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Arithmetical aspects of certain functional equations
by

Lutz G. LucHT (Clausthal)

The classical system of functional equations

% :gF(x:V) —n *F(z) (neN)

with s € C, investigated for instance by Artin (1931), Yoder (1975), Kubert
(1979), and Milnor (1983), is extended to

% ZF<$Z”> =S M (d)F(dz)  (neN)
v=0 d=1

with complex valued sequences A,,. This leads to new results on the periodic
integrable and the aperiodic continuous solutions F': Ry — C interrelating
the theory of functional equations and the theory of arithmetic functions.

1. Replicativity equations. The classical system of replicativity equa-
tions

(1,) %§F<$:”> — P (z)

for all n € N with some fixed parameter s € C was studied frequently. Usu-
ally z varies over the additive group T = R/Z or a suitable interval D C R,
for instance (0,1) or Ry. For D = Q/Z see Kubert [3]. The solutions
F of the above system form a linear space. Since any two equations (1,,)
and (1,,) imply (1,,,), it would suffice to assume the equations (1,) for all
n € P={p € N:p prime}. The case s =1 was studied by Artin [1] in con-
nection with the gamma function. He proved that every integrable solution
F : T — C of the system (1,,) is a linear combination of log(1—e2?™**) and its
conjugate almost everywhere. For arbitrary s € C Milnor [8] gave a complete
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characterization of the space of continuous solutions F' : (0,1) — C and dis-
cussed their continuous extensions to T and to R, . In particular, this leads
to linear relations between the polylogarithm and the Hurwitz zeta function,
and there are significant applications to Dirichlet L-functions, the Riemann
zeta function, the gamma function and related functions. Yoder [12] re-
placed the factors n~* on the right side of the equations (1, ) by the values
g(n) of a generating sequence g : N — C and showed that the existence
of non-trivial solutions F' forces g to be totally multiplicative, which means
g(1) =1 and g(mn) = g(m)g(n) for all m,n € N. Moreover, the existence
of aperiodic continuous solutions F' : Ry — C implies g(n) = n~° with some
s € C and hence leads back to the classical system.

The aim of this paper is to investigate the system . of extended replica-
tivity equations, previously introduced in [6],

(2,) %TL;F(“"”:”) :iAn(d)F dz

with some fixed sequences A, : N — C for all n € N. This system provides
a natural extension of the classical replicativity system as it removes the
restraint on the generating sequence g to have the form g(n) = n~* or to be
totally multiplicative at least. Namely, consider F' : T — C as restriction of
a function GG, holomorphic on the open unit disc U C C and normalized by
G(0) = 0 and G'(0) = 1, to the boundary oU. Set

Z g(a
a=1

and write F(z) = G(e(z)), where e(z) = €™ for z € R. The identity

1 v 1 ifnja,
— ela—| = )
n n 0 otherwise,

%Eg(ze< )) S g (e D).

a=1

nla
Now, apart from a remainder term of order |z|(*+1)" the right side can be
written as a linear combination A, (1)G(2")+\, (2)G(2%")+. . .+, (d)G(297)
of G(z™),...,G(z%™) with uniquely determined coefficients A, (1),..., A, (d)
€ C for every d € N. Assume that the remainder term vanishes as d — oo.
Then

yields

%éG(ze(%)) -y An(d)G(2"") (2 € U),
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and in passing to F' with x replaced by x/n we formally arrive at (2,,). Notice
that . reduces to Yoder’s system if and only if g is totally multiplicative,

in which case A\,(1) = g(n) and A\,(d) = 0 for all d € N, d # 1, and all
n €N

2. Periodic solutions. Let L(T) denote the space of integrable func-
tions F': T — C modulo null functions under the norm

IF) = | |F(2)|dz < oo.
T
The above construction of the system .¥ suggests investigating its solutions
F € L(T). Evidently . has non-trivial constant solutions F' if and only if

(3n) ZAn(d) =1
d=1

holds for all n € N. The existence of non-constant solutions F' € L(T) de-
pends on how the sequences A,, (n € N) are interrelated, which requires some
arithmetical preparation. Denote by F the complex algebra of arithmetical
sequences g : N — C endowed with the usual pointwise linear operations
and with the Dirichlet convolution * : 2 — F as multiplication, defined by

(fxg)m)= > fla)g(h) (meN)

a,beN
a-b=m

Observe that F contains the multiplicative identity ¢ with (1) = 1 and
ge(m) = 0 for all m € N, m # 1. The multiplicative group of F is F* =
{g € F:g(1) #0}. By g ! we denote the multiplicative inverse of g € F*,

which means g x g~! = &. For g € F and n € N we define the subsequence
g(ne) € F by g(n+)(a) = g(na) for all a € N.

THEOREM 1. For arbitrary sequences X\, € F (n € N), let g € F be
defined by g(n) = A\,(1) for all n € N. If the system . has non-constant
solutions F' € L(T) then

(a) g(1) =1 and X\, = g~ * g(ne) for all n € N,

(b) the Fourier coefficients of F are given by

ﬁ(’m) _ Csenmg(Im|) if m e Z* =7\ {0},
Co if m=20,
with parameters cg,c1,c_1 € C,
(c) co =0, unless (3,,) is valid for all n € N.
Proof. Let
Z ﬁ(m)e(mx) (x €)

meEZ
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be the Fourier series of F' € L(T). The Fourier coefficients are given by

ﬁ(m) = SF(w)e(—mx) dr  (m € Z).
T
Denoting the left side of (2,) by F,(z), we see that F,, € L(T) and F, (m) =
F(nm) for all m € Z. Denoting the right side of equation (2,) by S, (z), w
L(T

obtain S,, € L(T) from the convergence of the series to F,, € L(T), wh1(‘h
legalizes termwise 1ntegrat10n and shows that

Z)\ m/d (m e Z).

d|m

Comparing the coefficients leads to

(4) =Y " M(d)F(m/d) (m€Z).
dlm

~

In particular, for m = =1 this implies ﬁ(:l:n) = g(n)F(£1). Since, by
assumption, F # 0 on Z*, we obtain g(1) =1 and g(nm) = (A, * g)(m) for
all m € N, which is equivalent to (a). Putting ¢; = F(1), c_y = 1/7\( 1) and
co = ﬁ(O) we obtain (b), and (c) follows from (4) for m = 0. m

In the sequel we only consider systems .# for which a sequence g € F*
according to Theorem 1(a) exists. We call g the generating sequence of 7.
By Theorem 1 the dimension of the C-linear space P, of solutions F' € L(T)
of . is at most 3. In fact, for a large class of generating sequences we can
reduce this bound by 1.

For ¢ € N, ¢ # 1, denote by R, the set of all sequences g € F satisfying
a recurrence equation of the form

(54) 9(q"*e) + cro1g(dF ) + L+ coglde) =0

with certain integers k., > 0 and complex coefficients ¢y # 0,c¢1,...,cp_1-
For every fixed g € R, there exist minimal numbers k& = k(q), | = I(q) €
No = NU {0} such that (5,) holds. For this choice of k, [ we associate with
g € R, the companion polynomial

(6) fo(z) = 2F +ep 12"+ 4 e € Cle]

and the set Z, = {{ € C: f,({) = 0} of its zeros. By k; € N we denote the
multiplicity of ¢ € Z,.

LEMMA 1. Let g € R, for some q > 1. Then, for every a € N, the
solutions of the recurrence equation (5,) are given by

=Y P (weNy, v>1I)
C€Z,y
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with polynomials Pr(z) € Clz], depending on a € N, of degree < k¢ — 1 or
Pr(z) = 0.

Proof. For fixed a € N set h(v) = g(¢”a). Then (5,) implies
h(v+k)+cg_1h(v+k—-1)+...+coh(v) =0 (v >1).

As is well known (see, for instance, Lidl and Niederreiter [5], Chapter 6, or
Methfessel [7], Section 1), the solutions h € F of this recurrence equation
have the form

h(v) = Y P(v)¢”
(€Zq
with certain polynomials P (z) € C[z], according to the statement of Lem-
ma l. m
THEOREM 2. Let g € R, for some ¢ > 1 and g(1) = 1. Then the complex
vector space Py has dimension < 2. If 1/7\(0) # 0 for some F € P, then P,

consists of all constant functions, and dim P, = 1.

Proof. In view of Theorem 1 we only need to consider the case (3,,) for
all n € N. By taking the convolution product with g~' we may rewrite (5,)
as

)\ql+k + Ck_]_>\ql+k—1 + ...+ C[])\ql =0.
Summation over d € N of the values at d and insertion of (3,) for n €

{¢',...,¢"**} leads to f,(1) = 0, which is equivalent to 1 € Z,. Hence, by
Lemma 1 and the minimality of k& = k(q),

g(¢"a) =)+ > P (v>1)
CeZ \{1}

with certain polynomials P;(z) € C[z] depending on a € N, and P;(z) # 0
for some a € N. From this we conclude that g(n) # o(1) as n — oco. Finally,
Theorem 1 and the Riemann Lebesgue lemma yield ¢; =c_; =0. =

As to the converse of Theorems 1 and 2, we add the following result.

THEOREM 3. Assume that the Fourier series of F € L(T) has the form

S Copumg(ml)e(ma)

me7 >

with some sequence g € F, g(1) = 1, and some constants ¢1,c_1 € C, and
let the system % be generated by g. If all series

> An(d)F(dz) (n€N)
d=1

converge in L(T) then F € P,.
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Proof. Recall that, by Fejér’s theorem, the series

S cgnmg(mle(ma)  (x € T)

me7*

is Cesaro-summable to F' € L(T). With the notation of the proof of Theo-
rem 1, F,, € L(T) has the Fourier series

Y Cgamg(nlm|)e(mz)  (z €T).
meZX*

By assumption, the series S, (x) converges for almost all x € T, and S,, €
L(T). A short calculation similar to that in the proof of Theorem 1 shows
that
S S Md)F(m/d)e(mz) (z€T)
mez* dlm
is the Fourier series of S,,. Now observe that

Y Ml F(m/d) = cognm(An % 9)(Jm]) = cognmg(nlm|)  (m € Z%).

d|lm

Hence the Fourier series of F,, and S,, coincide, which gives F,, = S,, in
L(T), and the assertion of Theorem 3 follows. m

3. Multiplicative sequences. A sequence g : N — C is called mul-
tiplicative if g(1) = 1 and g(mn) = g(m)g(n) for all coprime m,n € N.
The set M of multiplicative sequences forms a subgroup of F* under the
Dirichlet convolution. By 7 we denote the subset of totally multiplicative
sequences, and we write (n) and (T) for the set of all d € N whose prime
factors divide n € N, and for the multiplicative semigroup generated by the
set T' C IP respectively. First, we restate Theorem 2 from [6] as

LEMMA 2. Let g € F, g(1) = 1, and )\, = g~ ! * g(ns) for all n € N.
Then g € M is equivalent to supp A\, C (n) for all n € N, and in this case
Amn = Am * A for all coprime m,n € N.

By Lemma 2, every system .¥ generated by some g € M can equivalently
be replaced by the partial system of equations (2,) for all n € P* = {p” :
p€eP, veN}L

With g € M and p € P we associate the formal Dirichlet series

go(s) =>_g* ™" (s€0),
k=0

and we denote by M,, the set of all g € M having the property that g,(s) is
absolutely convergent and zero-free in the closed half plane Res > 0. The
next theorem extends Theorem 5 in [6].
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THEOREM 4. Let g € M, for some p € P. Then the complez vector space
P, has dimension < 2. In particular, F(0) =0 for every F' € P,.

Proof. It follows from Wiener’s inversion theorem (see, for instance,
Rudin [11], Chapter 18) applied to the power series G,(z) = g,(s) with
z =p ° that M), forms a subgroup of M, for every p € P. For n = p” € P*
we infer from Lemma 2 that

> ald)] =Y (b))
d=1 k=0
<Y g ) 19 < Y lg?)] = o(1)

as v — oo. Hence equation (3,,) fails to hold for all n € N, and Theorem 1
gives the desired conclusion. m

A local version of Theorem 4 is easily obtained by assuming g(1) = 1
and supp A, C (p) for all n € (p) instead of the global multiplicativity of
the sequence ¢ in the definition of M,,.

The proof of Theorem 4, similar to that of Theorem 2, consists in ex-
cluding certain generating sequences g of .¥ satisfying the equations (3,),
n € N. It would therefore be desirable to know how to reconstruct g € M
from an infinite system of equations of the type

(7n) f(n) =" An(d)h(d)

d=1

for all n € N, where h € T and f € F are suitably chosen sequences.

LEMMA 3. For g € F with g(1) =1 let A\, = g~ * g(ne) for all n € N,
and let h € T. Suppose that all series (7,) for n € N are convergent, so
that f € F is defined and f(1) = 1. If g € M then f € M, and if g € T
then f € T. Conversely, if f € T and f(p)h(p) # 1 for all p € P then there
exists a uniquely determined g € M such that (7,) is valid for all n € N,
namely g = f € T. This implication does not hold for f € T if f(p)h(p) =1
for some p € P.

Proof. The Dirichlet series

> M(@dhld)

ds
d=1

converges for s = (0 and hence for Res > (. The convergence is absolute for
Res > 1 so that, for ¢ € M and coprime m,n € N, Lemma 2 yields the
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equation

2 An (d)h(d A (@)h(a) o= A\ (D)h(b
Z ()()_Z (a)g().z (b)s()’

d=1 a=1 ) b=1

which extends analytically to the half plane Res > (0. By letting s — 0
along the positive real axis, Abel’s limit theorem for Dirichlet series gives
f(mn) = f(m)f(n), i.e. f € M. If, moreover, g € T then A\, = g(n)e for
allm € N, and f =g € T follows.

Next, Lemma 2 implies the identity

(8) A (PF) = Ao (0°71) = 9(0")g " (P%)

valid for g € M, p € P, v € Ny, k € N. Multiply with h(p*) and sum over
k € N to obtain

) f) = hEFET) =90") > g ORGP P, v EN,).
k=0
In particular, for v = 0,

(10) 1-h(p)fp)=>_ g ' @"hp") (e
k=0

By inserting (10) into (9) and dividing by 1 — h(p)f(p) # 0 we see that
f € T implies g(p”) = f(p”) for all p¥ € P* and hence g = f. The last
assertion of Lemma 2 results from the following construction.

EXAMPLE 1. Let f,h € T, T = {p € P : f(p)h(p) = 1} # 0 and
q: T — N such that g(p) > p for p € T. Then g € M defined by

s () g,
£0*) itp ¢ T,

satisfies (7,,) for all n € N and, moreover, g(n) = o(|f(n)|) as n — oo,
n € (T).

g(p*) =

In order to verify the assertions we may restrict our attention to n € (T').
First, observe that (gh) ' * (gh)(ns) = A, h(ne), and replace gh by g and fh
by f. Then it suffices to show that the restriction of the sequence g € M
with

Ny _ (—1/a(p)
o) = (-0 (1

to (T) satisfies both g(p*) = o(1) as p* — oc, and (3,,) for all n € (T').

) (peT, keN)
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In fact, we have the estimate

;] kol 1 1 (k—1)a(p) 1 1/q(p)
0<g(p") =— <1+ )g < <1+—>>
= L ) < w1 ;
1
= —((k— 1)q(p) + )V9P) < (kq(p))~1+/alP),
raep (F~ Dalp) +1) (kq(p))
which gives the o-relation. Next, consider for |z| < 1 the power series

Z q(p (1 —z)~Ya®) 2,
k=0

and invert to obtain

=S g ) = (1= 2) ) = S (1)t <1/i;(p)>zk'
k=0

k=0

Hence

g (") = (1" (1/?;[))) (peT, keN),

and, similar to the above,

1
0<—g ') < —=k VW (peT, keN).
q(p)

This shows the absolute convergence of the power series G, 1(2) even for
|z| <1, and Abel’s limit theorem for power series yields

Y g =0 (pem).
k=0

Finally, for |z| < 1 and n = p¥ with p € T', v € N we find the representation

S M (h)e = Z k= (126 ) Y g,
k=0 k=0 k=0

the right side of which is an absolutely convergent power series for |z| < 1.
By applying Abel’s limit theorem again, we arrive at (3,,) foralln € T. =m

In particular, Example 1 shows that there exist infinitely many sequences
g € M satisfying (3,,) for all n € N, with g(n) = o(1) as n — oco. We leave
the problem open whether the corresponding series

> gn)e(nz)  (weT)

can be the Fourier series of L(T) functions.
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4. Multiplicative recurrent sequences. According to Theorem 1(a),
every sequence g € F with g(1) = 1 uniquely determines a system .¥ of
functional equations. Apart from the classical case g € T, where \,, = g(n)e
for all n € N, there exists no general explicit formula for the corresponding
sequences A\, € F. However, for generating sequences ¢ € M N R, we
describe a constructive method based on Lemmas 1 and 2, which enables
us to determine .# in many cases. The following theorem characterizes the
local polynomial-exponential type structure of sequences g € M NR,.

THEOREM 5. For g € M the following assertions are equivalent:

(a) g € Ry, for some p € P,

(b) g € Ry for some q €N, q # 1,

(c) there exist integers p € P, k,1 € Ny with k +1 # 0, and coefficients
Coy---,Ce—1 € C, cg # 0, such that g satisfies the linear recurrence equation

g’ ™) +er_1g@ ) 4+ cogp”) =0 (v ENy, v >1),

(d) there exist integers p € P, k,l,r € Ny with k+1# 0, kq,..., k. € N
satisfying k1 + ...+ k, = k, and polynomials P,(z) € Clz] of degree < k,—1
or Py(x) =0 (o=1,...,7), such that

g(p’) = > P(w){, (veENy, v>1).
1<p<r

Proof. Trivially, (a) implies (b). If g € R, and ¢ # 1 is a power of p € P
then a recurrence equation of type (c¢) follows from (b) by taking a = p”
with v € Ny in (5,). Now, let ¢ = ¢1¢2 be any coprime decomposition with
q1,q2 € N\ {1} and a prime power go. If g(¢7b) # 0 for infinitely many
exponents o € N and some b € N with (b,g2) = 1 then it follows from (b)
and g € M by taking a = ¢{¢4b in (5,) that

I+o+k l+v+k

9@ 7 D) g (gt ) + er_1g (g M)

Lrovk=ty 4.

+ cog(giTb)g(ght”) = 0.

9(q

Fix ¢ and b such that g(¢it?h) # 0. Then
dig(ay™ ) + di—1g(g™ ) + L+ dog(5™) = 0

with certain coefficients dy,...,dy_1,dx € C, dy # 0, which gives a re-
currence equation according to (¢). If g(g{b) = 0 for all sufficiently large
0 € N and all b € N with (b,¢2) = 1 then, by the multiplicativity of g, also
g(¢7a) = 0 for all sufficiently large p € N and all @ € N. Hence g € R,
where ¢; has a reduced number of prime divisors. In this case proceed
inductively to obtain (c).

The equivalence of (c¢) and (d) follows from Lemma 1. It remains to
show that (c) implies (a). Every a € N has a coprime decomposition of the
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form a = p*~'b with v € Ny, v > I. Now ¢g € M implies

9" Fa) + cx_1g(@Fta) + ..+ cog(p'a)
=g(b) - (9(p"™") + crrg®@TF ) + ..+ cog(p”)) = 0,

which completes the proof. m

With g € M and p € P we associate the p-fibre g, € M defined by

_ Jgn) ifne(p),
gp(n) = { 0 otherwise, (neN)

and the formal power series

oo

Gyplz) =) gp")z" (2 €0),

v=0
which takes the form of the Dirichlet series g,(s) of g, by substituting z =
p~*. Further we set NV, = {g € M : g = € on (p)}. Obviously N, C R,,.
The following theorem describes the multiplicative structure of MNR, with
respect to the Dirichlet convolution.

THEOREM 6. For every p € P, MNR, forms a group under the Dirich-
let convolution, and there is a group homomorphism ¢ with kernel N, from
M N R, onto the multiplicative group of all quotients P(z)/Q(z) of rela-
tively prime polynomials P(z),Q(z) € Clz] satisfying P(0) = Q(0) = 1. In
particular,

$(9) = Gy(2), Q(z)zzkfp(l), P(2) = Q(2)G, (2).

z
where k € Ny is the degree of the companion polynomial f,(z) of g € MNR,.

Proof. First, observe that for g € M the rationality of the power series
G (z) is equivalent to g € R,,. Hence, if g,h € MNR, then gxh € M, and
the corresponding power series G (2), Hy(2) as well as their Cauchy product

oo
Gp(2)Hy(2) =D > 9p(0)hp(p”)2"
v=0 o+o=v
are rational functions. This gives g x h € M N R, and shows that M NR,
is closed under the Dirichlet convolution.

Further, the inverse g=' of ¢ € M belongs to M. From Theorem 5
we know that the power series G,(z), associated with ¢ € M N R, and
representing a rational function, has positive radius of convergence, and
G,(0) = 1. By the Cauchy Taylor theorem, the same is true for G;l(z),
and the Cauchy product with G,(z) obviously corresponds to g™ x g = ¢
on the set (p). Therefore, g=' € M NR,.
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Next, notice that N, is a subgroup of the group M N'R,,. The mapping
g — gp is clearly a group homomorphism with kernel A,. The Dirichlet
series g,(s) of g, € MNR, is absolutely convergent in some right half plane
of the complex plane, and g, — G,(p~*) = gp(s) represents an isomorphic
mapping from (MNR,)/N, onto the multiplicative group of rational power
series R(z) with a positive radius of convergence and R(0) = 1.

Finally, by multiplying the recurrence equation in Theorem 5(c) with
z"*k and summing over all v € Ny, we see that G, (2)z" f,(1/2) is a polyno-
mial P(z) of degree < k + 1 — 1 with P(0) = 1, which is relatively prime to
Q(z) = 2Ff,(1/2), due to the minimality of k¥ = k(p). This completes the
proof of Theorem 6. m

The divisor function 7 € M is defined by 7 = 1% 1, where 1 denotes the
constant sequence with value 1 on N.

ExXAMPLE 2. For s € C let the system . be generated by the sequence
g = ( (n)n_ ) € M. Observe that g € R, for every p € P with f,(z) =
(z —p~ %)% For n = p” € P* we obtain

Z)\n(pk)zk 22 vto+1 —(v+o)s ,
k=0 0=0

=p "wv+1-vp’2),

(v+1)p~¥ itk=0,
A (PF) = { —up DS if g =1,
0 if k> 1.
Hence .¥ consists of the equations

—ZF<$+V>—WSZM < ) “*F(dx) (n€N),
dln
and dim P, < 2. In particular, for Res < 0, s # 0, the null function is
the only solut10n F € L(T) of .7, and for s = 0 the space P, of solutions
F € L(T) of .7 consists of all constant functions. For Res > 0 that space
is spanned by the cosine and the sine part of the series

which gives

oo
T(x) = Z T(n)n~f T
n=1
if these are the Fourier series of L(T) functions respectively. This is obvious
for Res > 1 only, due to the absolute convergence of T'(x).
In a similar way extended replicativity systems . generated, for in-
stance, by the sequences (p(n)n=*%) or (o(n)n~*), where ¢ and o denote



Certain functional equations 269

respectively the Euler function and the sum of divisors function, and their
solutions F' € L(T) can be treated.

5. Aperiodic solutions. For intervals I C R we denote by C(I) the set
of continuous functions F': I — C. We are interested in aperiodic solutions
F € C(Ry) of systems .#, generated by some sequence g € F, g(1) = 1.
One may expect that they are rather exceptional.

It is well known that the Hurwitz zeta function defined by

C(s,x) = Z (x+v)® (Res>1, z€Ry)
v=0
extends to a function holomorphic for s € C\ {1} and z € C, = C\ {z €
R : z < 0}, with a simple pole at s = 1 with residue 1. The polylogarithm
function defined by

Ly(z) = Zu_sz” (seC, zeU)
v=1

extends to a function holomorphic for s € C and z € C\ [1,00). In partic-
ular, we have the following two lemmas, which are taken from Milnor [§],
Lemma 1, Lemma 2 and Theorem 1.

LEMMA 4. The function
Bs(x) = _SC(l - S,.’E)
is holomorphic for s € C and x € C,, with Bo(z) = 1. For each s € C

the function Bs : Ry — C solves both the classical replicativity system .&
generated by g(n) = n~* and the difference equation

By(z 4+ 1) — By(z) = sz* %

Moreover, if s € Ny then Bs(z) € Q[z] is the sth Bernoulli polynomial and
By = B4(0) is the sth Bernoulli number.

LEMMA 5. For every s € C the linear space consisting of all continuous
solutions F' : (0,1) — C of the classical system . generated by g(n) = n~*
has dimension 2. For s & Ny it is spanned by Bs(x) and Bs(1—x), for s =0
by Bo(z) and cot(nx), for s € N by B(x) and Re Ly(e*™®).

Now we can formulate our main result on aperiodic solutions of ..

THEOREM 7. Let g € MNR, for two different ¢ € P, and let the system
7 be generated by g. Then . has an aperiodic solution F € C(R,) if and
only if . is the classical system generated by g(n) = n~* with some s # 0.
In this case
(11) F(z) = cBs(z) + P(z) (z € Ry)

with some constant ¢ € C* and some 1-periodic solution & € C(Ry) of ..
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The important point to note here is that the existence of aperiodic so-
lutions F' € C(R, ) of extended replicativity systems . generated by mul-
tiplicative recurrent sequences shrinks . to the classical system. This ex-
cludes the occurrence of aperiodic solutions F' € C(R,) in many cases.
Observe that the previous result of Yoder [12], Theorem 4, is contained in
Theorem 7 above, since every g € 7 has the property g € M NR, for all
qeP.

Proof (of Theorem 7). By Lemmas 4 and 5 we only need to show
that the existence of an aperiodic solution F' € C(R;) of .& implies that
g(n) =n—* with some s € C. We set

A(z) =F(z+1) - F(z) (xeRy)

and denote for w € Ry by R, the ring of w-periodic functions n € C(R).
The first step of the proof consists in deriving from g € R, for some g € N,
g # 1, a functional equation of the type

(12) q"“A(%> +Ck1q_(k_1)A<q,;—m_1> o 4ol =0 (zeRy)

with certain coefficients cx_1,...,¢c9 € C, ¢y # 0, and from g € M the
system of functional equations

) a(-5) - raea(t)
() rana(5) wems

for all p € P and v € N. In the second step of the proof, while assuming
(12) for two numbers ¢ € N having Q-linearly independent logarithms (e.g.
for different primes), we obtain the explicit formula

(14) Az) =) P(logz)z*' (z€Ry)
seS

with some finite set S C C and certain polynomials P, (z) € C[z]. Further
we put (13) into the form

(15) A(55) - #904(2) = X heawtolc”

CeTy

where T}, is the set of zeros of the polynomial ¢,(z) = (2 —1)/(z —1) —p
and h¢ ,, € Rq. In the third step we insert (14) into (15) to conclude from
A # 0 that A(z) = az®~ ! with some constants a,s € C, a # 0. Finally, we
derive that g(n) = n~° for all n € N.

In particular, suppose that the system .¥ is generated by some sequence
g € Ry, g(1) =1, where 1 # g € N. Then, similar to the proof of Theorem 2,
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equation (5,) may be rewritten as
)\ql+k + Ck71>\ql+k71 + ...+ Cg)\ql =0,
from which it follows that
Agi+k (d)F(dzx) + Ch—1Agitk—1 (d)F(dz) + ...+ CoAg! (d)F(dz) =0

for alld € N, x € R, . Summing over d € N and writing again F),(z) for the
left side of equation (2,,), we infer that

(16) Fyiir (z) + cr—1Fpirr— () +...+ coFy () =0 (z€Ry).

Observe that Fy,(z + 1) — F,(z) = (1/n)A(xz/n) for alln € N and z € Ry,
and subtract equation (16) at = from that at = + 1. It follows that

1 T 1 T 1 T
ql+kA<ql+k>+C’“_1ql+k—1A<ql+k—1>+' : '+CUEA<E> =0 (zeRy),

which is equivalent to (12).
Next, assume that the system .¥ is generated by some sequence g € M.
Observe that . turns into the system of functional equations for A,

1 T oo d—1
—A(:> =3 Mald)) _A(dz+0) (neN).
n n d=1 6=0

By multiplying the identity (8) with

pl«:71

> Atz +9),
6=0

summing over £ € N and applying Lemma 2, we obtain

1 T y 1 2 pT+ 0 y
EA(_) —g(p”)A(z) — oz ZA( po ) =g(p”) 2,

pv =
for all p € P and v € Ny, where
oo pF—1
o= 90" Y Atz +9).
k=1 5=0

In particular, for v = 0 we see that

-1
1P
SR A(px—i—g))’
P p

from which (13) follows with pz instead of =.
The derivation of (14) and (15) from (12) and (13) requires two more
lemmas concerning difference equations and will be given in the next section.
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Combining (14) and (15) gives
€z . —vs v+1 v
(=) @ Pi(logz — logp*™) — g(p*)Py(logz — logp))

SES p
=p" Z hepw(T)C

CeTy

Observe that 1 € T}, and all { € T}, { # 1, satisfy |(| > 1. Therefore the
right side of the above equation reduces to the term p~"h; , ,(z) = hy . (),
say, and with pz instead of z we arrive at

> @t N (p " Pi(logz — logp”) — g(p") Py(log z)) = hy, (p),
SES

where h,, € Ry. It follows from A(x) # 0 that A(z) = az®~! with some
constants a # 0, s € S. Moreover, g(p¥) =p ** or s = 1. Since g € M, the
first equation is valid for all p € P and v € N if s £ 1. If s = 1 then we see
from Lemma 4 that F(z) = aBi(z) + ¢(z) with some function @ € R;. On
inserting this into (2,,) we obtain

n—1

ZA Blde—Bl() %Z (T+”> ZA

v=0

where the right side represents a function ¥,, € Ry, say. Now Bi(z) = z—1/2
yields

iAn(d)d =

d=1

g(—f( )) 7, (),

and

where, for abbreviation,

d=1
By integrating over T we see that W, (0) = 5(0)(1 — f(n)), leading to
(17) 5 (5 - 1) = 8001 - 1)
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so that R
oy = B0) = a/ )

&(0) —a/2
By Lemma 3, f is multiplicative, and we conclude from f(mn) = f(m)f(n)
for coprime m,n € N that 5(0) = 0, contrary to our assumption. Hence
QA5(0) = 0 and f(n) = n~! by (17). Applying Lemma 3 again we obtain
g(n) = n~', which is the desired conclusion. m

EXAMPLE 3. According to Example 2, the sequence g = (7(n)n"*)
belongs to M NR, for every ¢ € P. By Theorem 7 the corresponding
system .# has no aperiodic solutions F' € C(R;). The same holds for
the extended replicativity systems, generated for instance by the sequences

(p(n)n~*) and (o(n)n"*).

6. Difference equations. In this section we close the gap in the preced-
ing proof of Theorem 7 by deriving the equations (14) and (15) respectively
from the functional equations (12) and (13). We begin with two lemmas
concerning the continuous solutions of homogeneous difference equations.

For fixed w € Ry we are interested in the solutions n € C(R) of the
linear homogeneous equation

(18) n(z+ kw) +cxgnz+ (k—Dw)+...+con(z) =0  (z € R)

where £ € N, ¢g,...,cx1 € C, ¢cg # 0. We may consider C(R) as an
R, -module and interpret the indeterminate z in the companion polynomial

(19) f(z) =2 + 127+ + e € Cl2]

of equation (18) as the endomorphism of C'(R) defined by n — 2zn with
zn(z) = n(z + w) for all z € R. Further, we may write the composition
of endomorphisms as product. Then (18) takes the form f(z)n(z) = 0,
and the problem of solving (18) consists in determining ker f(z) C C(R).
Observe that ker f(z) is a k-dimensional R,-submodule of C(R). Namely,
if (1,...,(. € C* are the distinct zeros of f(z) of order kq,... k. € N, ki +
...+ k., =k, then

ker f(z) = ker(z — ()" @ ... @ ker(z — ()P

It remains to determine ker(z — ()*¥ where ¢ € C*, k € N. Notice that
the branches of the multi-valued function (*/¢ = e(#/®)108C only differ by a
factor of the form e(mz/w) € R, with m € Z. Now

(z— Q"¢ P(x) = "¢ (2 — 1) P(a)
vanishes for all z € R if and only if (z — 1)* P(z) = 0, which is equivalent to

P(z) € Ry[z], deg P(z) < k—1, or P(z) = 0. We thus arrive at the following
well known result (see, for instance, Norlund [9], Chapter 10, no. 156).
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LEMMA 6. Let ¢, € C* be the distinct zeros of order k, € N (o =1,...,r)
of the companion polynomial (19), associated with equation (18). Then n €
C(R) solves (18) if and only if

n(x) = Y Pplw)(5/*
1<p<r
with polynomials P,(xz) € Ry[z], deg P,(z) < k, — 1, or Py(z) =0 (p =
1,...,7).
In the sequel, we indicate the dependency on w € Ry of the shift operator

z defined above by writing z,. The following lemma extends a theorem of
Popoviciu [10] (see Kuczma [4], Theorem 13.5).

LEMMA 7. Let wy,we € Ry such that wy/way & Q. Let f1(z), f2(z) € Clz]
satisfy f1(0)f2(0) # 0, and let A be the (finite) set of (uniquely determined)
solutions a € C of the system

f1(e®) = fo(e*?) = 0.
Then every n € ker f1(z,,) Nker fa(z,,) has the form
nw) = 3 Paa)ec
a€A
with certain polynomials P, (z) € Clx].

Proof. Because of the direct sum representation of the kernels of f1(z,,,)
and fa(z,,) it suffices to prove the following special case: Let (;,(s € C*
and k& € N. Then the existence of a non-trivial solution n € C(R) of the
difference equations

(Zw1 - Cl)kﬁ = 0’ (ZNQ - C2)k77 =0
implies that (; = e*“", (5 = e*“? with a uniquely determined number a € C,
and 7n(z) = P(z)e** with some polynomial P(z) € C[z], deg P(z) < k — 1.

Fix some values oy of (log(y)/w; and ay of (log(s)/ws. Then, by the
irrationality of wq/ws, the equation
2ma i 2momi

= a2
w1 w2

(20) (651 +
has at most one solution (mq, my) € Z2.
Lemma 6 yields the representations
n(z) = Pi(x)e™” = Py(z)e™” (x € R)

with polynomials P;(z) € Ry, [z], Pa(z) € R,,[x] of degree < k — 1. By
comparing summands we obtain

(21) his(2)z"e™” = hoy(z)2"e™® (z €R, 0 <k <k)
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where hi, € Ry, hay € R,,. In particular, with A = h;,, and § = as — oy,
it follows that h(z + wy) = h(z) and h(z + wy) = e’“2h(z) for all x € R or,
equivalently,

(22) h(x + mwy + nws) = e™“2h(x)  (m,n € Z, x € R).

By Kronecker’s theorem (see for instance Hardy and Wright [2], Theo-
rem 444) the set {mw; + nws : m,n € Z} is dense in R. Consequently,
for every y € R there exists a sequence of pairs (m,,n,) € Z? depending
only on y such that the corresponding sequence (m,w; + n,ws) tends to y
as v tends to infinity. Since h is continuous, (22) implies

h(z +y)=h(=)H(y) (z,y€R)

with some function H : R — C. We may assume that h(xz) # 0. Then h is
zerofree on R and h(y) = h(0)H (y). Therefore, H is continuous and zerofree
too, and additionally satisfies the functional equation

H(z+y)=H(@)H(y) (z,y€R).

These functions are given by H(z) = €*, which leads to h(z) = cef?, with
some constants 3 € C, ¢ € C*. By inserting we see from (22) that e#“1 = 1
and ef¥2 = 2 or, equivalently, fw; = 2017 and Bws = dwy + 209mi with
certain numbers g1, g2 € Z. It follows that

2kmi 2w
(23) 5= ki lm’

w1 w2

which shows that (20) has at least one solution. We conclude that « is well
defined.
Actually, the equations (20), (21) and (23) yield that the function defined
by
x hlﬁ(x)e<—gx> = hgn(x)e<—&x> (z € R)
W2
belongs to R,, N R,, and therefore must be a constant. This means that

n(z) = P(z)e** with a polynomial P(z) € C[x] of degree < k — 1, which is
the desired conclusion. m

In order to derive (14) from (12) we multiply (12) with z, replace x by
e”, put n(z) = e"A(e”) and w = log gq. This yields the difference equation

(24)  n(zr — kw) + cg_in(z — (k—Dw) + ... +con(z) =0 (2 € R).

With the companion polynomial f,(z) of ¢ € R, according to (6), the
companion polynomial of equation (24) equals z*f,(1/2). Therefore the
zeros (, € Z, (0 = 1,...,r) of order k, € N of f,(z) correspond to the
Z€10S C;l € C* of the same order of 2 f,(1/2z). By applying Lemma 6 and
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returning to A we obtain

Az) = Z P,(logz)z*e~! (z € Ry)

1<p<r
with polynomials P,(z) € R,[z], deg P,(z) < k, — 1, or P,(z) = 0, where
s, is some fixed value of —(log(,)/w for p=1,...,r.

Now we associate with ¢ € R, the set S, = {s € C: f,(¢7°) = 0}.
Observe that S, = 0 if and only if £ = 0, and card S, = oo for k € N,
since every zero ( € Z, of the companion polynomial f,(z) contributes the
distinct elements

log ¢ + 2mmi

log g
to 84, where log ¢ is some fixed logarithm of ( # 0. Assume now that ¢ €

Rg NRy,, (1) =1, with wy = log g and wy = log g2 linearly independent
over Q. Due to the irrationality of w;/ws, the intersection S = S, NS,
is always a finite set. Notice that for every s € S the numbers (; = e~“1%,
(2 = e7“2% are zeros of f, (z) and f,,(2), respectively. Hence, by applying
Lemma 7 to the (transformed) functional equations (12) for ¢ = ¢, g2 we
obtain (14).

In order to derive (15) from (13) denote the left hand side of (13) by
H(z). Then (13) takes the form of the difference equation

(meZ)

H(z) —%;H(Hg) (z € R,)

with the companion polynomial ¢,(z) = (2 — 1)/(z — 1) — p having only
simple zeros ¢ € T),. According to Lemma 6, the solutions H € C(Ry ) are
given by H(z) = > .cp he(2)(" with functions h¢ € R1, which gives (15)
and completes the proof of Theorem 7. =

A closer inspection of the proof of Theorem 7 shows that the existence
of aperiodic solutions F' € C(R,) of certain extended replicativity systems

. can be excluded by considering suitable finite subsystems only. This
requires looking again at the companion polynomial

k=1 4 e € (e

of g € Ry, where ¢, = 1 and ¢y # 0. We associate with g € R, the
(non-empty) set

fqo(z) = crz® + 1z

N, =1{¢""":0< Kk <k, ¢, #0}
of powers of ¢, where k,1 € Ny are chosen minimal such that equation (5,)
is valid.

THEOREM 8. For different primes q1,qs assume that the sequence g € F,
normalized by g(1) = 1, satisfies g € Ry and supp A, C (q) for all n € (q),
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q € {q1,q92}. If the system .# generated by g has aperiodic solutions F' €
C(Ry) then there exists some s € C such that g(n) = n"* for alln € (q1q2).

Hence, if the finite subsystem of . consisting of the equations (2,,) for all
n € Ny, UN,, does not coincide with that of the classical system generated
by g(n) = n~* then . has no aperiodic solutions F' € C'(R,.). For the proof
of Theorem 8 we refer to that of Theorem 7.

ExAMPLE 4. According to Example 2, the non-existence of aperiodic so-
lutions F' € C(R,) of the system .¥ generated by (7(n)n~*%) follows already
from its equations (2,,) for n = ¢,¢*> and two different primes q.
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