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1. Introduction. Let ¢(G) denote the number of direct factors of a
finite abelian group G. We shall be concerned with obtaining estimates for
the sum

(L1) T(x) = 3 4@,

where the summation is taken over all abelian groups of order not exceeding
x. The asymptotic behaviour of T'(z) was first studied by E. Cohen [2], who
derived

(1.2) T(z) = diz(logz + 2y — 1) + dax + Ag(z),
where v is the Euler constant and Ag(z) is estimated by
Ag(z) € Vzlogx.
E. Kritzel [5] improved this result to
(1.3) Ag(z) = dsv/z(5logz + 2y — 1) + da/z + Ay (2)
with the new remainder term A;(z) satisfying
A (z) < %% log* .

We remark that in the formulas (1.2) and (1.3) di,ds,ds,ds are effective
constants which will be defined by (1.5) (1.8) below.

The exponent 5/12 was improved to 83/201,45/109, 3/8 respectively by
Menzer [9], Menzer and Seibold [10] and Yu Gang [13]. The latest result is
due to Liu [7], who proved that

(1.4) Ay (z) < 27/19%

The aim of this paper is further to improve this result. We have
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THEOREM 1. Let dy,ds, ds,dy be defined by

(1.5) dy = ¢*(2) C:Ts(n)n_la

(1.6) dy = —im(n)nl(@(?) logn — 4¢(2)¢"(2)),
(1.7) dz = ¢*(3) ing(n)nl/Q,

18 = §_°3173<n>n1/2(§<2<%) logn — ¢C(3)¢'(2)).

where T3(n) is defined by

(1.9) > (T =[] us)  (Rs>1).

Then we have
(1.10) T(z) = diz(logz + 2y — 1) + doz + d3/z (5 logz + 2y — 1)
+ dy/z + O(z*/117Fe),

Following Kritzel [5], we only need to study the asymptotic behaviour
of the divisor function d(1,1,2,2;n) which is defined by

d(1,1,2,2;n) = Y 1
n:nlngngni
Let A(1,1,2,2;xz) denote the error term of the summation function

(1.11) D(1,1,2,22) = > d(1,1,2,2;n).

We then have
THEOREM 2. We have

(1.12) A(1,1,2,2; 1) = O(z*/11+9).
Theorem 1 immediately follows from Theorem 2.

Notations. e(t) = exp(2mit). [t] is the integer part of ¢, and {t} =t — [¢],
|t = min({t},1 — {t}), n ~ N means N < n < 2N, n = N means
CiN < n < (5N for some constants C7; and Cs. ¢ is a sufficiently small
number which may be different at each occurrence. A(t) always denotes the
error term of the Dirichlet divisor problem.
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2. A non-symmetric expression of A(1,1,2,2;z). In this paper
we do not use the symmetric expression of A(1,1,2,2;2) due to Vogts
[12] (also [10], Lemma 2). We shall use a non-symmetric expression of
A(1,1,2,2;z) which is easier and simpler. We have the following basic
lemma.

Basic LEMMA. We have

(21)  A(LL2,27) = Y d(m)A<'_>

m?2

+ Y d(m)A<\/%>+0(x1/3logx).

mel/S

Proof. We only sketch the proof since it is elementary and direct.
We begin with
(2.2) D(1,1,2,2;x)

=Y dn 1,220 = Y 1= Y dmn)d(m)

n<z ninanin2<z nm?2<z

= > d(n)D(\/% + ) d(m)D(%) — D%(z'/3)
n<xl/3 m<z!/3

= Zl + ZQ o Zg’

where D(u) =)

Now we use the well-known abelian partial summation formula

d(n).

n<u

u

(2.3) S d(n)f(n) = D(w)f(u) — | D@ F(2) dt

n<u 1
to >, and )_,, and utilize the well-known formula
(2.4) D(z) =zlogz + (2y — 1)z + A(z)
with A(z) < z'/3. We get
(2.5) D(1,1,2,2; ) = main terms + Z d(n)A( Z)

n
nsz1/3
+ Z d(m)A(%)—i—O(mlBlogm),
mgq:l/S

whence our lemma follows.
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3. Some preliminary lemmas. In this section we quote some lemmas
to be used later.

LEMMA 1. Suppose 0 < ci Ay < |[f'(n)] < cadi and |f"(n)] = X\ N~ for
N <n<CN. Then

3" e(f(n) < MENY2 4T
n=N
If oA < 1/2, then
D e(f(n) < A
n=N

LEMMA 2. Let «, 8 be real numbers, aff(a+ 5 —1)(a+ 5 —2) #0. Let
flz,y) = Az*y?, D C {(z,y) |z ~ X,y ~Y}, X > Y, F = AX°Y?,
N = XY . Then

S=(NF)™ > elf(zy))

(z,y)eD
< VF2N3 + N°/6 4 VF-INSX -1 4 NF~Y4 ¢ Ny ~1/2,
LEMMA 3. Let f(x) and g(x) be algebraic functions for x € |a,b], satis-
fying
If"(x)| =R, f"(x) < (RU)!
lg(z)| < H, ¢'(z) < HU;', UU >1.

Then
S gmem) = S 0L i) — un(u) +1/8)
a<n<b a<u<lp f (n(u))
+O(Hlog(f —a+2)+ H(b —a—i—R( )
min | R'/?, max
st (1 (5 )))
where [a, ] is the image of [a,b] under the mapping y = f'(z), n(u) is

determined by the equation f'(n(u)) = u, and
. _{1 for a <u < B,

1 o - ,
5 Jfor u= a = integer or u = 3 = integer;

the function (x) is defined as follows:

(@) = ||| if z is not an integer,
B — a otherwise,

" _ \/F lf f” > 07
VI {i\/lf”l if f" <.
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LEMMA 4. Suppose f(n) < P and f'(n) > A forn = N. Then
1
> min< ) L (P+1)(D+AYlog(2+A1).
2 T

LEMMA 5. Suppose a(n) =0(1), 0 < L< M <N <cL,L>1,T > 2.
Then

T . .
1 a(l) Nt — Mt
> at- g | 30 M
M<n<N —T L<I<cL

+0 (min (1, ﬁ) +min (1, ﬁ)) +o(W).

LEMMA 6. Let X and Y be two finite sets of real numbers, X C [~ X, X],
Y C [-Y,Y]. Then for any complezx functions u(z) and v(y), we have

2
323 u@(y)elay)|
reEX yey
<2204 37) LY o)) LY otaots)
rEX,x' EX yeY,y'ey
2Y |z—2'|<1 2X|y—y'I<1

LEMMA 7. Let af #0, m > 1 and N > 1. Let A(M,N;A) be the
number of quadruples (m,m,n,n) such that

~ a ~ ﬁ
() ()]«
m n
with M < m,m <2M and N <n,n <2N. Then
A(M,N;A) < MNlog2MN + AM?*N?.

LEMMA 8. We have

bty =3 alieit) +0( Y bi)e(it))

1<|1<T l71<g
with a; < |7|7" and b; < J 1.

Lemmas 1, 5, 4 are Lemmas 1, 2, 3 of C.-H. Jia [4] respectively. Lemmas 6
and 7 are Proposition 1 and Lemma 1 of [3]. Lemma 2 is Lemma 9 of
H.-Q. Liu [6]. Lemma 3 is Lemma 1 of [8]. For Lemma 8 see Vaaler [11].

4. Proof of Theorem 2. In order to prove Theorem 2, we only need
to estimate the two sums in the Basic Lemma of Section 2.
We first estimate the sum »°, =37 _ /s d(m)A (z/m?). We have

PROPOSITION 1. 37, = O(z4/11+2).
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Proof. We only need to show that

(4.1) sy =% d(mM(%) < i1

m~ M

for any 1 « M < z'/3.

Case 1. M < z3/11, Tet

(4.2) S(M,N) =Y Ay > bne<2m>

m
m~M n~N

with A,, = d(m)m~'/? and b, = d(n)n"3/4.
By the well-known Voronoi formula for A(u) we have

S 4, Y Bne<2\{nﬁ>‘+0(m4/“+€)

m~M n<p3/11

< 24 log 2| S(M, N)| + g/11+

S(M) < z'/*

for some N < z3/! by a splitting-up argument.

R. C. Baker [1] have estimated the sum S(M, N) with A,, replaced by
p(m)m =12, Applying the same arguments of Baker we can obtain

S(M, N) < x5/44+6

if N > max(1, M22~5/11),
Now we suppose M > z%/22 and N <« M?z=5/11. 1t suffices for us to

bound
T(M,N)= > am » bne(Q\;%)

m~ M n~N

with a,, = d(m)M"?m=/2 and b,, = d(n)N3/*==N~3/%, We have
2\/713:) ‘

uv

>, )

(4.3) T(M,N)<N| Y e<

M<uv<2M
u>v

<N >

v:2j<(2M)1/2 M<uv<2M
u>v
V<2V
where the sum
Z 2\/71.’5
e
uv

M<uv<2M
u>v
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takes the maximal value at n. Let ¢(V) denote the inner sum of (4.3). By
Lemma 2 we get

(44)  27*G(V)
< Nl/G.’I}l/GMl/ﬁ—I— M5/6+ (N.’I?)_l/lﬁM”/lG—l— (Nm)_1/8M5/4+ MV_1/2.

Now we use Lemma 1 to estimate the sum over u and the sum over v
trivially. We can obtain

M2 N1/4.’I}1/4V

4.5 1%
(45) HV) < =+

From (4.4) and (4.5) we have
(4.6) z¢(V)

< N1/6$1/6M1/6 +M5/6 4 (N$)71/16M17/16 + (Nx)71/8M5/4

2

vVNz
< NY6,1/6371/6 1 pr5/6 4 (Nx)—1/16M17/16 n (Nx)—1/8M5/4

+ + min(MV Y2 g VANA =12y

M2
+ 4 g /12 N1/ 12 12,
vVNz

From (4.3), (4.6) and the definition of S(M, N) we get
(47) ZE_ES(M, N) < $1/6M_1/3N5/12 +M1/3N1/4
o= L/16 0/16 \r3/16 | —1/8 r3/4 nr1/8 4 /12
< 254,

where the facts N <« M2z %/"" and M < 23/" are used.
Thus in any case we always have

S(M,N) < g%/4+e,
whence (4.1) follows for the case M < z3/11.
Case 2. 23/ « M < z'/3. By the formula
Afu) = =2 > (u/n) +0(1)
n<ul/?
we have

(48)  S(M)=-2 Y dm) > ¢(T,;n)+0(”3/ll)

M<m<2M mn<gz!/2

=2 > > w<u2i2n>+0(m1/3)

M<uv<2M yyn<zl/?2
v<u -
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= 72( o+ > ) +O0(z'/?)

v<u<n v<u
n<u

=2 X+ Y+ X )HoE)

v<u<n v<n<u n<v<u

=+2<zl+zz+z3>+o<m~3logm>,

say, where we used the fact that if u = v and n < u, then un < z'/3.

We shall only estimate ) ;; >, and ) 5 can be estimated in the same
way.

S, can be divided into O(log® z) sums of the form

(4.9) S wvN= Y ¢(ﬁ>

(v,u,n)€D
where
D = {(u,v,n) | M < uv <2M, uon < V2, v <wu < n,
V<ov<2V, N<n<2N}.

> e
u202n,

Let U = M/V. By Lemma 8 we get

(4.10) Zl(V,N <<M+Zh

h<J (v,u,n)€D
VUN hx
<Ly m Y Y o))
H=2i h~H ' (v,u,n)€D
Thus it suffices to bound
hx
(4.11) $L(HV.UN)=> | P(m)
h~H ' (v,u,n)eD
Now put
zt/? hx hx
= N.u b=min [ 2N, — = —0 | = .
a = max(N, u), m1n< - >, g T o

Then Lemma 3 yields
—ha R/ 44174 —2Vrhz
(412) Z e(—uz’l)zn) =Cy Z brul/27)1/2,’«3/4e< uv >

a<n<b a<r<f

Of 1 i N L
+ Og.’E-i-mln W’@

. N 1
+ min (7H1/2F1/2’ W)),

where F = z/(V2U?N).
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We first consider the contribution of the error term of (4.12) to
¢1(H,V,U,N). Obviously, the contribution of log z is

(4.13) HVUlogz < Hz'/?log .

If b = 2'/2/(u?v?), then « is an integer. By Lemma 1, 1/(a) < 1,
hence the contribution of min(N/(HY2F'/2),1/{a)) to ¢1(H,V,U,N) is
O(Hz'?). 1f b = 2N, then a = hz/(4u?v?’N?), by Lemma 3 (we sum
over u), the contribution of min(N/(HY?F'/?),1/(a)) is

251/2°
al FUV2 7| e |

- N 1 3/21, 1/2
(4.14) HV )" min (Hl/ ) < H¥*VFY?log x.
Similarly, the contribution of min(N/(H/2F/2),1/(B)) is
(4.15) Hz'?logz + H¥?VFY?log .

From (4.11) (4.15) we have

(4-16) ¢1(H,V, U, N) - Z C(h‘) Z e(uiﬁn)

h~H (v,u,n)€D
bR Ag4 (—9/rhg
:C(}Z Z Z “1/21)1/27«3/4e< UV )
h~H (vyu) a<r<p

+ O(Hz'3logz + H¥?VF/?1og ),

where |c(h)| < 1.
Now we first use Lemma 5 to the variable » and then to the variable
(or we can use the same argument of (13) of Liu [8]). We get

N 2Vrhz
(4.17) ¢1(H,V,U,N)<<WZZ Z Cvr( o )‘

h~H u~U r)ED,
+O(Hz'®logz + H?’/QVFI/2 log x),
where we used the fact that the contribution of the error term when we used
Lemma 5 is O(Hz/3logz + H¥?VFY2logz) and Dy = {(v,7) | v ~ V,
r~HFN ! = R}.
By Lemma 6 we get

(4.18) >y

h~H u~U

Z C(v,r)e < 2 Thx><<(HFBle)1/2,

(v,r)€Dy

where B; is the number of lattice points (h,u, h, @) such that

vh f

u U

V

h.h~H, uu=U, ,
\/Rm
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and where By is the number of lattice points (v, r,v,7) such that

- - T T U
v,o~V, rr=R, — - =K .
v v vVHz
By Lemma 7 we have
1
(4.19) Bl<<HU10gm+ﬁU2H2<<HUlogm,
1
(4.20) By < RV logz + ﬁRQV2 < RVlogz.

Combining (4.17) (4.20) we get
(4.21) ¢ (H,V,U,N) < H(FVUN)Y2 4 /3 4 H3/2y /2,
Inserting (4.21) into (4.10) and choosing J = (F~1U2N?)'/3, we get
(4.22) 2 °) (V.N) < (FVUN)? + VFV3UN +2'/°
< (FVUN)Y2 4 23 & (2 M)Y? 4 2113 < 2411,
In the last step the fact that M > 23/'' was used. From (4.22) we imme-

diately have
Z < gi/ite,
1

In the same way we can show that
(4.23) z " (ZQ + Zs) < PMY2 4 g3 gt

Now (4.1) follows from (4.22) and (4.23) in the case z3/'' < M < z'/3.
This completes the proof of Proposition 1.

Asfor > 5 =" .1/s d(m)A(y/z/m), we have the following
PROPOSITION 2. 3, = O(x/3+¢).

Proof. The proof is the same as the proof of Case 2 in Proposition 1,
so we omit the details. Actually, similar to the proof of Case 2, we can get
(for z'/°> <« M < z'/3)

T(M) = Z d(m)A(Vz/m) < a4 MM 4 g3« gt 3 e
m~ M
For M < /> we use A(t) < t'/% and obtain
T(M) < Z d(m)z* /S M=% « /3 1og z.
mn~ M
Thus Proposition 2 holds.

Now, Theorem 2 follows immediately from the Basic Lemma and the
two propositions.
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