
ACTA ARITHMETICA
LXXXII.1 (1997)
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The problem of finding arithmetic progressions of equal lengths of posi-
tive integers a1, . . . , an and b1, . . . , bn, such that the products of their terms
are equal has been considered by Gabovich [1], Mirkowska and Makowski [2],
Szymiczek [5] and by Saradha, Shorey and Tijdeman [3, 4]. When n = 3
and n = 4, infinitely many examples are already known [1]. When n > 4,
the only known example of two arithmetic progressions with equal products
of terms is given by

(n + 1)(n + 2)(n + 3) . . . (2n) = 2 · 6 · 10 · . . . · (4n− 2).

In fact, it is proved in [4] that this example provides the only solution in
positive integers of the Diophantine equation

x(x+d1)(x+2d1) . . . {x+(n−1)d1} = y(y +d2)(y +2d2) . . . {y +(n−1)d2}
with d1, d2 being fixed positive integers, d1 < d2 and n arbitrarily large.

In this paper, we shall obtain for arbitrary n a new solution of two arith-
metic progressions in positive integers with equal products of terms. In
addition, further examples are given of infinitely many arithmetic progres-
sions with equal products of terms when n = 4 and n = 5.

Let t0, t1, t2, . . . , tn be n + 1 positive integers in arithmetic progression
with common difference d so that tn = t0 + nd. Let r and s be two positive
integers with r > s. We define

ai = rti−1 for i = 1, . . . , n,

bi = sti for i = 1, . . . , n.

Clearly a1, . . . , an are in arithmetic progression with common difference rd
while b1, . . . , bn are in arithmetic progression with common difference sd.
The products of the terms of these arithmetic progressions will be equal if

(rt0)(rt1) . . . (rtn−1) = (st1)(st2) . . . (stn), or
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rnt0 = sntn, or
rnt0 = sn(t0 + nd), or

(rn − sn)t0 = nsnd.

Thus, if we take t0 = nsn and d = rn − sn, the products of the terms of the
two arithmetic progressions {ai} and {bi} will be equal. As r > s, all the
terms of the two arithmetic progressions are positive integers. Moreover, by
choice of r and s, we can readily ensure that the two arithmetic progressions
do not have a common term. For the two arithmetic progressions to have a
common term, we must have ai = bj for some i and j where 1 ≤ i ≤ n and
1 ≤ j ≤ n. Thus, we must have for some i and j,

rti−1 = stj , or
r{t0 + (i− 1)d} = s(t0 + jd), or

r{nsn + (i− 1)(rn − sn)} = s{nsn + j(rn − sn)}.
Dividing by sn+1, and writing r/s as θ, we get the equation

nθ + (i− 1)θ(θn − 1) = n + j(θn − 1).

For given i, j this has at most n + 1 rational roots and since 1 ≤ i ≤ n
and also 1 ≤ j ≤ n, there are only a finite number of such equations for
any given n. Thus there are only a finite number of rational values of r/s
for which we could have ai = bj for some i and j. Hence, by choosing r
and s such that r > s and r/s is different from any of the finite number of
rational values which make ai = bj for some i, j, we can ensure that the two
arithmetic progressions do not have a common term. The two arithmetic
progressions may be explicitly stated as follows:

(i) an arithmetic progression with first term nrsn and common differ-
ence r(rn − sn),

(ii) an arithmetic progression with first term s{rn + (n − 1)sn} and
common difference s(rn − sn).

As an example, when n = 7, r = 2, s = 1, we get the following two
arithmetic progressions with equal products of terms:

14, 268, 522, 776, 1030, 1284, 1538

and
134, 261, 388, 515, 642, 769, 896.

When n = 4, we give below, in parametric form, an example, different
from the above solution of two arithmetic progressions with equal products
of terms:

(i) 63pq4, 2p(16p4 + 9q4), p(64p4 − 27q4), 24p(4p4 − 3q4),
(ii) 3q(16p4 + 9q4), 56p4q, q(64p4 − 27q4), 18q(4p4 − 3q4).
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It is readily verified that these are indeed arithmetic progressions such that
the products of their terms are equal. The solution is in positive integers
when p and q are positive integers such that

p > (3/4)1/4q, or p > (0.930 . . .)q.

As a numerical example, with p = 2, q = 1, we get the following two
arithmetic progressions with equal products of terms:

126, 1060, 1994, 2928 and 795, 896, 997, 1098.

Similarly, when n = 5, the following two arithmetic progressions have
equal products of terms:

(i) 6p(p5 − 3q5), p(4p5 + 27q5), 2p(p5 + 36q5), 117pq5, 2p(81q5 − p5),
(ii) 2q(81q5 − p5), 3q(p5 + 36q5), 2q(4p5 + 27q5), 13p5q, 18q(p5 − 3q5).

The solution is in positive integers when p and q are positive integers such
that

31/5q < p < 811/5q, or (1.245 . . .)q < p < (2.408 . . .)q.
As a numerical example, when p = 5 and q = 3, we get the following two
arithmetic progressions with equal products of terms:

71880, 95305, 118730, 142155, 165580

and
99348, 106857, 114366, 121875, 129384.
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