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1. Introduction. B. C. Berndt [2] demonstrated that certain sums,
first examined by G. H. Hardy [6], [7, pp. 362–392] and arising in the
transformation formulas of the logarithms of the classical theta-functions,
are analogous to the regular Dedekind sum. In this paper, we apply H.
Rademacher’s questions [12], [13, p. 112] about Dedekind sums to the study
of these analogous sums. To introduce these sums, let =(z) > 0, q = eπiz,

θ(z) =
∞∑

n=−∞
qn2

and θ4(z) =
∞∑

n=−∞
(−1)nqn2

.

Let V =
[

a b

c d

]
and define V z = (az + b)/(cz + d). We also define the

standard modular groups

Γ (1) = {V : a, b, c, d ∈ Z, c > 0 with ad− bc = 1},
Γθ = {V ∈ Γ (1) : a ≡ d, b ≡ c (mod 2)},

Γ 0(2) = {V ∈ Γ (1) : b ≡ 0 (mod 2)}.
In [2], Berndt proved the following results. If V ∈ Γθ, then

log θ(V z) = log θ(z) +
1
2

log(cz + d)− 1
4
πi +

1
4
πiS(d, c),

where

(1.1) S(d, c) =
c−1∑
j=1

(−1)j+1+[dj/c].

If V ∈ Γ 0(2), then

log θ4(V z) = log θ4(z) +
1
2

log(cz + d)− 1
4
πi− 1

4
πiS4(d, c),
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where

(1.2) S4(d, c) =
c−1∑
j=1

(−1)[dj/c].

We define the empty sums S(d, 1) = S4(d, 1) = 0. In this paper, we examine
properties of the sums S(d, c) and S4(d, c) outside of the context of the
transformation formulas. For results related to the transformation formulas,
see L. A. Goldberg’s thesis [5].

The most well-known property of the Dedekind sum s(d, c) defined by

s(d, c) =
c∑

j=1

((
j

c

))((
dj

c

))
with

((x)) =
{

0 if x ∈ Z,
x− [x]− 1/2 otherwise,

is the reciprocity law, first proved by Dedekind [3]:

Reciprocity Law for s(d, c). If (c, d) = 1 and c, d > 0, then

(1.3) s(c, d) + s(d, c) = −1
4

+
d

12c
+

c

12d
+

1
12cd

.

In [2], Berndt proves the reciprocity theorem for S(d, c):

Reciprocity Law for S(d, c). If (c, d) = 1, c + d is odd and c, d > 0,
then

(1.4) S(c, d) + S(d, c) = 1.

There is no reciprocity formula for S4(d, c) in this same sense. (See [2]
for so-called hybrid reciprocity formulas, and the author’s thesis [9] for a
reciprocity formula modulo 8).

Rademacher [12] defined

f(d/c) = s(d, c)

as a function on the rationals. The function f(x) is well-defined, since it
can be shown from the definition that s(qd, qc) = s(d, c) for any positive
integer q. Rademacher posed the following questions about f(x). The first
was raised in [12], the others in [13, p. 112]:

1) Is f(x) unbounded in any neighborhood of any rational number?
2) Are the points (x, f(x)) dense in R× R?
3) Given two adjacent Farey fractions, h1/k1 and h2/k2 with f(h1/k1) >

0 and f(h2/k2) > 0, does it follow that

f

(
h1 + h2

k1 + k2

)
≥ 0?
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In [12], Rademacher answers the first question in the affirmative. D.
Hickerson [8] answers the second, also in the affirmative, using a contin-
ued fraction representation for s(d, c). Several authors [1], [11], [14] have
answered the third in the negative. All of these authors make extensive
use of (1.3) to prove their results. Because of the constant right-hand side
of (1.4) and the fact that the parities of c and d are more restricted, one
cannot employ the methods of Rademacher and Hickerson. Thus to study
the corresponding problems for the sums defined in (1.1) and (1.2) we need
to devise new methods. In Section 3, we answer the analogous questions
about the sums associated with the theta-functions. The first two results of
Section 2 are used extensively in the sequel.

2. Main results

Proposition 1. Let (c, d) = 1 with c > 0.

(i) If c and d are both odd , then S(d, c) = 0.
(ii) If d is even, then S4(d, c) = 0.

P r o o f. The proof of (i) is presented directly.
Since d and c are odd, d = c − 2n for some n ∈ Z. Then (c, n) = 1

since (c, d) = 1. Therefore, using the definition of S(d, c) and the fact that
[α] + [−α] = −1 for α 6∈ Z, we see that

S(d, c) = S(c− 2n, c) =
c−1∑
j=1

(−1)j+1+[(c−2n)j/c](2.1)

=
c−1∑
j=1

(−1)2j+1+[−2nj/c] =
c−1∑
j=1

(−1)[2nj/c].

Next we show that the sum of the jth and the (c − j)th exponents in
(2.1) is odd and thus they have opposite parity. Therefore the corresponding
terms cancel each other. Now, since [α] + [−α] = −1 for α 6∈ Z,[

2nj

c

]
+

[
2n(c− j)

c

]
=

[
2nj

c

]
+ 2n +

[
− 2nj

c

]
= 2n− 1.

There are an even number of terms, so we conclude that S(d, c) = 0. The
deduction of (ii) is made by observing that the exponents have the same
form as those in the last sum in (2.1).

R e m a r k. Some properties about these analogous sums, including Pro-
position 1, are proved by R. Sitaramachandrarao in [15].

Theorem 2. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0. Then for k ∈ N,
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(i) S(x+ak, y+bk) =
k−1∑
l=0

(−1)(a+b)l{S(a, b)±(−1)a+b}+(−1)(a+b)kS(x, y)

and

(ii) S4(x + ak, y + bk) =
k−1∑
l=0

(−1)al{S4(a, b)∓ (−1)a}+ (−1)akS4(x, y).

The following lemmas will be used to prove Theorem 2.

Lemma 3. Let (a, b) = 1 with 0 ≤ a ≤ b. Let x, y, m, l, k be nonnegative
integers such that ay − bx = ±1, y > 0, 1 ≤ m ≤ b, and 0 ≤ l < k. Then

(i)
[
(x + ak)m∓ l

y + bk

]
=

[
(x + ak)m

y + bk

]
.

If , in addition, m < y, then

(ii)
[
(x + ak)m∓ k

y + bk

]
=

[
(x + ak)m

y + bk

]
.

P r o o f. For l = 0, there is nothing to prove. For 1 ≤ l < k, it is sufficient
to show that [

(x + ak)m∓ (k − 1)
y + bk

]
=

[
(x + ak)m

y + bk

]
.

Suppose that

(2.2)
[
(x + ak)m∓ (k − 1)

y + bk

]
6=

[
(x + ak)m

y + bk

]
.

Then, since b ≥ 1, y ≥ 1 and consequently k − 1 < y + bk, we have

(2.3)
[
(x + ak)m∓ (k − 1)

y + bk

]
=

[
(x + ak)m

y + bk

]
∓ 1.

If (2.3) holds, then there is an integer j with 1 ≤ j ≤ k − 1 such that

(2.4) y + bk | (x + ak)m∓ j.

We show that (2.4) is impossible, so the assumption (2.2) is false.
If (2.4) holds, then there exists an integer t > 0 such that

(2.5) (y + bk)t = (x + ak)m∓ j.

Now

(2.6) a(y + bk)− b(x + ak) = ±1,

so we also have

(2.7) −aj(y + bk)− (−bj)(x + ak) = ∓j.

And from [10, p. 213], any solution of the Diophantine equation

A(y + bk)−B(x + ak) = ∓j
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has the form

(2.8) A = −aj + n(x + ak), B = −bj + n(y + bk), n ∈ Z,

Thus from (2.5), (2.7), and (2.8), for a particular n0 ∈ Z, we have

m = −bj + n0(y + bk) and t = −aj + n0(x + ak).

We rearrange the expression for m to get

(2.9) m = b(n0k − j) + n0y.

If n0 > 0, then from (2.9), since j < k, we are forced to conclude m > b.
If n0 ≤ 0, then we must have m < 0. In any case, since 1 ≤ m ≤ b by
hypothesis, we have a contradiction to (2.4).

If m < y, similar arguments rule out all values for n0 when j = k, and
we make the second conclusion in the statement of the lemma.

Lemma 4. Let a, b, m, x, y be nonnegative integers with (a, b) = 1, 1 ≤
m < b, ay − bx = ±1, and y > 0. Then for k ∈ N,[

(x + ak)m
y + bk

]
=

[
am

b

]
.

P r o o f. Note that since (a, b) = 1 and m < b, b - am. Using this fact,
ay − bx = ±1, and the inequality m/(y + bk) < 1, we conclude that[

(x + ak)m
y + bk

]
=

[
(x + ak)m

y + bk
− am

b
+

am

b

]
=

[
am

b
∓ m

b(y + bk)

]
=

[
am

b
∓ m/(y + bk)

b

]
=

[
am

b

]
.

Lemma 5. Let a, b, x, y,m be nonnegative integers with (a, b) = 1, ay −
bx = ±1, y > 0, and 1 ≤ m < y. Then for k ∈ N ∪ {0},

(2.10)
[
(x + ak)m

y + bk

]
=

[
xm

y

]
.

P r o o f. We use induction on k. When k = 0,[
(x + a · 0)m

y + b · 0

]
=

[
xm

y

]
.

Assuming (2.10) for k ≥ 1, we see that, since ay − bx = ±1,[
xm

y

]
=

[
(x + ak)m

y + bk

]
=

[
(x + ak)m

y + bk
+

m(x + a(k + 1))
y + b(k + 1)

− m(x + a(k + 1))
y + b(k + 1)

]
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=
[
m(x + a(k + 1))

y + b(k + 1)
∓ m

(y + bk)(y + b(k + 1))

]
=

[
m(x + a(k + 1))

y + b(k + 1)
∓ m/(y + bk)

y + b(k + 1)

]
.

Now since m/(y + bk) < 1 and, from (2.6), y + b(k + 1) - m(x + a(k + 1)),[
xm

y

]
=

[
m(x + a(k + 1))

y + b(k + 1)

]
.

P r o o f o f T h e o r e m 2. We prove (i). The proof of (ii) follows the
same steps.

From (1.1),

(2.11) S(x + ak, y + bk) =
y+bk−1∑

j=1

(−1)j+1+
[ (x+ak)j

y+bk

]
= R1 + R2,

where

R1 :=
bk∑

j=1

(−1)j+1+
[ (x+ak)j

y+bk

]
and

R2 :=
bk+y−1∑
j=bk+1

(−1)j+1+
[ (x+ak)j

y+bk

]
.

First,

R1 =
k−1∑
l=0

b(l+1)∑
j=bl+1

(−1)j+1+
[ (x+ak)j

y+bk

]
(2.12)

=
k−1∑
l=0

b∑
m=1

(−1)m+bl+1+
[ (x+ak)(m+bl)

y+bk

]
.

Now since ay − bx = ±1,[
(x + ak)(m + bl)

y + bk

]
=

[
(x + ak)m + xbl + abkl

y + bk

]
(2.13)

=
[
(x + ak)m + (ay ∓ 1)l + abkl

y + bk

]
=

[
(x + ak)m∓ l + al(y + bk)

y + bk

]
=

[
(x + ak)m∓ l

y + bk

]
+ al.

So from (2.12), (2.13), and Lemma 3(i),



Analogues of Dedekind sums 235

R1 =
k−1∑
l=0

(−1)(a+b)l
b∑

m=1

(−1)m+1+
[ (x+ak)m

y+bk

]
.

Now, separating the inner sum and then applying Lemma 4, we find that

(2.14) R1 =
k−1∑
l=0

(−1)(a+b)l

{ b−1∑
m=1

(−1)m+1+
[

am
b

]
+ (−1)b+1+

[ (x+ak)b
y+bk

]}
.

Simplifying the exponent of the last term inside the braces in (2.14), we see
that

b + 1 +
[
(x + ak)b

y + bk

]
= b + 1 +

[
bx + akb

y + bk

]
(2.15)

= b + 1 +
[
ay ∓ 1 + akb

y + bk

]
= b + 1 + a +

[
∓1

y + bk

]
.

Then we have, from (2.14), (2.15) and the definition of S(a, b),

(2.16) R1 =
k−1∑
l=0

(−1)(a+b)l{S(a, b)± (−1)a+b}.

To evaluate R2, we use ay − bx = ±1, Lemma 3(ii), Lemma 5, and the
definition of S(x, y) to deduce that

R2 =
bk+y−1∑
j=bk+1

(−1)j+1+
[ (x+ak)j

y+bk

]
(2.17)

=
y−1∑
m=1

(−1)m+bk+1+
[ (x+ak)(m+bk)

y+bk

]

=
y−1∑
m=1

(−1)m+bk+1+ak+
[ (x+ak)m∓k

y+bk

]

= (−1)(a+b)k

y−1∑
m=1

(−1)m+1+
[ (x+ak)m

y+bk

]

= (−1)(a+b)k

y−1∑
m=1

(−1)m+1+
[

xm
y

]
= (−1)(a+b)kS(x, y).

Upon combining (2.11), (2.16), and (2.17), we reach the conclusion

S(x + ak, y + bk) =
k−1∑
l=0

(−1)(a+b)l{S(a, b)± (−1)a+b}+ (−1)(a+b)kS(x, y).
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Corollary 6. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0.

(i) If a and b are both odd , then

S(x + ak, y + bk) = ±k + S(x, y).

(ii) If a is even, then

S4(x + ak, y + bk) = ∓k + S4(x, y).

P r o o f. To prove (i), we use Theorem 2(i), the fact that a + b is even,
and Proposition 1(i). The proof of (ii) is similar.

Corollary 7. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0.

(i) If a + b is odd and x and y are both odd , then

S(x + ak, y + bk) =
{

0 if k is even,
S(a, b)∓ 1 if k is odd.

(ii) If a is odd and x is even, then

S4(x + ak, y + bk) =
{

0 if k is even,
S4(a, b)± 1 if k is odd.

P r o o f. To prove (i), we note that, from Theorem 2(i) and Proposi-
tion 1(i),

S(x + ak, y + bk) =
k−1∑
l=0

(−1)l{S(a, b)∓ 1}

=
{

0 if k is even,
S(a, b)∓ 1 if k is odd.

The proof of (ii) is similar.

R e m a r k. In the cases when k is even in Corollary 7 the sums on the
left are equal to zero by Proposition 1.

Corollary 8. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0.

(i) If a + b is odd and x + y is odd , then

S(x + ak, y + bk) =
{

S(a, b)∓ 1 if k is even,
0 if k is odd.

(ii) If a is odd and x is odd , then

S4(x + ak, y + bk) =
{

S4(a, b)± 1 if k is even,
0 if k is odd.
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P r o o f. We prove (i). The proof of (ii) follows the same steps. If k = 1,
recall that ay − bx = ±1, so that, because of the parities of a, b, x, and y,
the result follows from Proposition 1(i). If k ≥ 2, (i) follows from Theo-
rem 2(i) and Proposition 1(i) since

S(x + ak, y + bk) = S(x + a + a(k − 1), y + b + b(k − 1))

=
k−2∑
l=0

(−1)l {S(a, b)∓ 1}+ (−1)k−1S(x + a, y + b)

=
k−2∑
l=0

(−1)l {S(a, b)∓ 1}

=
{

S(a, b)∓ 1 if k is even,
0 if k is odd.

Corollary 9. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0.

(i) If a + b is odd and x + y is odd , then

S(a, b)− S(x, y) = ±1.

(ii) If a is odd and x is odd , then

S4(a, b)− S4(x, y) = ∓1.

P r o o f. We apply Theorem 2(i) with k = 1 to get

(2.18) S(x + a, y + b) = S(a, b)± (−1)a+b + (−1)a+bS(x, y).

By Corollary 8(i), with k = 1,

(2.19) S(x + a, y + b) = 0.

The result follows from (2.18) and (2.19), since a + b is odd. As usual, (ii)
is proved similarly.

Corollary 10. Let (a, b) = 1 with 0 ≤ a ≤ b, and let x, y be nonnegative
integers such that ay − bx = ±1 and y > 0.

(i) If a + b is odd , x + y is odd and k is even, then

S(x + ak, y + bk) = S(x, y).

(ii) If a is odd , x is odd and k is even, then

S4(x + ak, y + bk) = S4(x, y).

P r o o f. To prove (i), we have, from Corollary 8(i),

(2.20) S(x + ak, y + bk) = S(a, b)∓ 1.

Then the result follows immediately from (2.20) and Corollary 9(i). The
proof of (ii) is similar.
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3. Rademacher’s questions. We are now in a position to address the
questions of Rademacher as they relate to the sum S(d, c). Let (d, c) = 1
and define g(d/c) = S(d, c). Here we require that c and d be relatively
prime, since S(qd, qc) 6= S(d, c) in general. The analogues of Rademacher’s
questions are:

1) Is g(x) unbounded in any neighborhood of any real number?
2) Are the points (x, g(x)) dense in R× Z ?
3) Given two adjacent Farey fractions, h1/k1 and h2/k2 with g(h1/k1) >

0 and g(h2/k2) > 0, does it follow that

g

(
h1 + h2

k1 + k2

)
≥ 0?

Note that g(x) is periodic with period 2, since

g

(
d

c
+ 2

)
= S(d + 2c, c) =

c−1∑
j=1

(−1)j+1+[(d+2c)j/c](3.1)

=
c−1∑
j=1

(−1)3j+1+[dj/c] =
c−1∑
j=1

(−1)j+1+[dj/c]

= S(d, c) = g

(
d

c

)
.

Also observe that

S(d + c, c) =
c−1∑
j=1

(−1)j+1+[(d+c)j/c] =
c−1∑
j=1

(−1)2j+1+[dj/c](3.2)

=−
c−1∑
j=1

(−1)[dj/c] = −S4(d, c).

We now show that, as in the case of Dedekind sums, Question 1 can be
answered affirmatively.

Theorem 11. The function g(x) is unbounded above and below in any
neighborhood of any real number.

P r o o f. Let r ∈ R and ε > 0 be given. Because of (3.1), we may assume
that r ∈ [0, 2). If r ∈ [0, 1], then there exists a/b such that (a, b) = 1, a and
b are both odd, and ∣∣∣∣r − a

b

∣∣∣∣ < ε.

Let x1, y1 ∈ N be such that ay1 − bx1 = 1. Then for large enough k ∈ N,∣∣∣∣r − x1 + ak

y1 + bk

∣∣∣∣ < ε.
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Now, applying Corollary 6(i), we see that

(3.3) g

(
x1 + ak

y1 + bk

)
= k + O(1) as k →∞.

Similarly, there exist x2, y2 ∈ N such that ay2 − bx2 = −1 and∣∣∣∣r − x2 + ak

y2 + bk

∣∣∣∣ < ε.

Then, by Corollary 6(i) again, we have

(3.4) g

(
x2 + ak

y2 + bk

)
= −k + O(1) as k →∞.

Thus, from (3.3) and (3.4), g(x) is arbitrarily large in either direction in this
neighborhood.

If r ∈ (1, 2), we apply a similar argument to r−1. There exists a/b with
(a, b) = 1, a even, and ∣∣∣∣r − 1− a

b

∣∣∣∣ < ε.

Now let x1, y1 ∈ N with ay1 − bx1 = 1. Then for large enough k ∈ N,

(3.5)
∣∣∣∣r − 1− x1 + ak

y1 + bk

∣∣∣∣ < ε.

Then by Corollary 6(ii),

(3.6) S4(x1 + ak, y1 + bk) = −k + S4(x1, y1).

Thus from (3.2) and (3.6), we get

S(x1 + ak + y1 + bk, y1 + bk) = −S4(x1 + ak, y1 + bk) = k − S4(x1, y1).

In other words,

(3.7) g

(
x1 + ak + y1 + bk

y1 + bk

)
= k + O(1) as k →∞.

And from (3.5), ∣∣∣∣r − x1 + ak + y1 + bk

y1 + bk

∣∣∣∣ < ε.

So we conclude from (3.7) that g(x) is unbounded from above for x ∈ (1, 2).
An identical argument shows that g(x) is also unbounded from below on
(1, 2).

We now answer Question 2. Again, as with Dedekind sums, we answer
in the affirmative.

Theorem 12. The points (x, g(x)) are dense in R× Z.

The proof of Theorem 12 depends upon two additional results. The first,
due to Goldberg [5, pp. 109–110], is
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Theorem 13. Let (c, d) = 1 with d 2 ≡ −1 (mod c).

(i) If c is odd and d is even, then S(d, c) = 0.
(ii) If c and d are both odd , then S4(d, c) = 0.

The second is due to W. Duke, J. B. Friedlander, and H. Iwaniec [4]. Let
f(x) be an irreducible quadratic polynomial with integral coefficients and
negative discriminant and let p be prime. Let p vary and take all numbers of
the form ν/p, where f(ν) ≡ 0 (mod p) and 0 < ν ≤ p. Arrange the numbers
ν/p as a sequence n1, . . . , nm, . . . , so that the corresponding denominators
p are in ascending order.

Theorem 14. The sequence n1, . . . , nm, . . . , as defined above, is uni-
formly distributed in the interval (0, 1).

P r o o f o f T h e o r e m 12. It is sufficient to show that the function
g(x) takes on every integer value in any neighborhood of a number r. Also,
by (3.1), we need only consider r ∈ [0, 2).

Let ε > 0, r ∈ [0, 1], and our desired value M ∈ Z be given.
We want to find a0/b0 such that (a0, b0) = 1, b0 is odd, a0 is even,

a2
0 ≡ −1 (mod b0), and

(3.8)
∣∣∣∣r − a0

b0

∣∣∣∣ < ε.

This can be accomplished by applying Theorem 14 in a way that will guar-
antee that a0 is even. First let f(x) = 4x2 + 1. Theorem 14 asserts that
there is a ν and an odd prime p such that 4ν2 ≡ −1 (mod p) and∣∣∣∣r2 − ν

p

∣∣∣∣ <
ε

2
.

Now set a0 = 2ν and b0 = p and the conditions are satisfied.
If M = 0 we stop since, by Theorem 13(i), g(a0/b0) = 0. And we have

found a number in the neighborhood giving the desired value. Suppose
M > 0. Let x0, y0 > 0 be such that a0y0 − b0x0 = −1 and x0 + y0 is odd.
Then from (3.8), for sufficiently large k,∣∣∣∣r − x0 + a0k

y0 + b0k

∣∣∣∣ < ε.

Now by Corollary 8(i) and Theorem 13(i), for some large even k0,

(3.9) g

(
x0 + a0k0

y0 + b0k0

)
= S(x0 + a0k0, y0 + b0k0) = S(a0, b0) + 1 = 1.

If M = 1 we stop, since we have found a number in the neighborhood giving
the value M . If M > 1, set

a1 = x0 + a0k0 and b1 = y0 + b0k0.
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Since (a1, b1) = 1, there exist x1, y1 > 0 such that a1y1− b1x1 = −1 and
x1 + y1 is odd. Then from (3.8), for sufficiently large k,∣∣∣∣r − x1 + a1k

y1 + b1k

∣∣∣∣ < ε.

From Corollary 8(i) and (3.9), with a sufficiently large even k1, we deduce
that

g

(
x1 + a1k1

y1 + b1k1

)
= g

(
a1

b1

)
+ 1 = 2.

We continue this process M times to find xM−1, yM−1 and aM−1, bM−1

such that xM−1 +yM−1 and aM−1 +bM−1 are odd, aM−1yM−1−bM−1xM−1

= −1, and
S(aM−1, bM−1) = M − 1,

and for large enough k, ∣∣∣∣r − xM−1 + aM−1k

yM−1 + bM−1k

∣∣∣∣ < ε.

Choosing a large enough even kM−1 and using Corollary 8(i), we find that

g

(
xM−1 + aM−1kM−1

yM−1 + bM−1kM−1

)
= g

(
aM−1

bM−1

)
+ 1 = M − 1 + 1 = M.

If M < 0, then we apply the same argument, except that we find appropriate
a, b, x, y with ay − bx = 1.

If r ∈ (1, 2), we apply the argument used in the proof of Theorem 11,
using Corollary 8(ii), Theorem 13(ii) and finally (3.2).

We now address Question 3. Here, unlike the situation with Dedekind
sums, the question, as posed, has a simple answer. Suppose that h1/k1 and
h2/k2 are adjacent Farey fractions with g(h1/k1), g(h2/k2) 6= 0. Recall that,
from elementary properties of Farey fractions, h1k2 − h2k1 = ±1. Then by
Proposition 1(i), h1 + k1 and h2 + k2 are odd. Thus h1 + h2 and k1 + k2 are
both odd and by Proposition 1(i),

g

(
h1 + h2

k1 + k2

)
= S(h1 + h2, k1 + k2) = 0.

From Corollary 9(i), we deduce a more interesting result.

Theorem 15. Let h1/k1 < h2/k2 be adjacent Farey fractions. If g(h1/k1)
> (resp. <) 0, then

g

(
h2

k2

)
≥ (resp. ≤) 0.

P r o o f. If h2 and k2 are both odd, then, by Proposition 1(i), g(h2/k2)
= 0.
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If h2 + k2 is odd, then, by Corollary 9(i),

S(h2, k2) = 1 + S(h1, k1) > (resp. ≤) 0.

Identical arguments can be used to show that Theorems 11, 12, and 15
hold for the function g4(x), defined by g4(d/c) = S4(d, c) with (d, c) = 1.
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