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The space of period polynomials
by

SHINJI FUKUHARA (Tokyo)

1. Introduction. The purpose of this note is to enhance our under-
standing of the space of period polynomials. The period polynomials has
been studied in connection with modular integrals (e.g., Knopp [4]), cusp
forms via the Eichler—Shimura isomorphism (e.g., Kohnen—Zagier [5]), and
with various other topics of mathematics (Zagier [8]). Let K be a field, and
X be an indeterminate. Let V,, = V,,(K) denote the space of polynomials
in X of degree < w (even positive) with coefficients in K. Then V,,(K) is
an (w 4+ 1)-dimensional vector space, which may be identified with the space
v _oK(X™). Let G = GLy(Z)/+ 1. Then G acts on V,, via

(L) (P =P

)(CX +d)v

for v = (Z Z) € G and P(X) € V,. Now we define the space, W,,, of

period polynomials of weight w to be the subspace of V,, characterized by
the following properties: W,, = ker(1 + S) Nker(1 + U + U?) (see [1, 4, 5,
7]), namely,

W, ={P€cV,:P+P|S=P+PlU+P|U>=0}

_ (o1 _ (11
where S = (1 0 ) and U = (1 0 )
Though the space W,, is interesting in its own right, it might be more
natural to consider period Laurent polynomials, rather than period polyno-

mials alone. Let V,, be the space K(X 1) @V, ® K(X**!). The space,

W, of period Laurent polynomials can be defined in a similar way, and it
turns out to be a subspace of V,,. In Lemma 2.2, it will be shown that W,
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is a codimension one subspace of /Ww. From the definition, clearly 1 — X
belongs to W,, and it represents a “trivial” element. Therefore, it might be
more natural to consider the quotient spaces W, /(1—X") and W, [1—=X").

The main purpose of this note is to construct homomorphisms qa :
Vi — 17“, J1—X*) and ¢B:V,, — ‘7“,/(1 — X"}, and describe their images
explicitly. (See Theorem 3.3, Lemmas 4.1 and 5.1.) The two mappings
qa and g are expressed using Bernoulli polynomials, and their images are
indeed identified with W,, /(1—X"). Consequently, this will yield a spanning
set {ga(X™)}¥_, or {gB(X")}¥_, of Ww/ﬂ — X™). We obtain a relation
between the polynomials 3(X") and r*(R,,) of Kohnen-Zagier [5], and thus,
we show that

(1.2) {r¥(R,)}"_ymod 1 — X" spans W, /1 — Xv).

n=0
In Kohnen Zagier [5, p. 203], the fact (1.2) was obtained using the isomor-
phism theorem of Eichler and Shimura for period mappings. In this note, we
take a reverse route from that of [5], namely, we first construct a spanning
set for the space W,, /(1 — X™) in terms of the homomorphisms ¢/, and as
a corollary of this result, we rediscover the isomorphism theorem of Eichler
and Shimura for period mappings.

2. Preliminaries. Throughout the paper we assume that w is an even
positive integer. For each w, let

Vi (K) = {polynomials of degree < w in X with coefficients in K}.

We often write V,, for V,,(K) when the field K is plain. The action of G on
V., defined in (1.1) can be extended to an action of the group ring ZG by

(P‘ an) = ni(Plv)

for n; € Z and ; € G. Using the action, a subspace W,, of V,, can be
described as

(2.1) Wy, = ker(1 + S) Nker(1 + U + U?)
(2.2) ={P€V:P+P|S=P+P|U+PU>=0}

for § = ((1) _01> and U = (1 _01> Following Kohnen—Zagier [5, p. 199], we

consider the action of a specific element, i.e., € = (Bl ?) It is shown in [5]
that W|e = W and there is a direct sum decomposition

Wy = Wq;!_ @ W1;
of W,, such that Ple = +P for P € WX. More precisely,

w

W, ={P € W, : P is an even polynomial},

w

W, ={P € W, : P is an odd polynomial}.

w
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We may also consider the space

n

—{ZciXi:m,nEZsuChthatmgn, cz-EK}

<0

i=m
of Laurent polynomials in one variable and its subspace
w+1
Vo={ Y aX'aek}.

i=—1

Fory € Gand P € IA/, P| is defined by (1.1). It is no longer an element
of V, but a rational function. However, the equation P|y = 0 will make
sense. The space W, is defined similarly to (2.2), i.e.,

W,={PeV: P+P|S=P+P|U+P|U?=0}.
Clearly W,, C /Ww. Moreover, ﬁZf are defined similarly to sz:

WJ ={P¢€ Ww : P is an even Laurent polynomial},
/WJ ={Pc¢€ Ww : P is an odd Laurent polynomial}.

It is obvious that Ww = Wu'f @WJ . We call an element of W, (respectively,
/Ww) a period polynomial (respectively, period Laurent polynomial) of weight
w. We also call W,, (respectively, Wu,) the space of period polynomials
(respectively, period Laurent polynomials) of weight w.

Now we consider a special element of ‘711;- Let f,, be an element of 1710
defined by

w+2
Ban+2—n

fulX) = Z n!(w—l—?—n)!Xn_l'

n=0

n even

It was shown in Zagier [7, p. 453] that f,, € /I/IZ; (the homogeneous version
of this fact was also proved in [3]). Let (f,) denote the subspace of W
which is spanned by f,,. We are interested in how different WX and W

are. T}}\is will be answered in Lemmas 2.2 and 2.3. We will also show that
W’ll} C ‘/U)'

LEMMA 2.1. Form > 2, let P(X) = S+ ¢, X% be a Laurent polyno-

1=—m

mial such that P|(1+ S) = P|(1+U +U?) =0. Then c_y, = Cyyymn = 0.
Proof. Since P|(1+ S) =0, we have

w+m ' w+m 1 1
Z (3in+ Z (31<7> XwZO,

i=—m i=—m
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namely,
(2.3) i+ (-1)""cp_; =0 fori=-m,...,0,...,w+m.
Since P|(1 4+ U + U?) = 0, we have

R SRS SRTCES) REN S

Multiply (2.4) by X™(X — 1)™ to obtain
w+m w+m
(25) Z (EZ')(m_'_Z + Z (al 71 m+1Xw i+m
i=—m i=—m
w+m ‘ '
+ ) a(-D)I(X - X =,
i=—m

We calculate the coefficient of X! on the left hand side of (2.5). Since m > 2
by the assumption, we obtain

(2.6) (=)™ 'me_ 4+ (1) (w + 2m)cwpm + (—1)™¢_ i
+(=Decysm-1=0.
The equations (2.6) and (2.3) imply that (w4 m)cy4m = 0. Hence cyipm =
0, and then ¢_,, = 0 by (2.3), completing the proof. m
LEMMA 2.2.
W = W @ (fu).
Proof. Let P(X) = Z“’_“Lm ¢; X' belong to Ww Then we can assume

)

m = 1 by Lemma 2.1 above. Set

w + 2)!

Q(X) = P(X) —cl(B » fu(X).

Then the fact that the coefficients of X ~! and X%+ in Q(X) vanish implies

that Q(X) € W,,. Hence W\w C Wyu®(fw). Since it is clear that W,,&(f,) C
W, we complete the proof. n

Observing f,, € we have the following:

u) b

LEMMA 2.3. (1) W5 = W

w w

( ) WT; W’ll} 69 (.fu)>'
Note that Ww C ‘7“, from Lemma 2.2.

3. The mapping «. It is easy to see that 1 — X belongs to W} C

W, C Wy, C Vy. So we may consider the various quotient spaces, e.g.,
ij (1 o Xw) Ww/<1 - Xw) Vw/<1 o Xw)-
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The purpose of this section is to define a map gqo : V, — I7w J1 — X™)
whose image is exactly the space W, /(1 — X™). Let V,, denote the space of

polynomials of degree < w + 1, namely, V! = {ZWH cnX™ ¢, € K},

w

DEFINITION 3.1. (1) Let u : V, = V,, be defined by
uP(X)=P|(1-U)(X) for P=P(X)€V,.
(2) Let b:V,, = V. be defined by

w
CTL

bP(X) =) n—HBnH(X +1)
n=0

where we write P(X) = > "_ ¢, X" € V,, with B, (X) denoting nth
Bernoulli polynomial.
(3) Let s: V.| — Vw be defined by

sP(X) = P|(1 - 8)(X),

more explicitly,

w+1 w+1
sP(X) =) X" =Y (-1)"c, X"
n=0 n=0

for P(X) = 3020 ca X" € Vi,
(4) Let a: Vw — Vw be defined by a = sbu.
(5) Let ¢ : Vw — Vw/< — X") be the projection map.

We need two lemmas to prove the main theorem.
LEMMA 3.1.

bP(X) - bP(X — 1) = P(X).
Proof. Set P(X)=>"_ ¢, X". Then

bP(X) —bP(X — 1) = (Bpg1(X +1) = Bp1(X))

n+1X = P(X).

This follows from the property of Bernoulli polynomials:

(3.1) Bpit(X +1) = Bpir(X) = (n+ 1)X". u
LEMMA 3.2.
1
a(l) = —T(X“""1 — (=D)"*TX 1Y) + (terms of degrees from 0 to w).
w

In particular, the coefficient of X ' in a(1) does not vanish.
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Proof.
Bi(X+1)  Bup(X +1)
1) = 1) = 1—-—X%) = —
a(l) = sbu(1) = sb( ) s( 011 o
—_ S(Bl(X) +XU _ BU)+1(X) _Xw>
w+ 1

Xw+1
= s( — + (terms of degrees from 0 to w))
w+1

1 w WAl o
— _w—_H(X o (—nwttx

+ (terms of degrees from 0 to w). m
Now we are ready to describe the image of the homomorphism
qo: Vy — I7w/<1 - X).
THEOREM 3.3.
Imga = Ww/ﬂ - XY).
Proof. Firstly we show the inclusion Im gor C W /(1 —X"), by proving
that Im o C W,,,. For P(X) € V,,, setting P;(X) = uP(X), we have

P(X) = P|(1 - U)(X) = P(X) — P(%)X“’.

Next let Py(X) = bP;(X). Then we have
Py(X) = P (X — 1) = P (X)
by Lemma 3.1. Furthermore, let P3(X) = sP>(X). Then we have

Py(X) = Byl(1 - 8)(X) = Py(X) - P(;)X

By the definition, P3(X) = aP(X).
Now we claim that Ps|(1 + U + U?) = 0. In fact,

Ps|(14+ U + U?)(X)
= <P2(X) — 5(%)){“}) (14+U +U?)

-1 X -1 - X —1\"
= P(X) - P —_—\xw P. Xv _ P Xw
o0 -1 ) (e ) ()

X

+ Py (X_—_11> (X —1)" - P, <_:f> (X_—_11>w(x e

X—-1
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=Py(X) - Po(X — 1) + {P2<%> - 5(% - 1)}

4 {P2 (X—11> P (X—ll - 1) }(X iy

N e P Y G [k
=P|1+U+U?(X)=P|(1-U)(1+U+U?(X)
=P|(1 -U?*(X) =0.

This shows that

(3.2) aP(X) € Ima C {Q €V, : Q|(1 + U +U?) = 0}.

Now noting that 1 — §2 = 0, we have

(3.3) Ims ={Q|(1 - S): Qe V,} ={Q €V, : QI(1+5) =0}.

Thus

(3.4) Ima =Imsbu C {Q €V, : Q|(1+8) = 0}.

From (3.2) and (3.4), we obtain

(35) Imac{QeV,:Q(1+8)=Q(1+U+U? =0}=W,.

This gives the inclusion that we are after, namely,

(3.6) Im ga C q(W,) = W, (1 — X").

Secondly we claim that q(/Ww) C Imga. Since a(1) € Ima C W, and

a(l) ¢ W, by Lemma 3.2, we know
Wy = W, @ (1))

noting that W, is a codimension one subspace of /Ww. Hence it suffices to

show the inclusion ¢(W,,) C Imga.
Let @ be any element of W,,. We now show ¢(Q) € Imgqa.
Q € ker(1+S) = Im(1 — 5), there is Q1 € V4, such that Q1|(1 — 5)

namely,

Q(X) = Qu(X) — Qs (;)X

Let @Q2(X) be defined by
(3-7) Q2(X) :QI(X)_QI(X_l)'
Note that Qo € V,,.

Since

= Q,
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Next we show that Qs|(1 + U + U?) = 0. In fact,
(38) QA1+ U+U)(X)

- Qi)+ @ () (5 o -

—uer-n - (S - e (2 1)y

oo -a(3)x )+ fo (X))
Ha(s2) o v a(52)x e}

We also have
(3.9)  QI1+U+U?)(X)

e e PR e S [EEE

o ) fol'e) o) e
o) oot Yoo

Notice that the expressions on the right hand sides of (3.8) and (3.9) do
coincide, so that we have

(3.10) Q|1+ U +U?) =Q|(1+U +U?.
In particular, since the right hand side of (3.10) is zero by the assumption
that Q € Wy, this means Q»|(1 + U + U?) = 0 as we required.

Since ker(1 + U + U?) = Im(1 — U), it follows that Q2 € Im(1 — U).
Hence there is Q3(X) € V,, such that Q3|(1 — U) = Qa.

Finally, we show that ga(Q3) = ¢(Q). By the definitions of a and @,

(3.11) qa(Q3) = qsbu(Q3) = qsb(Q2).

Since Q1(X) — Qu(X — 1) = Qa(X) by (3.7), and bQa(X) — bQs(X — 1) =
Q2(X) by Lemma 3.1, bQ2> — Q)1 is a constant, say c¢. Calculate the right
hand side of (3.11) to obtain

as5b(Q2) = gs(Q1 +¢) = q(sQ1 + ¢(1 = X)) = q(Q + (1 - X)) = q(Q)
as q((1 — X™)) = 0. This means qa(Q3) = q(Q).
Thus we have proved that, for any Q(X) € W, there is Q3(X) € V,,
such that qa(Q3) = ¢(Q). Th1s implies ¢(W,,) C Imgqa, completing the
proof. m

~
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4. Calculation. We calculate a((X — 1)") for n = 0,...,w. Let n
denote w —n for n =0,...,w. First note that

WX M =i =y () x
— (X 1) (D)X
HX") = B (X +1)

by the definition of b, and
1

b((X — 1)) = Bhi1(X
(X = )" = —= By (X)
by Lemma 3.1 and (3.1). Thus we have
Brni1(X Bii1(X +1
bu((X—l)”)zi‘H( )7(71)"—%( +1)
n+1 n+1

Here we adopt Kohnen—Zagier’s notation B?(X) for the nth Bernoulli poly-
nomial without its By-term ([5, p. 208]):

n

Bg(X)—Z(gBiX"—i— 5 ()BX

i=0 N 0<i<n
i#l ieven

Then we have

a((X = 1)) =sbu((X —1)")

Bny1(X)  Bnii(—1/X)
n+1 n+1

_ (I)W{Bﬁ+1(X + 1) Bﬁ+1(71/X + I)Xw}

w

n+1 n+1

= A Bua(X) - Bun <_Y1>X“’}

€ '{BHH(X) i+ )X
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1 n+1/-1\" ()" m+1
: — ) xv
TaT1 T2 (X) +

. n

n+1

X

Summarizing the above calculation, we obtain
LEMMA 4.1.

(X -1 = o - 8 () 2
("

-1
0 0 w
= {BEH(X) BﬁH(—)X }

5. The mapping S. In Section 3, we defined the mapping «. In this
section, we will define and study a similar mapping g : V,, — ‘7“,. First lg,t
us define auxiliary mappings s’ : Vi, = V,,, b’ : V,, =V and v’ : V] =V,
as follows:

-1
0 0 w

s'P(X) = P|(1 - 8)(X),

VP(X) =Y =

— Bp1(X)  for P(X) =) ¢, X",

n=0
! X1 w
u'P(X)=P|(1-U)X)=PX)-P — ) X"
X) = Z:;Lol c, X™ is an element of V'
X -1 w41

P( < )Xw — Z CW(X - l)an—n’

n=0

n=0

Note that, if P(

then

and it has terms of degree ranging from —1 to w+1. This implies u'P € Vs

Now let us define the map 3 :V,, — V,, by letting 8 = u'b's’.
LEMMA 5.1.

(5.1) AX™) = (X —1)%)

Proof. We calculate 5(X™):

—1\" _
BX") =u'b's'(X™) =" <X"‘ - <7> X“’) =u't' (X" — (—1)"X")

forn=0,...,w.
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— Bﬂ+1(X) - (71)nBi+1(X)
n+1 n+1

1 X -1
e () )

_ ﬂ{Bml(X) — Bas <%>XUJ}

G (e
- (ﬁ_i): {Bml(X) B (‘71>Xw (1) <_71>an}

1 0 0 —1 w
= n—H{B"“(X) - B4 (7>X

n—+1 n+1/-1\" ~
— Xxn — ] XY —(n+1)(—-1)"X"
xS () X e

O - a5

—1 w
:n—l—l Bg+1(X)Bg+1(7>X }
(

_1)77 -1 w
O o ot

—a((X —1)"). m

As a corollary of the above relation between the mappings « and 3, we
can determine the image of ¢ where ¢ : V,, — V,, {1 —X") is the projection
map as before.

COROLLARY 5.2.
(5.2) TmgB = Imga = W, (1 — X).

Proof. Let t: V, — V, be an isomorphism determined by #(X™) =
(X —1)" forn =0,...,w. Then, by Lemma 5.1, we have 8 = «at. It follows
that Im g8 = Im ga as t is an isomorphism. m

Note that

~1 n41 —1\"He 1

0 o . _ (_1\n+1 0 -

B““(X) Z ( i )B’(X> = (=0" Bu X
0<i<n+1

1 even
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_ B?L-{—I(I/X)a n odd,
-BY,,(1/X), n even.

Then we obtain the following description for S(X™) from Lemmas 4.1 and
5.1:

LEMMA 5.3. (1) For n even and 0 < n < w,

1 Xw 1 1
X") = B (X)+—B% . [=)] - —BY (X

XU) BO 1
n+1 "\ X )

(2) Forn odd and 1 <n <w — 1,

1 Xw 1 1
X"y = ——B% (X)- ——RBY — —BY, (X
X 1
- _RBo — .
n+1 "+1<X)

6. Spanning sets of W.* and WZ. From Corollary 5.2, we know that

both {ga(X")}_, and {gB(X™)}¥_y span W, A1 — X*).

Since B(X™) is an even (respectively, odd) Laurent polynomial depend-
ing on n being odd (respectively, even), we can derive the following fact
rather plainly.

LEMMA 6.1. (1) B(X™) € W for n odd.

w

(2) B(X™) € W, for n even.

w

In what follows, (B(X"™))o<n<w,n odd (resp.even), denotes the space
spanned by S(X™) for n odd (resp. even) and 0 < n < w. (The notation
<7"i(Rn)>0§n§w,nodd(even) will be used in the next section denoting similar
spaces.) For subspaces V and W, V + W denotes the subspace spanned by
V and W.

—~

LEMMA 6.2. (1) q(<5(Xn)>U/§\n§w,nodd) = Q(WJ)
(2) (ﬁ(Xn»OSnSw,neven = Wuj

Proof. We know by Corollary 5.2 that Im ¢S = ¢(W,) = q(ﬁ/\ﬂ @
q(W, ). Hence, by Lemma 6.1, we have

—

(6.1) a({(B(X™))o<n<w,nodd) = (W)

and

(62) Q(<5(Xn)>[]§n§w,neven) = Q(WJ)
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—

Note that q|ﬁ/\f Wo = q(ﬁ/\_) is an isomorphism. This is because /Ww =

1) w w
—

WJ & /VTZ; and (1 — X%) C W . Thus we also have

(63) <5(Xn)>(]§n§w,neven = Wz;

from (6.2). m

By Lemma 6.2, we obtain spanning sets for W, W, and W7 (1—-X").

w w w

THEOREM 6.3. (1) W, (respectively, /VIZ;) is spanned by

w

1 Xv 1
X" =—B  (X)+ ——B) | =

1 XU) 1
__— BY (x)y——_RBo —
ﬁ—i-l n+1( ) ﬁ—i-l n+1<X>
for n even and 2 <n < w — 2 (respectively, 0 < n < w).
(2) WAL — X®) = W /1 — X) is spanned by

w w

1 X’u} 1
X"V =g4 ——B", (X)—- ——RB° —

1 XU) 1
- (L

|

Proof. By Lemma 6.2, the theorem is obvious except for the case of
W . Since 8(X°) = —B(X™) ¢ W, and B(X™) € W for n even and

w

2 <n <w -2, we know that {B(X™)}a<n<w—2,neven SPans W, . m

n—+1 Cn+1

formn odd and 1 <n <w — 1.

7. Relations between 3(X") and r*(R,,). In this section we will show
that B(X") is related to the polynomial r*(R,,) studied by Kohnen—Zagier
[56]. This fact leads us to an alternative proof of the theorem of Eichler and
Shimura on period mappings.

Let us recall Kohnen Zagier’s polynomials r*(R,). Let S,.» denote
the space of cusp forms of weight w + 2 with respect to SLy(Z). First let
Tyt Swy2 — C be the mapping defined by

oo

ra(f) = | f(it)t" dt,

0

which is called the nth period mapping.
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Let r*(f) and 7(f) be polynomials defined by

FOE = 5 () npnxe

n
0<n<w
n even

rE = 5 e (e

n
0<n<w
n odd

for f € Syy2. Then clearly r(f) = ir™(f) +r (f). Let R, € Sy,42 be
defined by

(fa Rn) = Tﬂ(f) for any f € Sw—}-2

where (, ) denotes Petersson product.
The following is a result of Kohnen Zagier [5] which was proved applying
Cohen’s [2] representation of R,,.

THEOREM 7.1 (Kohnen—Zagier). (1) For n even, 0 < n < w,
( o 1)(w+2)/2+n/227w,r7(Rn)(X)

1 Xw 1
= — B, (X)- ——B (=
n+1 n1(X) n+1 "+1<X>

1 Xw 1
— B (X)+—BY (=
e 1 )+?i+1 "+1<X>

(w +2)! pay Bt Bgi41
— (050 = 0po) ————— C— X,
(95,0 ’0)(w—i— 1)Buyio mgl (m+1) (m+1)!

m odd
(2) Forn odd, 0 <n <mn,
(_1)(w+2)/2+(n—1)/22—wr+(Rn)(X)

_ 1 0 X’ll} 0 1
= o oen 0 = B (?)

1 X’IU 1
— B (X) =B (=
w + 2 ) Bn—|—1 ) ?54_1 (X,w - 1)
Byyo n+1 n+1

Comparing Theorem 7.1 and Lemma 5.3, we obtain relations between
B(X™) and r*(R,):
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PROPOSITION 7.2. (1) For n even, 0 <n < w,
ﬁ(Xn) _ (_1)(1U+2)/2+n/22—w,r—(Rn)(X)
(w+ 2)!
— (07 *(sn T o Jw X).
( n,0 ,,U) (U) + I)Bw+2f ( )
(2) For n odd, 0 <n < w,

w+2 By Bigy

X)) = (—1)@+2)/2+(n-1)/29-w,+ (R (X
BX™) =(-1) (R )( )+Bw+2 e

(X —1).

We study relations between the polynomials 3(X™) and r*(R,,) further.

LEMMA 7.3. (1) q(<r+(Rn)>O§n§w,nodd) = Q(<B(Xn)>0§n§w,nodd)-
(2) (T_(Rn)>0§n§w,neven + (fw) = <ﬁ(Xn)>0§n§w,neven-

Proof. We first show (1). The equation in (2) of Proposition 7.2 gives
rise to the following congruence:

(_1)(w+2)/2+(n—1)/22—w,r+(Rn)(X) = ﬁ(Xn) mod <1 _ Xu))
for n odd. This implies (1).
Next we show (2). Observing that f,, € W,, and using Lemma 6.2(2),
we have
(71) (;B(Xn»OSnSw,neven + <fw> = (ﬂ(Xn»OSnSw,neven-
It is clear that

(72) (/B(Xn»OSngw,neven + <fw> (T ( )>0<n<w n even + (fw)
from Proposition 7.2(1). From (7.1) and (7.2) we obtain

<T_(R )>0<n<w n even + <fw> ( ( n))OSnSw,neven
completing the proof of (2). m

Combining Lemmas 6.2 and 7.3 we obtain:

LEMMA 7.4. () (W+) (<T+(Rn)>0§n§w,neven)-

w

( ) qu - < _(Rn)>0§n§w,neven + <fw>-

We also obtain the following lemma:

LEMMA 7.5. (1) (W+) (<T+(Rn)>0§n§w,neven)-

w

(2) Wuj = <T_(Rn)>0<n<w neven -

Proof. Since Wi = WJ, we have (1) from Lemma 7.4(1). From
Lemma 7.4(2), we know that Ww is spanned by {r~(R,)}o<n<w,neven and
fw- Observing that r~(R,,) are polynomials, and that W, is a codimension

one subspace of W

s we obtain (2). m
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Remark 7.1. (a) In [5], the fact that {gr*(R™)}¥_, is a spanning set of

n=0
q(WZ*) (Lemma 7.5) is a consequence of the Eichler Shimura isomorphism
for period mappings.
(b) In our proof presented above, we do not need to invoke the theorem
of Eichler and Shimura. As a matter of fact, our Lemma 7.5 yields an

alternative proof to the theorem of Eichler and Shimura on period mappings.

8. The theorem of Eichler and Shimura

COROLLARY 8.1. 7~ : Syyp2 — W, and gr* : Syyp0 — WH/1 — X¥)
are 1somorphisms.

Proof. From Lemma 7.5, we know r~ and ¢gr* are surjective. It is well
known that the dimension of S, 42 is as follows:

2
wran w+2% 10 (mod 12),
. 12
dim Sw—}-2 =
w~+ 2
On the other hand, as in Lang [6], a linear algebra argument shows
2
[“’;; ] w+2%10 (mod 12),
dim W, = dim W} /(1 - X¥) = oy
w

This implies r~ and ¢r* are isomorphisms. m

Remark 8.1. Let M,,;2 denote the space of modular forms of weight
w + 2. Zagier [7] “extended” the Eichler—Shimura isomorphism to isomor-

phisms r* : My,4o — W and qgr~ : My,12 — W, . As Lemma 7.5 gives
rise to the Eichler—Shimura isomorphism (Corollary 8.1), Lemma 7.4 gives
rise to Zagier’s isomorphisms.
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