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1. Introduction. Let α1, . . . , αd be the roots, appearing as many times
as their multiplicity, of a nonzero polynomial A(x) ∈ Z[x]. Thus, we may
write

(1) A(x) =
d∑

j=0

ajx
j = ad

d∏
j=1

(x− αj)

where the aj are integers with ad 6= 0. We define the Euclidean norm of A

to be ‖A‖ = (
∑d

j=0 |aj |2)1/2. With a positive integer N and a polynomial
A fixed, we will be interested in bounding the size of ‖Q(x)‖ given that
Q(x) ∈ Z[x] and ‖AQ‖ ≤ N . Such a bound on ‖Q‖ is not always possible.
In fact, if A(x) is divisible by a cyclotomic polynomial Φm(x), then by
considering w(x) ∈ Z[x] for which w(x)Φm(x) = xm−1, we deduce that the
Euclidean norm of

A(x)w(x)(xkm + x(k−1)m + . . . + xm + 1)

for any positive integer k is bounded above by a quantity that is independent
of k. Hence, whenever A(x) is divisible by a cyclotomic polynomial and N is
sufficiently large, there will be Q(x) ∈ Z[x] with arbitrarily large Euclidean
norm and with ‖AQ‖ ≤ N . It is reasonable, however, to expect that the
Euclidean norm of Q(x) is bounded whenever A(x) is free of cyclotomic
factors. This in fact is the main result of this paper.

Theorem 1. Let A(x) ∈ Z[x] be a polynomial having no cyclotomic
factors. Let N ≥ 1. If Q(x) ∈ Z[x] and ‖A(x)Q(x)‖ ≤ N , then ‖Q‖ is
bounded by a function depending only on A(x) and N .
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The bound on ‖Q‖ can be made explicit, and this will be clear from
the arguments. There are special cases where such a bound follows from
the literature. In particular, if A(α)Q(α) = 0 ⇒ A(1/α)Q(1/α) 6= 0, then
Theorem 1 follows from the main result of Schinzel in [9]. More generally, if
A(x) has no roots with absolute value 1, then a theorem of Donaldson and
Rahman [2] would imply Theorem 1. Furthermore, in this case, the bound
on ‖Q‖ takes a nice form. We explain this use of Donaldson and Rahman’s
work in more detail in Section 4.

As a consequence of a more general conjecture of Schinzel [10], it would
follow that if A(x)Q(x) has no cyclotomic factors and ‖AQ‖ ≤ N , then ‖Q‖
is bounded by a function depending only on N . On the other hand, Schinzel
(private communication) has supplied us with the following example which
shows that the dependence of the bound for ‖Q‖ on the polynomial A(x)
is necessary in Theorem 1. Let p and q be odd primes with p > q. Let
A(x) = Φpq(x) + x− 1 and Q(x) = (xp − 1)(xq − 1)/(x− 1). Then

A(x)Q(x) = xpq + xp+q − xp − xq.

Thus, ‖AQ‖ = 2, but ‖Q‖ can be arbitrarily large. It can be shown that
A(x) is xq times an irreducible polynomial which is not cyclotomic. Thus,
the bound on ‖Q‖ in Theorem 1 must depend on A(x). By applying classical
bounds on norms of factors of polynomials, it is not difficult to see that the
bound on ‖Q‖ can be made a function of only the degree of A(x) and N .
Whether the bound on ‖Q‖ can be made a function of only ‖A‖ and N is
unclear.

A second problem we consider in this paper is that of finding among all
nonzero integer polynomials which are divisible by a given polynomial A(x),
a polynomial with minimum Euclidean norm. Thus, we want a nonzero
element of the principal ideal (A(x)) in Z[x] with smallest possible Euclidean
norm. Similar to our discussion above, it is not difficult to produce examples
where the polynomial A(x) has a large Euclidean norm while an obvious
multiple of A(x) has decidedly lower Euclidean norm.

We will make use of the notation:

M(A) = |ad|
d∏

j=1

max{1, |αj |} (the Mahler measure of A),

‖A‖min = min{‖P‖ : P (x) ∈ Z[x], A(x) |P (x), P (x) 6≡ 0},
PA = {QA : Q(x) ∈ Z[x], Q(0) 6= 0, ‖QA‖ = ‖A‖min}.

Thus, we are interested in an algorithm for finding an element of PA. We will
not be able to resolve this problem in general, but an answer to the problem
does follow from Theorem 1 in the case where A(x) has no cyclotomic factors.
In fact, in this case, PA has a finite number of elements and they can all
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be determined. Previously, the first author together with Robinson and
Wheeler [4] found such an algorithm in the case where A(x) is irreducible.
The more general problem considered here was posed at the end of that
paper.

Similar to their approach, the idea is to find an upper bound B on
the degree of the elements of PA. Once this has been accomplished, the
task of finding the elements of PA can be seen to be effectively computable
as follows. We observe that A is in the ideal (A(x)) so ‖A‖ is an upper
bound on ‖A‖min. This means that the coefficients of any element of PA

are each bounded in absolute value by ‖A‖. Thus, the elements of PA can
be determined by considering all the polynomials in Z[x] with coefficients
bounded in absolute value by ‖A‖ and with degree at most B. Those which
are divisible by A(x) and have the smallest Euclidean norm are then the
elements of PA.

Theorem 2. Let A(x) ∈ Z[x] be a polynomial having no cyclotomic
factors. Let P (x) ∈ PA. Then deg P is bounded by a function depending
only on A.

The bound on deg P can be made explicit. Indeed, the method described
above for finding the elements of PA depends on having more than an exis-
tence proof of a bound on deg P .

The bounds in this paper will be functions of other known bounds in the
literature. To be explicit, we will need a quantity B(m,N) satisfying the
following condition:

(C) For any nonzero P (x) ∈ Z[x] of degree ≤ m with ‖P‖ ≤ N and any
Q(x) ∈ Z[x] such that Q(x) |P (x), we have ‖Q‖ ≤ B(m,N).

We may take, for example, B(m,N) of the form βmN for some appropriate
β (cf. [1], [5], [6], [8]; β = 2 will suffice), but we allow for the possibility that
a different estimate may be used. We also note that in (C) we may suppose
that B(m,N) is increasing with respect to each of m and N , and we do so.

2. Preliminaries and lemmas. Let P (x) ∈ Z[x] with P (0) 6= 0. We
define the reciprocal polynomial of P to be P ∗(x) = xdeg P P (1/x) ∈ Z[x].
It is clear that if P ∈ PA, then P ∗ ∈ PA∗ . Furthermore, deg P = deg P ∗

and ‖P‖ = ‖P ∗‖. By considering reciprocal polynomials when necessary,
we will be able to suppose that a polynomial under consideration either has
a root inside the unit circle or has all its roots on the unit circle.

We begin with some lemmas which may be viewed as extensions of two
lemmas appearing in [4]. We define A(x) as in (1). Observe that for any
polynomial f(x), we have ‖f(x)‖ = ‖xf(x)‖. It follows that we may suppose
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a0 6= 0 in Theorems 1 and 2. Set

P (x) =
n∑

j=1

cjx
dj

with 0 = d1 < . . . < dn = deg P (x) and each cj nonzero. For fixed J with
1 ≤ J ≤ n, set

(2) PJ(x) =
J∑

j=1

cjx
dj .

Lemma 1. Suppose A(x) is irreducible and has a root with absolute value
< 1. Let N be such that ‖P‖ ≤ N , and let J ∈ {1, . . . , n−1}. If A(x) |P (x)
and A(x) - PJ(x), then

dJ+1 ≤ C(dJ + 2d),

where C = log N/ log(M(A)/|a0|).

Here, A(x) |P (x) and P (0) 6= 0, so that a0 6= 0 follows. Observe that
the condition that A(x) has a root with absolute value < 1 implies

M(A) > |ad|
d∏

j=1

|αj | = |a0|.

Thus, the definition of C above makes sense.
For the proof of Lemma 1, we let RJ denote the resultant of A(x) and

PJ(x). Let λ denote the number of roots of A(x) having absolute value < 1.
We use well known properties of resultants [11] to obtain

1 ≤ |RJ | = |ad|dJ

d∏
j=1

|PJ(αj)|

= |ad|dJ

∏
|αj |<1

|P (αj)− PJ(αj)|
∏

|αk|≥1

|PJ(αk)|

≤ |ad|dJ

∏
|αj |<1

(
|αj |dJ+1

n∑
h=J+1

|ch|
) ∏
|αk|≥1

(
|αk|dJ

J∑
i=1

|ci|
)

≤
(

|a0|
M(A)

)dJ+1( n∑
h=J+1

|ch|
)λ

M(A)dJ

( J∑
i=1

|ci|
)d−λ

.

Dividing by (|a0|/M(A))dJ+1 and taking logarithms of both sides gives

(3) dJ+1 ≤
log M(A)

log(M(A)/|a0|)
dJ +

log((
∑n

h=J+1 |ch|)λ(
∑J

i=1 |ci|)d−λ)
log(M(A)/|a0|)

.
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Now
n∑

h=J+1

|ch| ≤
n∑

h=J+1

|ch|2 ≤ N2.

Similarly,
J∑

i=1

|ci| ≤ N2.

Hence, it is clear by (3) that

dJ+1 ≤
log M(A)

log(M(A)/|a0|)
dJ +

2d log N

log(M(A)/|a0|)
.

By well known properties of Mahler measure, we obtain M(A) ≤ M(P ) ≤
‖P‖ ≤ N . Since

C =
log N

log(M(A)/|a0|)
≥ log M(A)

log(M(A)/|a0|)
≥ 1,

we deduce dJ+1 ≤ CdJ + 2dC as required.

Lemma 2. Let N ≥ 1, and let A(x) ∈ Z[x] as in (1). Assume that A(x)
is irreducible and has at least one root inside the unit circle. If there exists
Q(x) ∈ Z[x] such that ‖AQ‖ ≤ N , then ‖Q‖ is bounded above by a constant
depending only on A(x) and N (and independent of Q and its degree). More
specifically ,

‖Q‖ ≤ NB(2dN4CN2
, N),

where C = log N/ log(M(A)/|a0|).

P r o o f. We may suppose that Q(0) 6= 0 and do so. We set P (x) =
A(x)Q(x). We consider 3 cases.

Case 1: A(x) - PJ(x) for all J ∈ {1, . . . , n − 1}. We may apply Lemma
1 for each J ∈ {1, . . . , n− 1} to obtain

dJ+1 ≤ C(dJ + 2d).

Recall that d1 = 0 and, as shown above, C ≥ 1. By induction on J , we have

(4) deg P = dn ≤ 2d
n∑

j=1

Cj ≤ 2dnCn.

But then n ≤ ‖P‖2 ≤ N2 implies that deg P ≤ 2dN2CN2
. By condition (C),

we obtain
‖Q‖ ≤ B(2dN2CN2

, N).
The right side is less than the bound given in the lemma, so in this case we
are through.
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Case 2: A(x) |PJ(x) for some J and dJ+1 − dJ ≤ 2dN2CN2
for all

J ≤ n − 1. Since n ≤ N2, summing the inequality on J and using the fact
that d1 = 0, we obtain deg(A(x)Q(x)) ≤ 2dN4CN2

. Here, we deduce that

‖Q‖ ≤ B(2dN4CN2
, N),

completing the argument in this case.

Case 3: For some J ≤ n−1, dJ+1−dJ > 2dN2CN2
. Let r be the number

of J ’s for which dJ+1−dJ exceeds 2dN2CN2
. Let 1 ≤ J1 < . . . < Jr ≤ n−1

be such that J ∈ {J1, . . . , Jr} if and only if dJ+1 − dJ > 2dN2CN2
. We

show that A(x) |PJ(x) for each J ∈ {J1, . . . , Jr}. Assume otherwise, and let
i ∈ {1, . . . , r} be minimal such that A(x) - PJi

(x). Let J ′ ∈ {1, . . . , Ji − 1}
be maximal such that A(x) |PJ′(x); if no such J ′ exists, we set J ′ = 0 and
PJ′(x) = P0(x) = 0. We consider the polynomial (P (x) − PJ′(x))/xdJ′+1 .
It is a multiple of A(x) and has norm ≤ ‖P‖ ≤ N . By Lemma 1 with this
polynomial in place of P (x), we deduce

dJ+1 − dJ′+1 ≤ C(dJ − dJ′+1 + 2d) for J ′ < J ≤ Ji.

We appeal to the argument we gave for (4) to obtain

dJi+1 − dJ′+1 ≤ 2dN2CN2
.

This contradicts the inequality

dJi+1 − dJ′+1 ≥ dJi+1 − dJi
> 2dN2CN2

.

Therefore, A(x) |PJ(x) for each J ∈ {J1, . . . , Jr}.
Let k0 = 0, and let kj = dJj+1 for each j ∈ {1, . . . , r}. Replacing these

dJj+1 with their respective kj ’s in A(x)Q(x) we get

A(x)Q(x) =
n∑

j=1

cjx
dj =

r∑
j=0

hj(x)xkj

for some hj(x) ∈ Z[x] with deg hj(x) = dJj+1 − dJj+1 for j ∈ {1, . . . , r− 1},
deg h0(x) = dJ1 and deg hr(x) = dn−dJr+1. Now kL+1−(kL+deg hL(x)) >

2d N2 CN2
as L varies over {0, 1, . . . , r−1}. Also, since A(x) |PJ(x) for each

J ∈ {J1, . . . , Jr} and since A(x) |P (x), we see that A(x) |hj(x) for all j ∈
{0, 1, . . . , r}. Therefore, for each j ∈ {0, 1, . . . , r}, there exists wj(x) ∈ Z[x]
satisfying

hj(x) = A(x)wj(x).

Thus,

Q(x) =
r∑

j=0

wj(x)xkj .
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For each j ∈ {0, 1, . . . , r}, the coefficients of A(x)wj(x) are among the coef-
ficients of A(x)Q(x). Hence,

‖hj(x)‖ = ‖A(x)wj(x)‖ ≤ ‖A(x)Q(x)‖ ≤ N.

By the choice of the kj ’s, we note that if hj(x) =
∑k

i=1 bix
ni , then nJ+1 −

nJ ≤ 2dN2CN2
for all J ∈ {1, . . . , k − 1}. Since each hj(x) is a polynomial

with norm ≤ N , we are in a position to apply Case 1 or 2 to each hj(x).
We deduce that

‖wj(x)‖ ≤ B(2dN4CN2
, N) for j ∈ {0, 1, . . . , r}.

Now r + 1 ≤ n ≤ N2 implies that

‖Q‖2 =
r∑

j=0

‖wj‖2 ≤ N2B2(2dN4CN2
, N).

Thus, in this case, the lemma also follows.

If A(x) has a root with absolute value > 1, one can still apply Lemma 2
by considering reciprocal polynomials. In other words, one considers A∗(x)
and notes that ‖A(x)Q(x)‖ = ‖A∗(x)Q∗(x)‖. The bound is the same as
that given in Lemma 1 except that A needs to be replaced by A∗ in the
definition of C. Lemma 2, however, does not handle the case when A(x) has
roots only on the unit circle. In order to deal with this case, we introduce
two new lemmas.

Lemma 3. Suppose the roots of A(x) are distinct and have absolute value
≥ 1. Suppose further that no root of A(x) is a root of unity. Let N be such
that ‖P‖ ≤ N , and let J ∈ {1, . . . , n− 1}. If A(x) |P (x) and A(x) - PJ(x),
then

dJ+1 − dJ ≤ 2ddd2+dN2d‖A‖2d2−2d.

P r o o f. Let Q(x) = P (x)/A(x) and write

Q(x) =
m∑

j=0

qjx
j with q0qm 6= 0.

We define qj = 0 for j 6∈ [0,m]. Recall from (2) that PJ(x) =
∑J

j=1 cjx
dj .

Now for all k such that dJ < k < dJ+1, we have

(5) 0 = a0qk + a1qk−1 + . . . + adqk−d

since the right-hand side is simply the coefficient of xk in the product
A(x)Q(x) = P (x). Thus, the sequence {qi}dJ−d<i<dJ+1 is a linear recur-
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rence of order d. In order to bound the elements of this sequence we expand
1/A(x) in a formal power series. Since all the roots of A(x) are distinct, we
have

Q(x) = P (x)
d∑

j=1

(
−1

αjA′(αj)

)
1

1− x/αj

= P (x)
∞∑

h=0

xh
d∑

j=1

−α−h
j

αjA′(αj)

=
∞∑

k=0

xk
∑

i
di≤k

ci

d∑
j=1

−α
−(k−di)
j

αjA′(αj)

=
∞∑

k=0

xk
d∑

j=1

−α−k
j

αjA′(αj)

∑
i

di≤k

ciα
di
j .

Thus,

qk =
d∑

j=1

−PJ′(αj)
αjA′(αj)

α−k
j for 1 ≤ J ′ ≤ n− 1 and dJ′ ≤ k < dJ′+1.

Since |αj | ≥ 1 for each j, we deduce that

(6) |qk| ≤
J∑

i=1

|ci|
d∑

j=1

1/|A′(αj)| for all k < dJ+1.

Let BJ denote the right-hand side of (6). In the sequence {qi}dJ−d<i<dJ+1

there are dJ+1 − dJ contiguous subsequences of length d. And, there are at
most (2BJ + 1)d distinct d-vectors 〈qk−d+1, . . . , qk〉 satisfying |qi| ≤ BJ for
k − d + 1 ≤ i ≤ k. Assume that

(7) dJ+1 − dJ > (2BJ + 1)d.

Then there are two d-vectors

~v1 = 〈qk1−d+1, . . . , qk1〉 and ~v2 = 〈qk2−d+1, . . . , qk2〉

with dJ ≤ k1 < k2 < dJ+1 such that ~v1 = ~v2. From (5), we see that for dJ <
k < dJ+1, the value of qk is determined by the previous d values of qj . Thus,
{qj}k1−d<j<dJ+1 is cyclic with cycle length ω ≤ k2 − k1. Now, we form an
infinite number of multipliers Qt(x) such that ‖Qt(x)A(x)‖ = ‖Q(x)A(x)‖.
This is done by splicing in t copies of the vector 〈qdJ+1−ω, . . . , qdJ+1−1〉 into
the coefficient vector for Q between qdJ+1−1 and qdJ+1 . More precisely, we
have
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Qt(x) =
dJ+1−ω−1∑

j=0

qjx
j +

( dJ+1−1∑
j=dJ+1−ω

qjx
j
)
(1 + xω + . . . + xωt)

+ xωt
m∑

j=dJ+1

qjx
j

and

Qt(x)A(x) =
J∑

j=1

cjx
dj + xωt

n∑
j=J+1

cjx
dj .

Note that ‖QtA‖ = ‖QA‖ ≤ N and

(Qt(x)−Q(x))A(x) = (xωt − 1)
n∑

j=J+1

cjx
dj .

There are no roots of unity among α1, . . . , αd. Hence, A(x) |
∑n

j=J+1 cjx
dj .

But A(x) |P (x) implies now that A(x) |PJ(x), a contradiction. Thus (7)
does not hold so that

dJ+1 − dJ ≤ (2BJ + 1)d.

One easily gets

dJ+1 − dJ ≤
(

2(N2 − 1)
d∑

j=1

1
|A′(αj)|

+ 1
)d

.

Since all the roots of A are distinct, A and A′ are relatively prime. Let R
denote the resultant of A∗ (the reciprocal polynomial for A(x)) and A′∗ (the
reciprocal polynomial for A′(x)). The roots of A∗ are 1/αj for 1 ≤ j ≤ d.
If for some j, 1/αj is a root of A′∗, then αj is a root of A′, contradicting
the fact that A and A′ are relatively prime. Thus, A∗ and A′∗ are relatively
prime, and the resultant is nonzero. We consider a value of i ∈ {1, . . . , d}.
Then by an argument of resultants (cf. [7, Proposition 1.6]) and the fact
that |αi| ≥ 1, we have

1 ≤ |R| ≤ d|A′∗(1/αi)|‖A′∗‖d−1‖A∗‖d−1 ≤ d|A′(αi)|‖A′‖d−1‖A‖d−1.

We use the fact that ‖A′‖ ≤ (
∑d

j=1 d2|aj |2)1/2 ≤ d‖A‖. Then

1
|A′(αi)|

≤ dd‖A‖2d−2.

This holds for each i ∈ {1, . . . , d} so that

dJ+1 − dJ ≤ (2(N2 − 1)dd+1‖A‖2d−2 + 1)d ≤ 2ddd2+d N2d‖A‖2d2−2d.

This completes the proof of the lemma.
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Lemma 4. Let N ≥ 1, and suppose A(x) has distinct roots, each of
absolute value ≥ 1. Suppose further that no root of A(x) is a root of unity.
If Q(x) ∈ Z[x] is such that ‖AQ‖ ≤ N , then

‖Q‖ ≤ NB(2ddd2+d N2d+2‖A‖2d2−2d, N).

P r o o f. Again we view P (x) as the product of the polynomials A(x)
and Q(x). As in Lemma 2, we consider 3 cases.

Case 1: A(x) - PJ(x) for all J ∈ [1, n − 1]. We use Lemma 3 and sum
over J . Noting that n ≤ N2, we obtain

deg P ≤ 2ddd2+d N2d+2‖A‖2d2−2d.

Therefore Q(x) satisfies condition (C) with m = 2ddd2+d N2d+2‖A‖2d2−2d.
Hence,

‖Q‖ ≤ B(2ddd2+dN2d+2‖A‖2d2−2d, N).
Case 2: A(x) |PJ(x) for some J , and for all J ∈ [1, n− 1], dJ+1 − dJ ≤

2ddd2+dN2d‖A‖2d2−2d. As above we get here

‖Q‖ ≤ B(2ddd2+dN2d+2‖A‖2d2−2d, N).

Case 3: For some J , dJ+1 − dJ > 2ddd2+dN2d‖A‖2d2−2d. By Lemma
3, we get A(x) |PJ(x) for any such J . We appeal to the argument given
in Lemma 2, Case 3. Here the situation is somewhat simpler as the cor-
responding hj(x) are clearly divisible by A(x) (since A(x) |PJ(x) whenever
dJ+1 − dJ > 2ddd2+dN2d‖A‖2d2−2d). We deduce that

‖Q‖ ≤ NB(2ddd2+d N2d+2‖A‖2d2−2d, N),

and Lemma 4 follows.

The following lemma can be considered as a characterization of the mul-
tipliers of A(x) which give minimum norm. This lemma is also useful in
reducing the search space of multipliers in the implementation of the algo-
rithm to find the elements of PA.

Lemma 5. Let A(x) be as in (1) of degree d. Let Q(x) =
∑r

j=1 qjx
mj

with 0 = m1 < . . . < mr and each qj 6= 0. If ‖A(x)Q(x)‖ = ‖A(x)‖min, then
mJ+1 −mJ ≤ d for each J ∈ {1, . . . , r − 1}. Furthermore,

deg Q(x) ≤ (‖Q‖2 − 1)d.

P r o o f. Let P (x) = A(x)Q(x). Then ‖P‖ = ‖A‖min. Assume mJ+1 −
mJ > d for some J ∈ {1, . . . , r − 1}. Let QJ =

∑J
j=1 qjx

mj . Then Q(x) =∑r
j=J+1 qjx

mj + QJ(x) implies

A(x)Q(x) = A(x)
r∑

j=J+1

qjx
mj + A(x)QJ(x).
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Now deg(A(x)QJ(x)) = d + mJ < mJ+1. Therefore, the coefficients of
A(x)Q(x) are the disjoint union of the coefficients of A(x)

∑r
j=J+1 qjx

mj

and the coefficients of A(x)QJ(x). Hence, ‖A(x)QJ(x)‖ < ‖P‖, giving a
contradiction. Thus, mJ+1 −mJ ≤ d.

It is clear that r ≤ ‖Q‖2. Now, mJ+1−mJ ≤ d for each J ∈ {1, . . . , r−1}
and m1 = 0 imply that

deg Q(x) =
r−1∑
J=1

(mJ+1 −mJ) ≤
r−1∑
J=1

d = (r − 1)d ≤ (‖Q‖2 − 1)d,

establishing the lemma.

3. Proofs of the theorems

P r o o f o f T h e o r e m 1. We use Lemmas 2 and 4 where a bound was
given for ‖Q‖ when ‖AQ‖ ≤ N . Observe that one of these two lemmas will
apply if A(x) is an irreducible noncyclotomic polynomial. We write B̃(A,N)
to denote a bound given from these two lemmas for ‖Q‖.

Write A(x) =
∏m

j=1 fj(x) with each fj(x) irreducible and where repeated
factors appear as many times as their multiplicity. By the conditions in the
theorem, no fj(x) is cyclotomic. For each j ∈ {1, . . . ,m}, we consider
A(x) = fj(x) and apply either Lemma 2 or Lemma 4. Applying these
lemmas repeatedly on each fj , we get

‖f2f3 . . . fmQ‖ ≤ B̃(f1, N),

‖f3f4 . . . fmQ‖ ≤ B̃(f2, B̃(f1, N)),

‖f4f5 . . . fmQ‖ ≤ B̃(f3, B̃(f2, B̃(f1, N))),
...

and the required bound on ‖Q‖ follows.

P r o o f o f T h e o r e m 2. Let N = ‖A‖. We set Q(x) = P (x)/A(x).
The polynomial P (x) is a multiple of A(x) with minimal Euclidean norm
so that ‖A(x)Q(x)‖ ≤ N . By Theorem 1, ‖Q‖ is bounded by a function of
A(x) and N . Since N = ‖A‖, we deduce that ‖Q‖ is bounded by a function
which depends only on A(x). Also, Lemma 5 implies that deg Q is bounded
by a function of ‖Q‖ and d = deg A. Thus, deg Q is bounded by a function
depending only on A(x). The result now follows from deg P = deg Q+deg A.

4. Further remarks. As mentioned in the introduction, there are also
results in the literature which would help give estimates of the type we have
been considering. One such result which can be found in [2] and [3] is as
follows.
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Lemma 6. Let Q(x) be a complex polynomial of degree n and α any
complex number. Then

‖Q‖ ≤
(

1 + |α|2 − 2|α| cos
(

π

n + 2

))−1/2

‖Q(x)(x− α)‖.

From this result, we can obtain the following revision of Theorem 1.

Theorem 3. Let A(x) ∈ Z[x] be a polynomial of the form (1) having no
roots on the unit circle. Let N ≥ 1. If Q(x) ∈ Z[x] and ‖A(x)Q(x)‖ ≤ N ,
then

‖Q‖ ≤ N

|A+(1)|
,

where A+(x) = ad

∏d
i=1(x− |αi|).

P r o o f. By Lemma 6, we have

‖adQ(x)‖ ≤
(

1 + |α1|2 − 2|α1| cos
(

π

deg Q + 2

))−1/2

‖adQ(x)(x− α1)‖

≤ (1 + |α1|2 − 2|α1|)−1/2‖adQ(x)(x− α1)‖

≤ ‖adQ(x)(x− α1)‖
|1− |α1||

.

If we replace adQ(x) with adQ(x)(x− α1) above and use α2 in place of α1,
we get

‖adQ(x)(x− α1)‖
|1− |α1||

≤ ‖adQ(x)(x− α1)(x− α2)‖
|(1− |α1|)(1− |α2|)|

so that

‖adQ(x)‖ ≤ ‖adQ(x)(x− α1)(x− α2)‖
|(1− |α1|)(1− |α2|)|

.

Continuing in this manner, we obtain

|ad| · ‖Q(x)‖ = ‖adQ(x)‖ ≤
‖adQ(x)

∏d
i=1(x− αi)‖∏d

i=1 |1− |αi||

=
‖A(x)Q(x)‖∏d
i=1 |1− |αi||

.

Hence,

‖Q(x)‖ ≤ ‖A(x)Q(x)‖
|ad|

∏n
i=1 |1− |αi||

≤ N

|A+(1)|
,

completing the proof.

Observe that if |α1| = 1, the expression(
1 + |α1|2 − 2|α1| cos

(
π

deg Q + 2

))−1/2
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gets large as deg Q increases. This would cause the bound on ‖Q(x)‖ ob-
tained directly from Lemma 6 to tend to infinity as deg Q tends to infinity.
Under the condition that A(x) has no roots with absolute value 1, this
situation is avoided.
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Math. Rep. Acad. Sci. Canada 12 (1990), 224–228.

[6] A. Granvi l l e, Bounding the coefficients of a divisor of a given polynomial ,
Monatsh. Math. 109 (1990), 271–277.
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