or 2;

|τχ|2 = 3 implies |τχ + τχ| = 0 or 3;

|τχ|2 = 4 implies |τχ + τχ| = 2 or 4;

|τχ|2 = 7 implies |τχ + τχ| = 1, 4 or 5;

|τχ|2 = 9 implies |τχ + τχ| = 3 or 6.

P r o o f. Set τχ = (a + b
√
−3)/2, a, b ∈ Z. Then 4|τχ|2 = |τχ + τχ|2 +

3b2.

Proposition 5 (see [L1]). Assume f+ = p ≡ 1 mod 6 and gcd(m, p)
= 1. Then

τχ + τχ ≡


h(kim)

χim(p)− 1
2

mod 3 if m 6= 3, 4,

p− 1
6

mod 3 if m = 3,

χim(p)− p

4
mod 3 if m = 4.

Therefore,

(1) if 3 divides h(kim) then 9 divides h∗(K);
(2) if χim(p) = 1 and m 6= 3 then 3 divides h∗(K);
(3) if p ≡ 1 mod 18 and m = 3 then 3 divides h∗(K).

Moreover , τχ is an algebraic integer and we have the following formula suit-
able for computations:

τχ + τχ = h(kim)
χim(p)− 1

w(kim)
− 1

m

(p−1)/2∑
x=1

Sm(x3
(p)

, p)

where x(p) is the congruent class of x modulo p and

Sm(α, β) =
m−1∑
b=0

bχim(α + bβ)

depends on α and β modulo m only.

Note that our formula given in Proposition 5 makes it much easier to
compute τχ + τχ than to compute τχ. Therefore, according to Tables 1 and
2, in using Lemma 2 as a necessary condition, and since we will be able to
reduce the determination of all the imaginary abelian sextic number fields
of class number prime to 3 to those of conductor f = mf+ with f+ = p ≡ 1
mod 6 and gcd(m, f+) = 1, Proposition 5 and Theorem 6 will enable us
to get fast a very short list of possible fields, and we will have to compute
h∗(K) only for the few fields of that list.
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Theorem 8 (Louboutin). Assume gcd(m, f+) = 1 and for any relative
integer a ∈ Z let a+ denote the only relative integer such that f+a+ ≡
a mod m and 0 ≤ a+ ≤ m− 1. Then

τχ + τχ =− h(kim)
w(kim)

∏
p|f+

(1− χim(p)) +
φ(f+)h(kim)

w(kim)
χim(f+)

− 3χim(f+)
∑

1≤a≤f+/2
χ+(a)=1

a+−1∑
b=1

χim(b).

In particular , τχ is an algebraic integer in Q(
√
−3). Therefore 3 divides

|τχ|2 if and only if 3 divides τχ + τχ. We then have τχ + τχ ≡ 0 mod 3 if
and only if we are in one of the following five cases:

3 |h(kim) and m 6= 3, 4,

{p : p | f+ and χim(p) = 1} 6= ∅ and m 6= 3, 4,

|{p : p | f+}| ≥ 2 and m = 3,
{p : p | f+ and p ≡ 1 mod 18} 6= ∅ and m = 3,
{p : p | f+ and p ≡ 1 mod 12} 6= ∅ and m = 4.

P r o o f. We argue as in [L1]. Since gcd(m, f+) = 1 implies χ(x) =
χ+(x)χim(x), we get

gcd(x, f+) = 1 implies χ(x) + χ(x) + χim(x) =
{

3χim(x) if χ+(x) = 1,
0 otherwise,

and

τχ + τχ = − 1
2f

f−1∑
x=1

gcd(x,f+)=1

x(χ(x) + χ(x))

=
1
2f

f−1∑
x=1

gcd(x,f+)=1

xχim(x)− 3
2f

f−1∑
x=1

χ+(x)=1

xχim(x).

First, we have

f−1∑
x=1

gcd(x,f+)=1

xχim(x) =
∑
d|f+

µ(d)
f−1∑
x=1
d|x

xχim(x)

=
∑
d|f+

dχim(d)µ(d)
mf+/d−1∑

x=1

xχim(x).
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However, for any k ≥ 1 we have

km−1∑
x=1

xχim(x) =
m−1∑
a=1

k−1∑
b=0

(a + mb)χim(a + mb)

= k
m−1∑
a=1

aχim(a) = −2kmh(kim)
w(kim)

.

Therefore, using f = f+m, we get

1
2f

f−1∑
x=1

gcd(x,f+)=1

xχim(x) = − h(kim)
w(kim)

∑
d|f+

χim(d)µ(d)

= − h(kim)
w(kim)

∏
p|f+

(1− χim(p)).

Second, we have

− 3
2f

f−1∑
x=1

χ+(x)=1

xχim(x) = − 3
2f+m

f+−1∑
a=1

χ+(a)=1

m−1∑
b=0

(a + bf+)χim(a + bf+)

= − 3
2m

f+−1∑
a=1

χ+(a)=1

m−1∑
b=0

bχim(a + bf+)

= − 3
2m

f+−1∑
a=1

χ+(a)=1

Sm(a, f+).

Since Sm(f+ − a, f+) = Sm(a, f+) we get

− 3
2f

f−1∑
x=1

χ+(x)=1

xχim(x) = − 3
m

f+−1∑
1≤a≤f+/2
χ+(a)=1

Sm(a, f+).

Now, we claim that

Sm(a, f+) = χim(f+)
(
− 2mh(kim)

w(kim)
+ m

a+−1∑
b=1

χim(b)
)

,

which provides us with the desired first result (upon using |{a : 1 ≤ a ≤ f+/2
and χ+(a) = 1}| = φ(f+)/6). Indeed, we have
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Sm(a, f+) = χim(f+)
m−1∑
b=0

bχim(a+ + b)

= χim(f+)
m−1∑
b=0

(a+ + b)χim(a+ + b)

= χim(f+)
a++m−1∑

b=a+

bχim(b)

= χim(f+)
m−1∑
b=a+

bχim(b) + χim(f+)
a+ +m−1∑
b=m+1

bχim(b)

= χim(f+)
m−1∑
b=a+

bχim(b) + χim(f+)
a+−1∑
b=1

(b + m)χim(b + m)

= χim(f+)
m−1∑
b=1

bχim(b) + m

a+−1∑
b=1

χim(b)

= χim(f+)
(
− 2mh(kim)

w(kim)
+ m

a+−1∑
b=1

χim(b)
)

.

To get the second desired result, we notice that 6 always divides φ(f+),
which yields

τχ + τχ ≡ − h(kim)
w(kim)

∏
p|f+

(1− χim(p)) +
φ(f+)h(kim)

w(kim)
χim(f+) mod 3,

and implies

τχ + τχ ≡



−h(kim)
2

∏
p|f+

(1− χim(p)) mod 3 if m 6= 3, 4,

φ(f+)
6

mod 3 if m = 3,

−1
4

∏
p|f+

(1− χim(p)) +
φ(f+)

4
χim(f+) mod 3 if m = 4,

(for m = 3 implies χim(p) = 1 for all primes p dividing f+).

5. Numerical computations and proofs of Theorems 1 and 2.
We show how to determine all imaginary abelian sextic number fields K
having h(K) = 3. In a similar fashion we will obtain all imaginary abelian
sextic number fields K having h(K) ≤ 11, and those with h∗(K) ≤ 4. From
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Table 3. h∗(K) ≤ 4

h∗(K) = 1

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

7 7 1 7 1 67 67 1 67 1
9 9 1 3 1 76 19 1 4 1
19 19 1 19 1 77 7 1 11 1
21 7 1 3 1 91 13 1 7 1
28 7 1 4 1 91 91 3 7 1

x3 − x2 − 30x − 27
36 9 1 4 1 93 31 1 3 1
39 13 1 3 1 104 13 1 8 1
43 43 1 43 1 117 117 3 3 1

x3 − 39x + 26
56 7 1 8 1 129 43 1 3 1
63 9 1 7 1 133 133 3 7 1

x3 − x2 − 44x − 69
63 63 3 3 1 171 171 3 19 1

x3 − 21x − 28 x3 − 57x + 152
63 63 3 3 1 217 217 3 7 1

x3 − 21x + 35 x3 − x2 − 72x + 225
63 63 3 7 1 247 247 3 19 1

x3 − 21x + 35 x3 − x2 − 82x + 64

h∗(K) = 2

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

35 7 1 35 2 91 91 3 91 2
x3 − x2 − 30x − 27

45 9 1 15 2 91 91 3 91 2
x3 − x2 − 30x + 64

52 13 1 52 2 105 7 1 15 2
72 9 1 24 2

Theorem 6 we obtain

h∗(K) > 3 if f ≥ 5.9 · 105.

We consider two cases:

(A) (m, f+) = 1, and
(B) (m, f+) > 1.

For each case we consider three possible types in Table 1. Our strategy
is now as follows. First, for a given m we compute an upper bound for f .
Second, we find all possible conductors f+ (Propositions 4, 5 and Theorems
7, 8). Third, we compute |τχ + τχ| and |τχ|2. Finally, we verify the class



38 Y.-H. Park and S.-H. Kwon

Table 3 (cont.)

h∗(K) = 3

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

52 13 1 4 1 273 91 3 3 1
x3 − x2 − 30x + 64

57 19 1 3 1 292 73 1 4 1
72 9 1 8 1 301 301 3 7 1

x3 − x2 − 100x − 223
99 9 1 11 1 301 301 3 7 1

x3 − x2 − 100x + 379
111 37 1 3 1 327 109 1 3 1
133 133 3 19 1 333 333 3 3 1

x3 − x2 − 44x − 69 x3 − 111x − 370
133 133 3 19 1 341 31 1 11 1

x3 − x2 − 44x + 64
133 7 1 19 1 364 91 3 4 1

x3 − x2 − 30x − 27
148 37 1 4 1 381 127 1 3 1
152 19 1 8 1 399 133 3 3 1

x3 − x2 − 44x + 64
171 171 3 3 1 469 67 1 7 1

x3 − 57x − 19
171 171 3 3 1 553 553 3 7 1

x3 − 57x + 152 x3 − x2 − 184x − 41
244 61 1 4 1 657 657 9 3 1

x3 − 219x − 730
259 259 3 7 1

x3 − x2 − 86x + 211

number h(K+) by Gras’s Table [M.N.G] and compute the cubic polynomials
if 3 divides h(K+).

C a s e (A): (m, f+) = 1

(i) If h(K+) = 1, h∗(K) = 3 and h(kim) = 3, then h(K) = 3 is impos-
sible: by Proposition 5(1), f+ = 32, so it suffices to compute τχ for the 16
conductors f = 32m, with h(Q(

√
−m)) = 3.

(ii) If h(K+) = 1, h∗(K) = 3 and h(kim) = 1, then for each one of the
9 imaginary quadratic fields having class number one we compute upper
bounds for the conductor f of K/Q:

|τχ|2 > 3 for f ≥ 3.5 · 105 if kim = Q(
√
−1);

|τχ|2 > 3 for f ≥ 5.4 · 105 if kim = Q(
√
−2);
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Table 3 (cont.)

h∗(K) = 4

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

39 13 1 39 4 172 43 1 4 1
56 7 1 56 4 183 61 1 3 1
84 7 1 84 4 201 67 1 3 1
117 9 1 39 4 209 19 1 11 1
117 117 3 39 4 248 31 1 8 1

x3 − 39x − 91
124 31 1 4 1 252 63 3 4 1

x3 − 21x − 28
133 19 1 7 1 259 259 3 259 4

x3 − x2 − 86x − 48
155 31 1 155 4 473 43 1 11 1
163 163 4 163 1 511 73 1 7 1
171 9 1 19 1 711 711 12 3 1

x3 − 237x − 316

|τχ|2 > 3 for f ≥ 2.5 · 105 if kim = Q(
√
−3);

|τχ|2 > 3 for f ≥ 5.9 · 105 if kim = Q(
√
−7);

|τχ|2 > 3 for f ≥ 4.5 · 105 if kim = Q(
√
−11);

|τχ|2 > 3 for f ≥ 3.2 · 105 if kim = Q(
√
−19);

|τχ|2 > 3 for f ≥ 1.9 · 105 if kim = Q(
√
−43);

|τχ|2 > 3 for f ≥ 1.4 · 105 if kim = Q(
√
−67);

|τχ|2 > 3 for f ≥ 8.0 · 104 if kim = Q(
√
−163).

We summarize our computational results when kim = Q(
√
−1). (For the

other fields the computation is exactly the same.) By Theorem 8 we have
f = 4p, p ≡ 1 mod 12.

1) There are 2098 prime p’s such that p ≡ 1 mod 12 and p ≤ 87500.
2) There are 1413 prime p’s such that 2(p−1)/3 6≡ 1 mod p (Proposi-

tion 4).
3) There are 57 prime p’s such that |τχ + τχ| = 0 or 3 (Lemma 2).
4) For these 57 prime p’s we compute |τχ|2.

There are exactly 4 fields having class number 3: f = 52, 148, 244 and 292.

(iii) If h(K+) = 3, h∗(K) = 1 and h(kim) = 1, the same argument
applies to each of the nine fields. We proceed as follows: for example let
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Table 4. h(K) ≤ 11

The fields with h(K) ≤ 4 are listed in Table 3.

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

h(K) = 5

79 79 1 79 5 103 103 1 103 5

h(K) = 6

91 91 3 91 2 168 7 1 24 2
x3 − x2 − 30x − 27

91 91 3 91 2 180 9 1 20 2
x3 − x2 − 30x + 64

140 7 1 20 2 285 19 1 15 2

h(K) = 7

143 13 1 11 1 471 157 1 3 1
151 151 1 151 7 589 31 1 19 1
237 79 1 3 1 604 151 1 4 1
268 67 1 4 1 687 229 1 3 1
296 37 1 8 1 721 103 1 7 1
412 103 1 4 1 1199 109 1 11 1
427 61 1 7 1 1371 457 1 3 1

h(K) = 8

91 7 1 91 2 153 9 1 51 2
95 19 1 95 8 195 13 1 15 2
111 37 1 111 8 260 13 1 20 2

kim = Q(
√
−7). We have

|τχ|2 > 1 for f ≥ 1.5 · 105 if kim = Q(
√
−7).

1) There are 650 conductors f+ such that
gcd(f+, 7) = 1,

f+ ≤ 2.2 · 104,

f+ = 32p or f+ = p1p2, p, p1, p2 ≡ 1 mod 6.

2) There are 267 f+’s such that χim(p) =
(
−7
p

)
= −1 if f+ = 32p,

χim(p1) = −1 and χim(p2) = −1 if f+ = p1p2 (Theorem 7).

For a given f+ = 32p or p1p2, with p, p1, p2 ≡ 1 mod 6, there are then two



Imaginary abelian sextic number fields 41

Table 4 (cont.)

f f+ h(K+) m h(kim) f f+ h(K+) m h(kim)
polynomial defining K+ polynomial defining K+

h(K) = 9

31 31 1 31 3 307 307 1 307 3
133 133 3 19 1 333 333 3 3 1

x3 − x2 − 44x − 69 x3 − 111x − 370
133 133 3 19 1 364 91 3 4 1

x3 − x2 − 44x + 64 x3 − x2 − 30x − 27
139 139 1 139 3 388 97 1 4 1
161 7 1 23 3 399 133 3 3 1

x3 − x2 − 44x + 64
171 171 3 3 1 437 19 1 23 3

x3 − 57x − 19
171 171 3 3 1 499 499 1 499 3

x3 − 57x + 152
207 9 1 23 3 553 79 1 7 1
217 7 1 31 3 553 553 3 7 1

x3 − x2 − 184x − 41
259 37 1 7 1 597 199 1 3 1
259 259 3 7 1 643 643 1 643 3

x3 − x2 − 86x + 211
273 91 3 3 1 772 193 1 4 1

x3 − x2 − 30x + 64
279 9 1 31 3 817 43 1 19 1
283 283 1 283 3 1057 151 1 7 1
299 13 1 23 3 1727 157 1 11 1
301 301 3 7 1 2453 223 1 11 1

x3 − x2 − 100x − 223
301 301 3 7 1

x3 − x2 − 100x + 379

h(K) = 10

119 7 1 119 10 143 13 1 143 10

h(K) = 11
271 271 1 271 11

nonconjugate cubic characters, i.e.{
χ+ = χ32χp or χ32χ2

p if f+ = 32p,

χ+ = χp1χp2 or χ+ = χp1χ
2
p2

if f+ = p1p2.

Here, for q ∈ {32, p, p1, p2} we let χq(g) = exp(2iπ/3), with g a primitive
root modulo q.
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Consequently, for 534 pairs (f+, χ+) we have to test whether χ+(7) 6= 1
or not.

3) There are 358 pairs (f+, χ+) such that χ+(7) 6= 1 (Proposition 4).
4) Using Theorem 8 we compute τχ + τχ and choose τχ + τχ such that

|τχ + τχ| =1 or 2. (Since h∗(K) = 1, we have |τχ + τχ|=1 or 2 by Lemma
2.) There are 11 pairs (f+, χ+) such that |τχ + τχ| = 1 or 2.

5) Finally, we compute |τχ|2 for these 11 pairs (f+, χ+) of 4).

We verify that there are no such fields having class number 3.

C a s e (B): (m, f+) > 1. We have f ≤ 5.9 · 105. First, we make a finite
list of possible conductors f+ which are less than 5.9 ·105. Second, we select
those satisfying Proposition 4 and Theorem 7. Finally, we compute |τχ|2.
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[M.N.G] M.-N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de
classes et des unités des extensions cubiques cycliques de Q, J. Reine Angew.
Math. 277 (1975), 89–116.

[L1] S. Loubout in, Minoration au point 1 des fonctions L et détermination des
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