The space of period polynomials

by
Shinji Fukuhara (Tokyo)

1. Introduction. The purpose of this note is to enhance our understanding of the space of period polynomials. The period polynomials has been studied in connection with modular integrals (e.g., Knopp [4]), cusp forms via the Eichler-Shimura isomorphism (e.g., Kohnen-Zagier [5]), and with various other topics of mathematics (Zagier [8]). Let K be a field, and X be an indeterminate. Let $V_{w}=V_{w}(K)$ denote the space of polynomials in X of degree $\leq w$ (even positive) with coefficients in K. Then $V_{w}(K)$ is an $(w+1)$-dimensional vector space, which may be identified with the space $\bigoplus_{n=0}^{w} K\left(X^{n}\right)$. Let $G=\mathrm{GL}_{2}(\mathbb{Z}) / \pm 1$. Then G acts on V_{w} via

$$
\begin{equation*}
(P \mid \gamma)(X)=P\left(\frac{a X+b}{c X+d}\right)(c X+d)^{w} \tag{1.1}
\end{equation*}
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ and $P(X) \in V_{w}$. Now we define the space, W_{w}, of period polynomials of weight w to be the subspace of V_{w} characterized by the following properties: $W_{w}=\operatorname{ker}(1+S) \cap \operatorname{ker}\left(1+U+U^{2}\right)$ (see $[1,4,5$, 7]), namely,

$$
W_{w}=\left\{P \in V_{w}: P+P|S=P+P| U+P \mid U^{2}=0\right\}
$$

where $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $U=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$.
Though the space W_{w} is interesting in its own right, it might be more natural to consider period Laurent polynomials, rather than period polynomials alone. Let \widehat{V}_{w} be the space $K\left(X^{-1}\right) \oplus V_{w} \oplus K\left(X^{w+1}\right)$. The space, \widehat{W}_{w}, of period Laurent polynomials can be defined in a similar way, and it turns out to be a subspace of \widehat{V}_{w}. In Lemma 2.2, it will be shown that W_{w}

[^0]is a codimension one subspace of \widehat{W}_{w}. From the definition, clearly $1-X^{w}$ belongs to W_{w} and it represents a "trivial" element. Therefore, it might be more natural to consider the quotient spaces $W_{w} /\left\langle 1-X^{w}\right\rangle$ and $\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$.

The main purpose of this note is to construct homomorphisms $q \alpha$: $V_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$ and $q \beta: V_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$, and describe their images explicitly. (See Theorem 3.3, Lemmas 4.1 and 5.1.) The two mappings $q \alpha$ and $q \beta$ are expressed using Bernoulli polynomials, and their images are indeed identified with $\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$. Consequently, this will yield a spanning set $\left\{q \alpha\left(X^{n}\right)\right\}_{n=0}^{w}$ or $\left\{q \beta\left(X^{n}\right)\right\}_{n=0}^{w}$ of $\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$. We obtain a relation between the polynomials $\beta\left(X^{n}\right)$ and $r^{ \pm}\left(R_{n}\right)$ of Kohnen-Zagier [5], and thus, we show that

$$
\begin{equation*}
\left\{r^{ \pm}\left(R_{n}\right)\right\}_{n=0}^{w} \bmod 1-X^{w} \quad \text { spans } \quad W_{w} /\left\langle 1-X^{w}\right\rangle \tag{1.2}
\end{equation*}
$$

In Kohnen-Zagier [5, p. 203], the fact (1.2) was obtained using the isomorphism theorem of Eichler and Shimura for period mappings. In this note, we take a reverse route from that of [5], namely, we first construct a spanning set for the space $W_{w} /\left\langle 1-X^{w}\right\rangle$ in terms of the homomorphisms $q \beta$, and as a corollary of this result, we rediscover the isomorphism theorem of Eichler and Shimura for period mappings.
2. Preliminaries. Throughout the paper we assume that w is an even positive integer. For each w, let

$$
V_{w}(K)=\{\text { polynomials of degree } \leq w \text { in } X \text { with coefficients in } K\} .
$$

We often write V_{w} for $V_{w}(K)$ when the field K is plain. The action of G on V_{w} defined in (1.1) can be extended to an action of the group ring $\mathbb{Z} G$ by

$$
\left(P \mid \sum n_{i} \gamma_{i}\right)=\sum n_{i}\left(P \mid \gamma_{i}\right)
$$

for $n_{i} \in \mathbb{Z}$ and $\gamma_{i} \in G$. Using the action, a subspace W_{w} of V_{w} can be described as

$$
\begin{align*}
W_{w} & =\operatorname{ker}(1+S) \cap \operatorname{ker}\left(1+U+U^{2}\right) \tag{2.1}\\
& =\left\{P \in V: P+P|S=P+P| U+P \mid U^{2}=0\right\} \tag{2.2}
\end{align*}
$$

for $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $U=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$. Following Kohnen-Zagier [5, p. 199], we consider the action of a specific element, i.e., $\varepsilon=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$. It is shown in [5] that $W \mid \varepsilon=W$ and there is a direct sum decomposition

$$
W_{w}=W_{w}^{+} \oplus W_{w}^{-}
$$

of W_{w} such that $P \mid \varepsilon= \pm P$ for $P \in W_{w}^{ \pm}$. More precisely,

$$
\begin{aligned}
& W_{w}^{+}=\left\{P \in W_{w}: P \text { is an even polynomial }\right\}, \\
& W_{w}^{-}=\left\{P \in W_{w}: P \text { is an odd polynomial }\right\} .
\end{aligned}
$$

We may also consider the space

$$
\widehat{V}=\left\{\sum_{i=m}^{n} c_{i} X^{i}: m, n \in \mathbb{Z} \text { such that } m \leq n, c_{i} \in K\right\}
$$

of Laurent polynomials in one variable and its subspace

$$
\widehat{V}_{w}=\left\{\sum_{i=-1}^{w+1} c_{i} X^{i}: c_{i} \in K\right\}
$$

For $\gamma \in G$ and $P \in \widehat{V}, P \mid \gamma$ is defined by (1.1). It is no longer an element of \widehat{V}, but a rational function. However, the equation $P \mid \gamma=0$ will make sense. The space \widehat{W}_{w} is defined similarly to (2.2), i.e.,

$$
\widehat{W}_{w}=\left\{P \in \widehat{V}: P+P|S=P+P| U+P \mid U^{2}=0\right\}
$$

Clearly $W_{w} \subset \widehat{W}_{w}$. Moreover, $\widehat{W}_{w}^{ \pm}$are defined similarly to $W_{w}^{ \pm}$:

$$
\begin{aligned}
& \widehat{W}_{w}^{+}=\left\{P \in \widehat{W}_{w}: P \text { is an even Laurent polynomial }\right\}, \\
& \widehat{W}_{w}^{-}=\left\{P \in \widehat{W}_{w}: P \text { is an odd Laurent polynomial }\right\} .
\end{aligned}
$$

It is obvious that $\widehat{W}_{w}=\widehat{W}_{w}^{+} \oplus \widehat{W}_{w}^{-}$. We call an element of W_{w} (respectively, \widehat{W}_{w}) a period polynomial (respectively, period Laurent polynomial) of weight w. We also call W_{w} (respectively, \widehat{W}_{w}) the space of period polynomials (respectively, period Laurent polynomials) of weight w.

Now we consider a special element of \widehat{V}_{w}. Let f_{w} be an element of \widehat{V}_{w} defined by

$$
f_{w}(X)=\sum_{\substack{n=0 \\ n \text { even }}}^{w+2} \frac{B_{n} B_{w+2-n}}{n!(w+2-n)!} X^{n-1} .
$$

It was shown in Zagier [7, p. 453] that $f_{w} \in \widehat{W}_{w}^{-}$(the homogeneous version of this fact was also proved in [3]). Let $\left\langle f_{w}\right\rangle$ denote the subspace of \widehat{W}_{w}^{-} which is spanned by f_{w}. We are interested in how different $\widehat{W}_{w}^{ \pm}$and $W_{w}^{ \pm}$ are. This will be answered in Lemmas 2.2 and 2.3. We will also show that $\widehat{W}_{w} \subset \widehat{V}_{w}$.

Lemma 2.1. For $m \geq 2$, let $P(X)=\sum_{i=-m}^{w+m} c_{i} X^{i}$ be a Laurent polynomial such that $P|(1+S)=P|\left(1+U+U^{2}\right)=0$. Then $c_{-m}=c_{w+m}=0$.

Proof. Since $P \mid(1+S)=0$, we have

$$
\sum_{i=-m}^{w+m} c_{i} X^{i}+\sum_{i=-m}^{w+m} c_{i}\left(\frac{-1}{X}\right)^{i} X^{w}=0
$$

namely,

$$
\begin{equation*}
c_{i}+(-1)^{w-i} c_{w-i}=0 \quad \text { for } i=-m, \ldots, 0, \ldots, w+m \tag{2.3}
\end{equation*}
$$

Since $P \mid\left(1+U+U^{2}\right)=0$, we have

$$
\begin{equation*}
\sum_{i=-m}^{w+m} c_{i} X^{i}+\sum_{i=-m}^{w+m} c_{i}\left(\frac{X-1}{X}\right)^{i} X^{w}+\sum_{i=-m}^{w+m} c_{i}\left(\frac{-1}{X-1}\right)^{i}(X-1)^{w}=0 . \tag{2.4}
\end{equation*}
$$

Multiply (2.4) by $X^{m}(X-1)^{m}$ to obtain

$$
\begin{align*}
\sum_{i=-m}^{w+m} c_{i} X^{m+i}(X-1)^{m}+ & \sum_{i=-m}^{w+m} c_{i}(X-1)^{m+i} X^{w-i+m} \tag{2.5}\\
& +\sum_{i=-m}^{w+m} c_{i}(-1)^{i}(X-1)^{w-i+m} X^{m}=0
\end{align*}
$$

We calculate the coefficient of X^{1} on the left hand side of (2.5). Since $m \geq 2$ by the assumption, we obtain

$$
\begin{align*}
(-1)^{m-1} m c_{-m}+(-1)(w+2 m) c_{w+m}+(-1)^{m} & c_{-m+1} \tag{2.6}\\
& +(-1) c_{w+m-1}=0
\end{align*}
$$

The equations (2.6) and (2.3) imply that $(w+m) c_{w+m}=0$. Hence $c_{w+m}=$ 0 , and then $c_{-m}=0$ by (2.3), completing the proof.

Lemma 2.2.

$$
\widehat{W}_{w}=W_{w} \oplus\left\langle f_{w}\right\rangle
$$

Proof. Let $P(X)=\sum_{i=-m}^{w+m} c_{i} X^{i}$ belong to \widehat{W}_{w}. Then we can assume $m=1$ by Lemma 2.1 above. Set

$$
Q(X)=P(X)-c_{-1} \frac{(w+2)!}{B_{w+2}} f_{w}(X) .
$$

Then the fact that the coefficients of X^{-1} and X^{w+1} in $Q(X)$ vanish implies that $Q(X) \in W_{w}$. Hence $\widehat{W}_{w} \subset W_{w} \oplus\left\langle f_{w}\right\rangle$. Since it is clear that $W_{w} \oplus\left\langle f_{w}\right\rangle \subset$ \widehat{W}_{w}, we complete the proof.

Observing $f_{w} \in \widehat{W}_{w}^{-}$, we have the following:
Lemma 2.3. (1) $\widehat{W}_{w}^{+}=W_{w}^{+}$.
(2) $\widehat{W}_{w}^{-}=W_{w}^{-} \oplus\left\langle f_{w}\right\rangle$.

Note that $\widehat{W}_{w} \subset \widehat{V}_{w}$ from Lemma 2.2.
3. The mapping α. It is easy to see that $1-X^{w}$ belongs to $W_{w}^{+} \subset$ $W_{w} \subset \widehat{W}_{w} \subset \widehat{V}_{w}$. So we may consider the various quotient spaces, e.g., $W_{w}^{+} /\left\langle 1-X^{w}\right\rangle, \widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle, \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$.

The purpose of this section is to define a map $q \alpha: V_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$ whose image is exactly the space $\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$. Let V_{w}^{\prime} denote the space of polynomials of degree $\leq w+1$, namely, $V_{w}^{\prime}=\left\{\sum_{n=0}^{w+1} c_{n} X^{n}: c_{n} \in K\right\}$.

Definition 3.1. (1) Let $u: V_{w} \rightarrow V_{w}$ be defined by

$$
u P(X)=P \mid(1-U)(X) \quad \text { for } P=P(X) \in V_{w}
$$

(2) Let $b: V_{w} \rightarrow V_{w}^{\prime}$ be defined by

$$
b P(X)=\sum_{n=0}^{w} \frac{c_{n}}{n+1} B_{n+1}(X+1)
$$

where we write $P(X)=\sum_{n=0}^{w} c_{n} X^{n} \in V_{w}$, with $B_{n}(X)$ denoting nth Bernoulli polynomial.
(3) Let $s: V_{w}^{\prime} \rightarrow \widehat{V}_{w}$ be defined by

$$
s P(X)=P \mid(1-S)(X),
$$

more explicitly,

$$
s P(X)=\sum_{n=0}^{w+1} c_{n} X^{n}-\sum_{n=0}^{w+1}(-1)^{n} c_{n} X^{w-n}
$$

for $P(X)=\sum_{n=0}^{w+1} c_{n} X^{n} \in V_{w}^{\prime}$.
(4) Let $\alpha: V_{w} \rightarrow \widehat{V}_{w}$ be defined by $\alpha=s b u$.
(5) Let $q: \widehat{V}_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$ be the projection map.

We need two lemmas to prove the main theorem.
Lemma 3.1.

$$
b P(X)-b P(X-1)=P(X)
$$

Proof. Set $P(X)=\sum_{n=0}^{w} c_{n} X^{n}$. Then

$$
\begin{aligned}
b P(X)-b P(X-1) & =\sum_{n=0}^{w} \frac{c_{n}}{n+1}\left(B_{n+1}(X+1)-B_{n+1}(X)\right) \\
& =\sum_{n=0}^{w} \frac{c_{n}}{n+1}(n+1) X^{n}=P(X) .
\end{aligned}
$$

This follows from the property of Bernoulli polynomials:

$$
\begin{equation*}
B_{n+1}(X+1)-B_{n+1}(X)=(n+1) X^{n} . \tag{3.1}
\end{equation*}
$$

Lemma 3.2.
$\alpha(1)=-\frac{1}{w+1}\left(X^{w+1}-(-1)^{w+1} X^{-1}\right)+($ terms of degrees from 0 to $w)$.
In particular, the coefficient of X^{-1} in $\alpha(1)$ does not vanish.

Proof.

$$
\begin{aligned}
\alpha(1)= & s b u(1)=s b\left(1-X^{w}\right)=s\left(\frac{B_{1}(X+1)}{0+1}-\frac{B_{w+1}(X+1)}{w+1}\right) \\
= & s\left(B_{1}(X)+X^{0}-\frac{B_{w+1}(X)}{w+1}-X^{w}\right) \\
= & s\left(-\frac{X^{w+1}}{w+1}+(\text { terms of degrees from } 0 \text { to } w)\right) \\
= & -\frac{1}{w+1}\left(X^{w+1}-(-1)^{w+1} X^{-1}\right) \\
& +(\text { terms of degrees from } 0 \text { to } w) .
\end{aligned}
$$

Now we are ready to describe the image of the homomorphism

$$
q \alpha: V_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle .
$$

Theorem 3.3.

$$
\operatorname{Im} q \alpha=\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle .
$$

Proof. Firstly we show the inclusion $\operatorname{Im} q \alpha \subset \widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$, by proving that $\operatorname{Im} \alpha \subset \widehat{W}_{w}$. For $P(X) \in V_{w}$, setting $P_{1}(X)=u P(X)$, we have

$$
P_{1}(X)=P \left\lvert\,(1-U)(X)=P(X)-P\left(\frac{X-1}{X}\right) X^{w}\right.
$$

Next let $P_{2}(X)=b P_{1}(X)$. Then we have

$$
P_{2}(X)-P_{2}(X-1)=P_{1}(X)
$$

by Lemma 3.1. Furthermore, let $P_{3}(X)=s P_{2}(X)$. Then we have

$$
P_{3}(X)=P_{2} \left\lvert\,(1-S)(X)=P_{2}(X)-P_{2}\left(\frac{-1}{X}\right) X^{w}\right.
$$

By the definition, $P_{3}(X)=\alpha P(X)$.
Now we claim that $P_{3} \mid\left(1+U+U^{2}\right)=0$. In fact,

$$
\begin{aligned}
& P_{3} \mid\left(1+U+U^{2}\right)(X) \\
& \left.=\left(P_{2}(X)-P_{2}\left(\frac{-1}{X}\right) X^{w}\right) \right\rvert\,\left(1+U+U^{2}\right) \\
& = \\
& \quad P_{2}(X)-P_{2}\left(\frac{-1}{X}\right) X^{w}+P_{2}\left(\frac{X-1}{X}\right) X^{w}-P_{2}\left(\frac{-1}{\frac{X-1}{X}}\right)\left(\frac{X-1}{X}\right)^{w} X^{w} \\
& \quad+P_{2}\left(\frac{-1}{X-1}\right)(X-1)^{w}-P_{2}\left(\frac{-1}{\frac{-1}{X-1}}\right)\left(\frac{-1}{X-1}\right)^{w}(X-1)^{w}
\end{aligned}
$$

$$
\begin{aligned}
= & P_{2}(X)-P_{2}(X-1)+\left\{P_{2}\left(\frac{X-1}{X}\right)-P_{2}\left(\frac{X-1}{X}-1\right)\right\} X^{w} \\
& +\left\{P_{2}\left(\frac{-1}{X-1}\right)-P_{2}\left(\frac{-1}{X-1}-1\right)\right\}(X-1)^{w} \\
= & P_{1}(X)+P_{1}\left(\frac{X-1}{X}\right) X^{w}+P_{1}\left(\frac{-1}{X-1}\right)(X-1)^{w} \\
= & P_{1}\left|\left(1+U+U^{2}\right)(X)=P\right|(1-U)\left(1+U+U^{2}\right)(X) \\
= & P \mid\left(1-U^{3}\right)(X)=0 .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\alpha P(X) \in \operatorname{Im} \alpha \subset\left\{Q \in \widehat{V}_{w}: Q \mid\left(1+U+U^{2}\right)=0\right\} . \tag{3.2}
\end{equation*}
$$

Now noting that $1-S^{2}=0$, we have

$$
\begin{equation*}
\operatorname{Im} s=\left\{Q \mid(1-S): Q \in \widehat{V}_{w}\right\}=\left\{Q \in \widehat{V}_{w}: Q \mid(1+S)=0\right\} \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{Im} \alpha=\operatorname{Im} s b u \subset\left\{Q \in \widehat{V}_{w}: Q \mid(1+S)=0\right\} . \tag{3.4}
\end{equation*}
$$

From (3.2) and (3.4), we obtain

$$
\begin{equation*}
\operatorname{Im} \alpha \subset\left\{Q \in \widehat{V}_{w}: Q|(1+S)=Q|\left(1+U+U^{2}\right)=0\right\}=\widehat{W}_{w} . \tag{3.5}
\end{equation*}
$$

This gives the inclusion that we are after, namely,

$$
\begin{equation*}
\operatorname{Im} q \alpha \subset q\left(\widehat{W}_{w}\right)=\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle \tag{3.6}
\end{equation*}
$$

Secondly we claim that $q\left(\widehat{W}_{w}\right) \subset \operatorname{Im} q \alpha$. Since $\alpha(1) \in \operatorname{Im} \alpha \subset \widehat{W}_{w}$, and $\alpha(1) \notin W_{w}$ by Lemma 3.2, we know

$$
\widehat{W}_{w}=W_{w} \oplus\langle\alpha(1)\rangle
$$

noting that W_{w} is a codimension one subspace of \widehat{W}_{w}. Hence it suffices to show the inclusion $q\left(W_{w}\right) \subset \operatorname{Im} q \alpha$.

Let Q be any element of W_{w}. We now show $q(Q) \in \operatorname{Im} q \alpha$. Since $Q \in \operatorname{ker}(1+S)=\operatorname{Im}(1-S)$, there is $Q_{1} \in V_{w}$ such that $Q_{1} \mid(1-S)=Q$, namely,

$$
Q(X)=Q_{1}(X)-Q_{1}\left(\frac{-1}{X}\right) X^{w}
$$

Let $Q_{2}(X)$ be defined by

$$
\begin{equation*}
Q_{2}(X)=Q_{1}(X)-Q_{1}(X-1) \tag{3.7}
\end{equation*}
$$

Note that $Q_{2} \in V_{w}$.

Next we show that $Q_{2} \mid\left(1+U+U^{2}\right)=0$. In fact,

$$
\begin{align*}
& Q_{2} \mid\left(1+U+U^{2}\right)(X) \tag{3.8}\\
&= Q_{1}(X)+Q_{1}\left(\frac{X-1}{X}\right) X^{w}+Q_{1}\left(\frac{-1}{X-1}\right)(X-1)^{w} \\
&-Q_{1}(X-1)-Q_{1}\left(\frac{X-1}{X}-1\right) X^{w}-Q_{1}\left(\frac{-1}{X-1}-1\right)(X-1)^{w} \\
&=\left\{Q_{1}(X)-Q_{1}\left(\frac{-1}{X}\right) X^{w}\right\}+\left\{Q_{1}\left(\frac{X-1}{X}\right) X^{w}-Q_{1}(X-1)\right\} \\
&+\left\{Q_{1}\left(\frac{-1}{X-1}\right)(X-1)^{w}-Q_{1}\left(\frac{-X}{X-1}\right)(X-1)^{w}\right\} .
\end{align*}
$$

We also have

$$
\begin{equation*}
Q \mid\left(1+U+U^{2}\right)(X) \tag{3.9}
\end{equation*}
$$

$$
=Q(X)+Q\left(\frac{X-1}{X}\right) X^{w}+Q\left(\frac{-1}{X-1}\right)(X-1)^{w}
$$

$$
=Q_{1}(X)-Q_{1}\left(\frac{-1}{X}\right) X^{w}+\left\{Q_{1}\left(\frac{X-1}{X}\right)-Q_{1}\left(\frac{-X}{X-1}\right)\left(\frac{X-1}{X}\right)^{w}\right\} X^{w}
$$

$$
+\left\{Q_{1}\left(\frac{-1}{X-1}\right)-Q_{1}(X-1)\left(\frac{-1}{X-1}\right)^{w}\right\}(X-1)^{w}
$$

Notice that the expressions on the right hand sides of (3.8) and (3.9) do coincide, so that we have

$$
\begin{equation*}
Q_{2}\left|\left(1+U+U^{2}\right)=Q\right|\left(1+U+U^{2}\right) \tag{3.10}
\end{equation*}
$$

In particular, since the right hand side of (3.10) is zero by the assumption that $Q \in W_{w}$, this means $Q_{2} \mid\left(1+U+U^{2}\right)=0$ as we required.

Since $\operatorname{ker}\left(1+U+U^{2}\right)=\operatorname{Im}(1-U)$, it follows that $Q_{2} \in \operatorname{Im}(1-U)$. Hence there is $Q_{3}(X) \in V_{w}$ such that $Q_{3} \mid(1-U)=Q_{2}$.

Finally, we show that $q \alpha\left(Q_{3}\right)=q(Q)$. By the definitions of α and Q_{2},

$$
\begin{equation*}
q \alpha\left(Q_{3}\right)=q s b u\left(Q_{3}\right)=q s b\left(Q_{2}\right) \tag{3.11}
\end{equation*}
$$

Since $Q_{1}(X)-Q_{1}(X-1)=Q_{2}(X)$ by (3.7), and $b Q_{2}(X)-b Q_{2}(X-1)=$ $Q_{2}(X)$ by Lemma 3.1, $b Q_{2}-Q_{1}$ is a constant, say c. Calculate the right hand side of (3.11) to obtain

$$
q s b\left(Q_{2}\right)=q s\left(Q_{1}+c\right)=q\left(s Q_{1}+c\left(1-X^{w}\right)\right)=q\left(Q+c\left(1-X^{w}\right)\right)=q(Q)
$$

as $q\left(\left(1-X^{w}\right)\right)=0$. This means $q \alpha\left(Q_{3}\right)=q(Q)$.
Thus we have proved that, for any $Q(X) \in W_{w}$, there is $Q_{3}(X) \in V_{w}$ such that $q \alpha\left(Q_{3}\right)=q(Q)$. This implies $q\left(W_{w}\right) \subset \operatorname{Im} q \alpha$, completing the proof.
4. Calculation. We calculate $\alpha\left((X-1)^{n}\right)$ for $n=0, \ldots, w$. Let \widetilde{n} denote $w-n$ for $n=0, \ldots, w$. First note that

$$
\begin{aligned}
u\left((X-1)^{n}\right) & =(X-1)^{n} \left\lvert\,(1-U)=(X-1)^{n}-\left(\frac{-1}{X}\right)^{n} X^{w}\right. \\
& =(X-1)^{n}-(-1)^{n} X^{\tilde{n}} ;
\end{aligned}
$$

moreover,

$$
b\left(X^{n}\right)=\frac{1}{n+1} B_{n+1}(X+1)
$$

by the definition of b, and

$$
b\left((X-1)^{n}\right)=\frac{1}{n+1} B_{n+1}(X)
$$

by Lemma 3.1 and (3.1). Thus we have

$$
b u\left((X-1)^{n}\right)=\frac{B_{n+1}(X)}{n+1}-(-1)^{n} \frac{B_{\tilde{n}+1}(X+1)}{\widetilde{n}+1} .
$$

Here we adopt Kohnen-Zagier's notation $B_{n}^{0}(X)$ for the nth Bernoulli polynomial without its B_{1}-term ([5, p. 208]):

$$
B_{n}^{0}(X)=\sum_{\substack{i=0 \\ i \neq 1}}^{n}\binom{n}{i} B_{i} X^{n-i}=\sum_{\substack{0 \leq i \leq n \\ i \text { even }}}\binom{n}{i} B_{i} X^{n-i}
$$

Then we have

$$
\begin{aligned}
\alpha\left((X-1)^{n}\right)= & \operatorname{sbu}\left((X-1)^{n}\right) \\
= & \frac{B_{n+1}(X)}{n+1}-\frac{B_{n+1}(-1 / X)}{n+1} X^{w} \\
& -(-1)^{n}\left\{\frac{B_{\tilde{n}+1}(X+1)}{\widetilde{n}+1}-\frac{B_{\widetilde{n}+1}(-1 / X+1)}{\widetilde{n}+1} X^{w}\right\} \\
= & \frac{1}{n+1}\left\{B_{n+1}(X)-B_{n+1}\left(\frac{-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}(X)+(\widetilde{n}+1) X^{\widetilde{n}}\right. \\
& \left.-B_{\tilde{n}+1}\left(\frac{-1}{X}\right) X^{w}-(\widetilde{n}+1)\left(\frac{-1}{X}\right)^{\tilde{n}} X^{w}\right\} \\
= & \frac{1}{n+1}\left\{B_{n+1}^{0}(X)-B_{n+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}^{0}(X)-B_{\tilde{n}+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\}-\frac{1}{n+1} \cdot \frac{n+1}{2} X^{n}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{n+1} \cdot \frac{n+1}{2}\left(\frac{-1}{X}\right)^{n} X^{w}+\frac{(-1)^{n}}{\widetilde{n}+1} \cdot \frac{\widetilde{n}+1}{2} X^{\tilde{n}} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1} \cdot \frac{\widetilde{n}+1}{2}\left(\frac{-1}{X}\right)^{\tilde{n}} X^{w}-(-1)^{n} X^{\tilde{n}}+(-1)^{n}\left(\frac{-1}{X}\right)^{\tilde{n}} X^{w} \\
= & \frac{1}{n+1}\left\{B_{n+1}^{0}(X)-B_{n+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\widetilde{n}+1}^{0}(X)-B_{\tilde{n}+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\}
\end{aligned}
$$

Summarizing the above calculation, we obtain
Lemma 4.1.

$$
\begin{aligned}
\alpha\left((X-1)^{n}\right)= & \frac{1}{n+1}\left\{B_{n+1}^{0}(X)-B_{n+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}^{0}(X)-B_{\widetilde{n}+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\}
\end{aligned}
$$

5. The mapping β. In Section 3 , we defined the mapping α. In this section, we will define and study a similar mapping $\beta: V_{w} \rightarrow \widehat{V}_{w}$. First let us define auxiliary mappings $s^{\prime}: V_{w} \rightarrow V_{w}, b^{\prime}: V_{w} \rightarrow V_{w}^{\prime}$ and $u^{\prime}: V_{w}^{\prime} \rightarrow \widehat{V}_{w}$ as follows:

$$
\begin{aligned}
s^{\prime} P(X) & =P \mid(1-S)(X) \\
b^{\prime} P(X) & =\sum_{n=0}^{w} \frac{c_{n}}{n+1} B_{n+1}(X) \quad \text { for } P(X)=\sum_{n=0}^{w} c_{n} X^{n} \\
u^{\prime} P(X) & =P \left\lvert\,(1-U)(X)=P(X)-P\left(\frac{X-1}{X}\right) X^{w}\right.
\end{aligned}
$$

Note that, if $P(X)=\sum_{n=0}^{w+1} c_{n} X^{n}$ is an element of V_{w}^{\prime}, then

$$
P\left(\frac{X-1}{X}\right) X^{w}=\sum_{n=0}^{w+1} c_{n}(X-1)^{n} X^{w-n}
$$

and it has terms of degree ranging from -1 to $w+1$. This implies $u^{\prime} P \in \widehat{V}_{w}$. Now let us define the map $\beta: V_{w} \rightarrow \widehat{V}_{w}$ by letting $\beta=u^{\prime} b^{\prime} s^{\prime}$.

Lemma 5.1.

$$
\begin{equation*}
\beta\left(X^{n}\right)=\alpha\left((X-1)^{n}\right) \quad \text { for } n=0, \ldots, w \tag{5.1}
\end{equation*}
$$

Proof. We calculate $\beta\left(X^{n}\right)$:

$$
\beta\left(X^{n}\right)=u^{\prime} b^{\prime} s^{\prime}\left(X^{n}\right)=u^{\prime} b^{\prime}\left(X^{n}-\left(\frac{-1}{X}\right)^{n} X^{w}\right)=u^{\prime} b^{\prime}\left(X^{n}-(-1)^{n} X^{\widetilde{n}}\right)
$$

$$
\begin{aligned}
= & u^{\prime}\left(\frac{B_{n+1}(X)}{n+1}-(-1)^{n} \frac{B_{\tilde{n}+1}(X)}{\widetilde{n}+1}\right) \\
= & \frac{1}{n+1}\left\{B_{n+1}(X)-B_{n+1}\left(\frac{X-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}(X)-B_{\tilde{n}+1}\left(\frac{X-1}{X}\right) X^{w}\right\} \\
= & \frac{1}{n+1}\left\{B_{n+1}(X)-B_{n+1}\left(\frac{-1}{X}\right) X^{w}-(n+1)\left(\frac{-1}{X}\right)^{n} X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}(X)-B_{\tilde{n}+1}\left(\frac{-1}{X}\right) X^{w}-(\widetilde{n}+1)\left(\frac{-1}{X}\right)^{\widetilde{n}} X^{w}\right\} \\
= & \frac{1}{n+1}\left\{B_{n+1}^{0}(X)-B_{n+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right. \\
& \left.-\frac{n+1}{2} X^{n}+\frac{n+1}{2}\left(\frac{-1}{X}\right)^{n} X^{w}-(n+1)(-1)^{n} X^{\tilde{n}}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}^{0}(X)-B_{\tilde{n}+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right. \\
& \left.-\frac{\widetilde{n}+1}{2} X^{\tilde{n}}+\frac{\widetilde{n}+1}{2}\left(\frac{-1}{X}\right)^{\tilde{n}} X^{w}-(\widetilde{n}+1)(-1)^{\tilde{n}} X^{n}\right\} \\
= & \frac{1}{n+1}\left\{B_{n+1}^{0}(X)-B_{n+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\} \\
& -\frac{(-1)^{n}}{\widetilde{n}+1}\left\{B_{\tilde{n}+1}^{0}(X)-B_{\tilde{n}+1}^{0}\left(\frac{-1}{X}\right) X^{w}\right\} \\
= & \alpha\left((X-1)^{n}\right) . \mathbf{■}
\end{aligned}
$$

As a corollary of the above relation between the mappings α and β, we can determine the image of $q \beta$ where $q: \widehat{V}_{w} \rightarrow \widehat{V}_{w} /\left\langle 1-X^{w}\right\rangle$ is the projection map as before.

Corollary 5.2.

$$
\begin{equation*}
\operatorname{Im} q \beta=\operatorname{Im} q \alpha=\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle \tag{5.2}
\end{equation*}
$$

Proof. Let $t: V_{w} \rightarrow V_{w}$ be an isomorphism determined by $t\left(X^{n}\right)=$ $(X-1)^{n}$ for $n=0, \ldots, w$. Then, by Lemma 5.1, we have $\beta=\alpha t$. It follows that $\operatorname{Im} q \beta=\operatorname{Im} q \alpha$ as t is an isomorphism.

Note that

$$
B_{n+1}^{0}\left(\frac{-1}{X}\right)=\sum_{\substack{0 \leq i \leq n+1 \\ i \text { even }}}\binom{n+1}{i} B_{i}\left(\frac{-1}{X}\right)^{n+1-i}=(-1)^{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right)
$$

$$
= \begin{cases}B_{n+1}^{0}(1 / X), & n \text { odd } \\ -B_{n+1}^{0}(1 / X), & n \text { even }\end{cases}
$$

Then we obtain the following description for $\beta\left(X^{n}\right)$ from Lemmas 4.1 and 5.1:

Lemma 5.3. (1) For n even and $0 \leq n \leq w$,

$$
\begin{aligned}
\beta\left(X^{n}\right)= & \frac{1}{n+1} B_{n+1}^{0}(X)+\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right)-\frac{1}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}(X) \\
& -\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right)
\end{aligned}
$$

(2) For n odd and $1 \leq n \leq w-1$,

$$
\begin{aligned}
\beta\left(X^{n}\right)= & \frac{1}{n+1} B_{n+1}^{0}(X)-\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right)+\frac{1}{\widetilde{n}+1} B_{\widetilde{n}+1}^{0}(X) \\
& -\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right)
\end{aligned}
$$

6. Spanning sets of $W_{w}^{ \pm}$and $\widehat{W}_{w}^{ \pm}$. From Corollary 5.2, we know that both $\left\{q \alpha\left(X^{n}\right)\right\}_{n=0}^{w}$ and $\left\{q \beta\left(X^{n}\right)\right\}_{n=0}^{w}$ span $\widehat{W}_{w} /\left\langle 1-X^{w}\right\rangle$.

Since $\beta\left(X^{n}\right)$ is an even (respectively, odd) Laurent polynomial depending on n being odd (respectively, even), we can derive the following fact rather plainly.

Lemma 6.1. (1) $\beta\left(X^{n}\right) \in \widehat{W}_{w}^{+}$for n odd.
(2) $\beta\left(X^{n}\right) \in \widehat{W}_{w}^{-}$for n even.

In what follows, $\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { odd (resp. even) }}$, denotes the space spanned by $\beta\left(X^{n}\right)$ for n odd (resp. even) and $0 \leq n \leq w$. (The notation $\left\langle r^{ \pm}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n \text { odd(even) }}$ will be used in the next section denoting similar spaces.) For subspaces V and $W, V+W$ denotes the subspace spanned by V and W.

Lemma 6.2. (1) $q\left(\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n o d d}\right)=q\left(\widehat{W}_{w}^{+}\right)$.
(2) $\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}=\widehat{W}_{w}^{-}$.

Proof. We know by Corollary 5.2 that $\operatorname{Im} q \beta=q\left(\widehat{W}_{w}\right)=q\left(\widehat{W}_{w}^{+}\right) \oplus$ $q\left(\widehat{W}_{w}^{-}\right)$. Hence, by Lemma 6.1 , we have

$$
\begin{equation*}
q\left(\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { odd }}\right)=q\left(\widehat{W}_{w}^{+}\right) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
q\left(\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}\right)=q\left(\widehat{W}_{w}^{-}\right) \tag{6.2}
\end{equation*}
$$

Note that $q \mid \widehat{W}_{w}^{-}: \widehat{W}_{w}^{-} \rightarrow q\left(\widehat{W}_{w}^{-}\right)$is an isomorphism. This is because $\widehat{W}_{w}=$ $\widehat{W}_{w}^{+} \oplus \widehat{W}_{w}^{-}$and $\left\langle 1-X^{w}\right\rangle \subset \widehat{W}_{w}^{+}$. Thus we also have

$$
\begin{equation*}
\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}=\widehat{W}_{w}^{-} \tag{6.3}
\end{equation*}
$$

from (6.2).
By Lemma 6.2, we obtain spanning sets for $W_{w}^{-}, \widehat{W}_{w}^{-}$, and $\widehat{W}_{w}^{+} /\left\langle 1-X^{w}\right\rangle$.
Theorem 6.3. (1) W_{w}^{-}(respectively, \widehat{W}_{w}^{-}) is spanned by

$$
\begin{aligned}
\beta\left(X^{n}\right)= & \frac{1}{n+1} B_{n+1}^{0}(X)+\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right) \\
& -\frac{1}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}(X)-\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right)
\end{aligned}
$$

for n even and $2 \leq n \leq w-2$ (respectively, $0 \leq n \leq w)$.
(2) $W_{w}^{+} /\left\langle 1-X^{w}\right\rangle=\widehat{W}_{w}^{+} /\left\langle 1-X^{w}\right\rangle$ is spanned by

$$
\begin{aligned}
q \beta\left(X^{n}\right)= & q\left\{\frac{1}{n+1} B_{n+1}^{0}(X)-\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right)\right. \\
& \left.+\frac{1}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}(X)-\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right)\right\}
\end{aligned}
$$

for n odd and $1 \leq n \leq w-1$.
Proof. By Lemma 6.2, the theorem is obvious except for the case of W_{w}^{-}. Since $\beta\left(X^{0}\right)=-\beta\left(X^{w}\right) \notin W_{w}^{-}$, and $\beta\left(X^{n}\right) \in W_{w}^{-}$for n even and $2 \leq n \leq w-2$, we know that $\left\{\beta\left(X^{n}\right)\right\}_{2 \leq n \leq w-2, n \text { even }}$ spans W_{w}^{-}.
7. Relations between $\beta\left(X^{n}\right)$ and $r^{ \pm}\left(R_{n}\right)$. In this section we will show that $\beta\left(X^{n}\right)$ is related to the polynomial $r^{ \pm}\left(R_{n}\right)$ studied by Kohnen-Zagier [5]. This fact leads us to an alternative proof of the theorem of Eichler and Shimura on period mappings.

Let us recall Kohnen-Zagier's polynomials $r^{ \pm}\left(R_{n}\right)$. Let S_{w+2} denote the space of cusp forms of weight $w+2$ with respect to $\mathrm{SL}_{2}(\mathbb{Z})$. First let $r_{n}: S_{w+2} \rightarrow \mathbb{C}$ be the mapping defined by

$$
r_{n}(f)=\int_{0}^{\infty} f(i t) t^{n} d t
$$

which is called the nth period mapping.

Let $r^{ \pm}(f)$ and $r(f)$ be polynomials defined by

$$
\begin{aligned}
r^{+}(f)(X) & =\sum_{\substack{0 \leq n \leq w \\
\text { neven }}}(-1)^{n / 2}\binom{w}{n} r_{n}(f) X^{w-n}, \\
r^{-}(f)(X) & =\sum_{\substack{0 \leq n \leq w \\
n \text { odd }}}(-1)^{(n-1) / 2}\binom{w}{n} r_{n}(f) X^{w-n}, \\
r(f)(X) & =\int_{0}^{i \infty} f(z)(X-z)^{w} d z
\end{aligned}
$$

for $f \in S_{w+2}$. Then clearly $r(f)=\operatorname{ir}^{+}(f)+r^{-}(f)$. Let $R_{n} \in S_{w+2}$ be defined by

$$
\left(f, R_{n}\right)=r_{n}(f) \quad \text { for any } f \in S_{w+2}
$$

where (,) denotes Petersson product.
The following is a result of Kohnen-Zagier [5] which was proved applying Cohen's [2] representation of R_{n}.

Theorem 7.1 (Kohnen-Zagier). (1) For n even, $0 \leq n \leq w$,
$(-1)^{(w+2) / 2+n / 2} 2^{-w} r^{-}\left(R_{n}\right)(X)$
$=-\frac{1}{n+1} B_{n+1}^{0}(X)-\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right)$
$+\frac{1}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}(X)+\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right)$
$-\left(\delta_{\tilde{n}, 0}-\delta_{n, 0}\right) \frac{(w+2)!}{(w+1) B_{w+2}} \sum_{\substack{m=-1 \\ m \text { odd }}}^{w+1} \frac{B_{m+1}}{(m+1)!} \cdot \frac{B_{\widetilde{m}+1}}{(\widetilde{m}+1)!} X^{m}$.
(2) For n odd, $0 \leq n \leq n$,
$(-1)^{(w+2) / 2+(n-1) / 2} 2^{-w} r^{+}\left(R_{n}\right)(X)$

$$
\begin{aligned}
= & \frac{1}{n+1} B_{n+1}^{0}(X)-\frac{X^{w}}{n+1} B_{n+1}^{0}\left(\frac{1}{X}\right) \\
& +\frac{1}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}(X)-\frac{X^{w}}{\widetilde{n}+1} B_{\tilde{n}+1}^{0}\left(\frac{1}{X}\right) \\
& -\frac{w+2}{B_{w+2}} \cdot \frac{B_{n+1}}{n+1} \cdot \frac{B_{\tilde{n}+1}^{\widetilde{n}+1}\left(X^{w}-1\right) .}{}
\end{aligned}
$$

Comparing Theorem 7.1 and Lemma 5.3, we obtain relations between $\beta\left(X^{n}\right)$ and $r^{ \pm}\left(R_{n}\right):$

Proposition 7.2. (1) For n even, $0 \leq n \leq w$,

$$
\begin{aligned}
\beta\left(X^{n}\right)= & -(-1)^{(w+2) / 2+n / 2} 2^{-w} r^{-}\left(R_{n}\right)(X) \\
& -\left(\delta_{\tilde{n}, 0}-\delta_{n, 0}\right) \frac{(w+2)!}{(w+1) B_{w+2}} f_{w}(X) .
\end{aligned}
$$

(2) For n odd, $0 \leq n \leq w$,
$\beta\left(X^{n}\right)=(-1)^{(w+2) / 2+(n-1) / 2} 2^{-w} r^{+}\left(R_{n}\right)(X)+\frac{w+2}{B_{w+2}} \cdot \frac{B_{n+1}}{n+1} \cdot \frac{B_{\tilde{n}+1}}{\widetilde{n}+1}\left(X^{w}-1\right)$.
We study relations between the polynomials $\beta\left(X^{n}\right)$ and $r^{ \pm}\left(R_{n}\right)$ further.
Lemma 7.3. (1) $q\left(\left\langle r^{+}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n \text { odd }}\right)=q\left(\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { odd }}\right)$.
(2) $\left\langle r^{-}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}+\left\langle f_{w}\right\rangle=\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}$.

Proof. We first show (1). The equation in (2) of Proposition 7.2 gives rise to the following congruence:

$$
(-1)^{(w+2) / 2+(n-1) / 2} 2^{-w} r^{+}\left(R_{n}\right)(X) \equiv \beta\left(X^{n}\right) \bmod \left\langle 1-X^{w}\right\rangle
$$

for n odd. This implies (1).
Next we show (2). Observing that $f_{w} \in \widehat{W}_{w}$ and using Lemma 6.2(2), we have

$$
\begin{equation*}
\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}+\left\langle f_{w}\right\rangle=\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }} . \tag{7.1}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}+\left\langle f_{w}\right\rangle=\left\langle r^{-}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}+\left\langle f_{w}\right\rangle \tag{7.2}
\end{equation*}
$$

from Proposition 7.2(1). From (7.1) and (7.2) we obtain

$$
\left\langle r^{-}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}+\left\langle f_{w}\right\rangle=\left\langle\beta\left(X^{n}\right)\right\rangle_{0 \leq n \leq w, n \text { even }}
$$

completing the proof of (2).
Combining Lemmas 6.2 and 7.3 we obtain:
LEMMA 7.4. (1) $q\left(\widehat{W}_{w}^{+}\right)=q\left(\left\langle r^{+}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}\right)$.
(2) $\widehat{W}_{w}^{-}=\left\langle r^{-}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}+\left\langle f_{w}\right\rangle$.

We also obtain the following lemma:
Lemma 7.5. (1) $q\left(W_{w}^{+}\right)=q\left(\left\langle r^{+}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}\right)$.
(2) $W_{w}^{-}=\left\langle r^{-}\left(R_{n}\right)\right\rangle_{0 \leq n \leq w, n e v e n}$.

Proof. Since $W_{w}^{+}=\widehat{W}_{w}^{+}$, we have (1) from Lemma 7.4(1). From Lemma 7.4(2), we know that \widehat{W}_{w}^{-}is spanned by $\left\{r^{-}\left(R_{n}\right)\right\}_{0 \leq n \leq w, n \text { even }}$ and f_{w}. Observing that $r^{-}\left(R_{n}\right)$ are polynomials, and that W_{w}^{-}is a codimension one subspace of \widehat{W}_{w}^{-}, we obtain (2).

Remark 7.1. (a) In [5], the fact that $\left\{q r^{ \pm}\left(R^{n}\right)\right\}_{n=0}^{w}$ is a spanning set of $q\left(W_{w}^{ \pm}\right)$(Lemma 7.5) is a consequence of the Eichler-Shimura isomorphism for period mappings.
(b) In our proof presented above, we do not need to invoke the theorem of Eichler and Shimura. As a matter of fact, our Lemma 7.5 yields an alternative proof to the theorem of Eichler and Shimura on period mappings.

8. The theorem of Eichler and Shimura

Corollary 8.1. $r^{-}: S_{w+2} \rightarrow W_{w}^{-}$and $q r^{+}: S_{w+2} \rightarrow W_{w}^{+} /\left\langle 1-X^{w}\right\rangle$ are isomorphisms.

Proof. From Lemma 7.5, we know r^{-}and $q r^{+}$are surjective. It is well known that the dimension of S_{w+2} is as follows:

$$
\operatorname{dim} S_{w+2}= \begin{cases}{\left[\frac{w+2}{12}\right],} & w+2 \not \equiv 10(\bmod 12) \\ {\left[\frac{w+2}{12}\right]+1,} & w+2 \equiv 10(\bmod 12)\end{cases}
$$

On the other hand, as in Lang [6], a linear algebra argument shows

$$
\operatorname{dim} W_{w}^{-}=\operatorname{dim} W_{w}^{+} /\left\langle 1-X^{w}\right\rangle= \begin{cases}{\left[\frac{w+2}{12}\right],} & w+2 \not \equiv 10(\bmod 12) \\ {\left[\frac{w+2}{12}\right]+1,} & w+2 \equiv 10(\bmod 12)\end{cases}
$$

This implies r^{-}and $q r^{+}$are isomorphisms.
Remark 8.1. Let M_{w+2} denote the space of modular forms of weight $w+2$. Zagier [7] "extended" the Eichler-Shimura isomorphism to isomorphisms $r^{+}: M_{w+2} \rightarrow W_{w}^{+}$and $q r^{-}: M_{w+2} \rightarrow \widehat{W}_{w}^{-}$. As Lemma 7.5 gives rise to the Eichler-Shimura isomorphism (Corollary 8.1), Lemma 7.4 gives rise to Zagier's isomorphisms.

References

[1] Y. J. Choie and D. Zagier, Rational period functions, in: A Tribute to Emil Grosswald: Number Theory and Related Analysis, M. Knopp and M. Sheingorn (eds.), Contemp. Math. 143, Amer. Math. Soc., 1993, 89-108.
[2] H. Cohen, Sur certaines sommes de séries liées aux périodes de formes modulaires, in: Séminaire de théorie de nombres, Grenoble, 1981.
[3] S. Fukuhara, Modular forms, generalized Dedekind symbols and period polynomials, preprint, 1995.
[4] M. I. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. Soc. 80 (1974), 607-632.
[5] W. Kohnen and D. Zagier, Modular forms with rational periods, in: Modular Forms, R. A. Rankin (ed.), Ellis Horwood, 1984, 197-249.
[6] S. Lang, Introduction to Modular Forms, Springer, 1976.
[7] D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991), 449-465.
[8] -, Periods of modular forms, traces of Hecke operators, and multiple zeta values, preprint.

Department of Mathematics
Tsuda College
Tsuda-machi 2-1-1
Kodaira-shi, Tokyo 187, Japan
E-mail: fukuhara@tsuda.ac.jp

[^0]: 1991 Mathematics Subject Classification: Primary 11F20, 11F11; Secondary 11B68.
 Key words and phrases: period polynomial, cusp form, modular form, Eichler-Shimura isomorphism.

 The author wishes to thank Professor N. Yui for her useful advice.

