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Arithmeti
al aspe
ts of 
ertain fun
tional equationsbyLutz G. Lu
ht (Clausthal)The 
lassi
al system of fun
tional equations1n n�1X�=0 F�x+ �n � = n�sF (x) (n 2 N)with s 2 C , investigated for instan
e by Artin (1931), Yoder (1975), Kubert(1979), and Milnor (1983), is extended to1n n�1X�=0 F�x+ �n � = 1Xd=1�n(d)F (dx) (n 2 N)with 
omplex valued sequen
es �n. This leads to new results on the periodi
integrable and the aperiodi
 
ontinuous solutions F : R+ ! C interrelatingthe theory of fun
tional equations and the theory of arithmeti
 fun
tions.1. Repli
ativity equations. The 
lassi
al system of repli
ativity equa-tions(1n) 1n n�1X�=0 F�x+ �n � = n�sF (x)for all n 2 N with some �xed parameter s 2 C was studied frequently. Usu-ally x varies over the additive group T = R=Z or a suitable interval D � R,for instan
e (0; 1) or R+ . For D = Q=Z see Kubert [3℄. The solutionsF of the above system form a linear spa
e. Sin
e any two equations (1m)and (1n) imply (1mn), it would suÆ
e to assume the equations (1n) for alln 2 P = fp 2 N : p primeg. The 
ase s = 1 was studied by Artin [1℄ in 
on-ne
tion with the gamma fun
tion. He proved that every integrable solutionF : T! C of the system (1n) is a linear 
ombination of log(1�e2�ix) and its
onjugate almost everywhere. For arbitrary s 2 C Milnor [8℄ gave a 
omplete1991 Mathemati
s Subje
t Classi�
ation: 11A25, 39B62, 39A10.[257℄
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ht
hara
terization of the spa
e of 
ontinuous solutions F : (0; 1)! C and dis-
ussed their 
ontinuous extensions to T and to R+ . In parti
ular, this leadsto linear relations between the polylogarithm and the Hurwitz zeta fun
tion,and there are signi�
ant appli
ations to Diri
hlet L-fun
tions, the Riemannzeta fun
tion, the gamma fun
tion and related fun
tions. Yoder [12℄ re-pla
ed the fa
tors n�s on the right side of the equations (1n) by the valuesg(n) of a generating sequen
e g : N ! C and showed that the existen
eof non-trivial solutions F for
es g to be totally multipli
ative, whi
h meansg(1) = 1 and g(mn) = g(m)g(n) for all m;n 2 N. Moreover, the existen
eof aperiodi
 
ontinuous solutions F : R+ ! C implies g(n) = n�s with somes 2 C and hen
e leads ba
k to the 
lassi
al system.The aim of this paper is to investigate the system S of extended repli
a-tivity equations, previously introdu
ed in [6℄,(2n) 1n n�1X�=0 F�x+ �n � = 1Xd=1 �n(d)F (dx)with some �xed sequen
es �n : N ! C for all n 2 N. This system providesa natural extension of the 
lassi
al repli
ativity system as it removes therestraint on the generating sequen
e g to have the form g(n) = n�s or to betotally multipli
ative at least. Namely, 
onsider F : T! C as restri
tion ofa fun
tion G, holomorphi
 on the open unit dis
 U � C and normalized byG(0) = 0 and G0(0) = 1, to the boundary �U . SetG(z) = 1Xa=1 g(a)zaand write F (x) = G(e(x)), where e(x) = e2�ix for x 2 R. The identity1n n�1X�=0 e�a�n� = � 1 if n j a,0 otherwise,yields 1n n�1X�=0G�ze� �n�� = 1Xa=1nja g(a)za (z 2 U):Now, apart from a remainder term of order jzj(d+1)n, the right side 
an bewritten as a linear 
ombination �n(1)G(zn)+�n(2)G(z2n)+: : :+�n(d)G(zdn)of G(zn); : : : ; G(zdn) with uniquely determined 
oeÆ
ients �n(1); : : : ; �n(d)2 C for every d 2 N. Assume that the remainder term vanishes as d !1.Then 1n n�1X�=0G�ze��n�� = 1Xd=1 �n(d)G(znd) (z 2 U);



Certain fun
tional equations 259and in passing to F with x repla
ed by x=n we formally arrive at (2n). Noti
ethat S redu
es to Yoder's system if and only if g is totally multipli
ative,in whi
h 
ase �n(1) = g(n) and �n(d) = 0 for all d 2 N, d 6= 1, and alln 2 N.2. Periodi
 solutions. Let L(T) denote the spa
e of integrable fun
-tions F : T! C modulo null fun
tions under the normkFk = \TjF (x)j dx <1:The above 
onstru
tion of the system S suggests investigating its solutionsF 2 L(T). Evidently S has non-trivial 
onstant solutions F if and only if(3n) 1Xd=1 �n(d) = 1holds for all n 2 N. The existen
e of non-
onstant solutions F 2 L(T) de-pends on how the sequen
es �n (n 2 N) are interrelated, whi
h requires somearithmeti
al preparation. Denote by F the 
omplex algebra of arithmeti
alsequen
es g : N ! C endowed with the usual pointwise linear operationsand with the Diri
hlet 
onvolution � : F2 ! F as multipli
ation, de�ned by(f � g)(m) = Xa;b2Na�b=m f(a)g(b) (m 2 N):Observe that F 
ontains the multipli
ative identity " with "(1) = 1 and"(m) = 0 for all m 2 N, m 6= 1. The multipli
ative group of F is F� =fg 2 F : g(1) 6= 0g. By g�1 we denote the multipli
ative inverse of g 2 F�,whi
h means g � g�1 = ". For g 2 F and n 2 N we de�ne the subsequen
eg(n�) 2 F by g(n�)(a) = g(na) for all a 2 N.Theorem 1. For arbitrary sequen
es �n 2 F (n 2 N), let g 2 F bede�ned by g(n) = �n(1) for all n 2 N. If the system S has non-
onstantsolutions F 2 L(T) then(a) g(1) = 1 and �n = g�1 � g(n�) for all n 2 N,(b) the Fourier 
oeÆ
ients of F are given bybF (m) = � 
sgnmg(jmj) if m 2 Z� = Z n f0g,
0 if m = 0,with parameters 
0; 
1; 
�1 2 C ,(
) 
0 = 0, unless (3n) is valid for all n 2 N.P r o o f. Let Xm2Z bF (m)e(mx) (x 2 T)
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htbe the Fourier series of F 2 L(T). The Fourier 
oeÆ
ients are given bybF (m) = \TF (x)e(�mx) dx (m 2 Z):Denoting the left side of (2n) by Fn(x), we see that Fn 2 L(T) and bFn(m) =bF (nm) for all m 2 Z. Denoting the right side of equation (2n) by Sn(x), weobtain Sn 2 L(T) from the 
onvergen
e of the series to Fn 2 L(T), whi
hlegalizes termwise integration and shows thatbSn(m) =Xdjm �n(d) bF (m=d) (m 2 Z):Comparing the 
oeÆ
ients leads to(4) bF (nm) =Xdjm �n(d) bF (m=d) (m 2 Z):In parti
ular, for m = �1 this implies bF (�n) = g(n) bF (�1). Sin
e, byassumption, bF 6� 0 on Z�, we obtain g(1) = 1 and g(nm) = (�n � g)(m) forall m 2 N, whi
h is equivalent to (a). Putting 
1 = bF (1), 
�1 = bF (�1) and
0 = bF (0) we obtain (b), and (
) follows from (4) for m = 0.In the sequel we only 
onsider systems S for whi
h a sequen
e g 2 F�a

ording to Theorem 1(a) exists. We 
all g the generating sequen
e of S .By Theorem 1 the dimension of the C -linear spa
e Pg of solutions F 2 L(T)of S is at most 3. In fa
t, for a large 
lass of generating sequen
es we 
anredu
e this bound by 1.For q 2 N, q 6= 1, denote by Rq the set of all sequen
es g 2 F satisfyinga re
urren
e equation of the form(5q) g(ql+k�) + 
k�1g(ql+k�1�) + : : :+ 
0g(ql�) = 0with 
ertain integers k; l � 0 and 
omplex 
oeÆ
ients 
0 6= 0; 
1; : : : ; 
k�1.For every �xed g 2 Rq there exist minimal numbers k = k(q), l = l(q) 2N0 = N [ f0g su
h that (5q) holds. For this 
hoi
e of k, l we asso
iate withg 2 Rq the 
ompanion polynomial(6) fq(z) = zk + 
k�1zk�1 + : : :+ 
0 2 C [z℄and the set Zq = f� 2 C : fq(�) = 0g of its zeros. By k� 2 N we denote themultipli
ity of � 2 Zq.Lemma 1. Let g 2 Rq for some q > 1. Then, for every a 2 N, thesolutions of the re
urren
e equation (5q) are given byg(q�a) = X�2Zq P�(�)�� (� 2 N0 ; � � l)



Certain fun
tional equations 261with polynomials P�(x) 2 C [x℄, depending on a 2 N, of degree � k� � 1 orP�(x) � 0.P r o o f. For �xed a 2 N set h(�) = g(q�a). Then (5q) impliesh(� + k) + 
k�1h(� + k � 1) + : : :+ 
0h(�) = 0 (� � l):As is well known (see, for instan
e, Lidl and Niederreiter [5℄, Chapter 6, orMethfessel [7℄, Se
tion 1), the solutions h 2 F of this re
urren
e equationhave the form h(�) = X�2Zq P�(�)��with 
ertain polynomials P�(x) 2 C [x℄, a

ording to the statement of Lem-ma 1.Theorem 2. Let g 2 Rq for some q > 1 and g(1) = 1. Then the 
omplexve
tor spa
e Pg has dimension � 2. If bF (0) 6= 0 for some F 2 Pg then Pg
onsists of all 
onstant fun
tions, and dimPg = 1.P r o o f. In view of Theorem 1 we only need to 
onsider the 
ase (3n) forall n 2 N. By taking the 
onvolution produ
t with g�1 we may rewrite (5q)as �ql+k + 
k�1�ql+k�1 + : : : + 
0�ql = 0:Summation over d 2 N of the values at d and insertion of (3n) for n 2fql; : : : ; ql+kg leads to fq(1) = 0, whi
h is equivalent to 1 2 Zq . Hen
e, byLemma 1 and the minimality of k = k(q),g(q�a) = P1(�) + X�2Zqnf1gP�(�)�� (� � l)with 
ertain polynomials P�(x) 2 C [x℄ depending on a 2 N, and P1(x) 6� 0for some a 2 N. From this we 
on
lude that g(n) 6= O(1) as n!1. Finally,Theorem 1 and the Riemann{Lebesgue lemma yield 
1 = 
�1 = 0.As to the 
onverse of Theorems 1 and 2, we add the following result.Theorem 3. Assume that the Fourier series of F 2 L(T) has the formXm2Z� 
sgnmg(jmj)e(mx)with some sequen
e g 2 F , g(1) = 1, and some 
onstants 
1; 
�1 2 C , andlet the system S be generated by g. If all series1Xd=1 �n(d)F (dx) (n 2 N)
onverge in L(T) then F 2 Pg.



262 L. G. Lu
htP r o o f. Re
all that, by Fej�er's theorem, the seriesXm2Z� 
sgnmg(jmj)e(mx) (x 2 T)is Ces�aro-summable to F 2 L(T). With the notation of the proof of Theo-rem 1, Fn 2 L(T) has the Fourier seriesXm2Z� 
sgnmg(njmj)e(mx) (x 2 T):By assumption, the series Sn(x) 
onverges for almost all x 2 T, and Sn 2L(T). A short 
al
ulation similar to that in the proof of Theorem 1 showsthat Xm2Z�Xdjm �n(d) bF (m=d)e(mx) (x 2 T)is the Fourier series of Sn. Now observe thatXdjm �n(d) bF (m=d) = 
sgnm(�n � g)(jmj) = 
sgnmg(njmj) (m 2 Z�):Hen
e the Fourier series of Fn and Sn 
oin
ide, whi
h gives Fn = Sn inL(T), and the assertion of Theorem 3 follows.3. Multipli
ative sequen
es. A sequen
e g : N ! C is 
alled mul-tipli
ative if g(1) = 1 and g(mn) = g(m)g(n) for all 
oprime m;n 2 N.The set M of multipli
ative sequen
es forms a subgroup of F� under theDiri
hlet 
onvolution. By T we denote the subset of totally multipli
ativesequen
es, and we write hni and hT i for the set of all d 2 N whose primefa
tors divide n 2 N, and for the multipli
ative semigroup generated by theset T � P respe
tively. First, we restate Theorem 2 from [6℄ asLemma 2. Let g 2 F , g(1) = 1, and �n = g�1 � g(n�) for all n 2 N.Then g 2 M is equivalent to supp�n � hni for all n 2 N, and in this 
ase�mn = �m � �n for all 
oprime m;n 2 N.By Lemma 2, every systemS generated by some g 2M 
an equivalentlybe repla
ed by the partial system of equations (2n) for all n 2 P� = fp� :p 2 P; � 2 Ng.With g 2M and p 2 P we asso
iate the formal Diri
hlet seriesegp(s) = 1Xk=0 g(pk)p�ks (s 2 C );and we denote byMp the set of all g 2M having the property that egp(s) isabsolutely 
onvergent and zero-free in the 
losed half plane Re s � 0. Thenext theorem extends Theorem 5 in [6℄.



Certain fun
tional equations 263Theorem 4. Let g 2Mp for some p 2 P. Then the 
omplex ve
tor spa
ePg has dimension � 2. In parti
ular , bF (0) = 0 for every F 2 Pg.P r o o f. It follows from Wiener's inversion theorem (see, for instan
e,Rudin [11℄, Chapter 18) applied to the power series Gp(z) = egp(s) withz = p�s that Mp forms a subgroup of M, for every p 2 P. For n = p� 2 P�we infer from Lemma 2 that1Xd=1 j�n(d)j = 1Xk=0 j�n(pk)j� 1X%=0 jg�1(p%)j 1X�=� jg(p�)j � 1X�=� jg(p�)j = O(1)as � !1. Hen
e equation (3n) fails to hold for all n 2 N, and Theorem 1gives the desired 
on
lusion.A lo
al version of Theorem 4 is easily obtained by assuming g(1) = 1and supp�n � hpi for all n 2 hpi instead of the global multipli
ativity ofthe sequen
e g in the de�nition of Mp.The proof of Theorem 4, similar to that of Theorem 2, 
onsists in ex-
luding 
ertain generating sequen
es g of S satisfying the equations (3n),n 2 N. It would therefore be desirable to know how to re
onstru
t g 2 Mfrom an in�nite system of equations of the type(7n) f(n) = 1Xd=1 �n(d)h(d)for all n 2 N, where h 2 T and f 2 F are suitably 
hosen sequen
es.Lemma 3. For g 2 F with g(1) = 1 let �n = g�1 � g(n�) for all n 2 N,and let h 2 T . Suppose that all series (7n) for n 2 N are 
onvergent , sothat f 2 F is de�ned and f(1) = 1. If g 2 M then f 2 M, and if g 2 Tthen f 2 T . Conversely , if f 2 T and f(p)h(p) 6= 1 for all p 2 P then thereexists a uniquely determined g 2 M su
h that (7n) is valid for all n 2 N,namely g = f 2 T . This impli
ation does not hold for f 2 T if f(p)h(p) = 1for some p 2 P.P r o o f. The Diri
hlet series1Xd=1 �n(d)h(d)ds (n 2 N)
onverges for s = 0 and hen
e for Re s > 0. The 
onvergen
e is absolute forRe s > 1 so that, for g 2 M and 
oprime m;n 2 N, Lemma 2 yields the



264 L. G. Lu
htequation 1Xd=1 �mn(d)h(d)ds = 1Xa=1 �m(a)h(a)as � 1Xb=1 �n(b)h(b)bs ;whi
h extends analyti
ally to the half plane Re s > 0. By letting s ! 0along the positive real axis, Abel's limit theorem for Diri
hlet series givesf(mn) = f(m)f(n), i.e. f 2 M. If, moreover, g 2 T then �n = g(n)" forall n 2 N, and f = g 2 T follows.Next, Lemma 2 implies the identity(8) �p� (pk)� �p�+1(pk�1) = g(p�)g�1(pk)valid for g 2 M, p 2 P, � 2 N0 , k 2 N. Multiply with h(pk) and sum overk 2 N to obtain(9) f(p�)� h(p)f(p�+1) = g(p�) 1Xk=0 g�1(pk)h(pk) (p 2 P; � 2 N0 ):In parti
ular, for � = 0,(10) 1� h(p)f(p) = 1Xk=0 g�1(pk)h(pk) (p 2 P):By inserting (10) into (9) and dividing by 1 � h(p)f(p) 6= 0 we see thatf 2 T implies g(p�) = f(p�) for all p� 2 P� and hen
e g = f . The lastassertion of Lemma 2 results from the following 
onstru
tion.Example 1. Let f; h 2 T , T = fp 2 P : f(p)h(p) = 1g 6= ; andq : T ! N su
h that q(p) � p for p 2 T . Then g 2M de�ned byg(pk) = 8<: f(pk)(�1)k��1=q(p)k � if p 2 T ,f(pk) if p 62 T ,satis�es (7n) for all n 2 N and, moreover, g(n) = O(jf(n)j) as n ! 1,n 2 hT i.In order to verify the assertions we may restri
t our attention to n 2 hT i.First, observe that (gh)�1 � (gh)(n�) = �nh(n�), and repla
e gh by g and fhby f . Then it suÆ
es to show that the restri
tion of the sequen
e g 2 Mwith g(pk) = (�1)k��1=q(p)k � (p 2 T; k 2 N)to hT i satis�es both g(pk) = O(1) as pk !1, and (3n) for all n 2 hT i.



Certain fun
tional equations 265In fa
t, we have the estimate0 < g(pk) = 1kq(p) k�1Y�=1�1 + 1�q(p)� � 1kq(p)� (k�1)q(p)Y%=0 �1 + 1%��1=q(p)= 1kq(p) ((k � 1)q(p) + 1)1=q(p) < (kq(p))�1+1=q(p) ;whi
h gives the O-relation. Next, 
onsider for jzj < 1 the power seriesGp(z) = 1Xk=0 g(pk)zk = (1� z)�1=q(p) 6= 0;and invert to obtainG�1p (z) = 1Xk=0 g�1(pk)zk = (1� z)1=q(p) = 1Xk=0(�1)k�1=q(p)k �zk:Hen
e g�1(pk) = (�1)k�1=q(p)k � (p 2 T; k 2 N);and, similar to the above,0 < �g�1(pk) � 1q(p)k�1�1=q(p) (p 2 T; k 2 N):This shows the absolute 
onvergen
e of the power series G�1p (z) even forjzj � 1, and Abel's limit theorem for power series yields1Xk=0 g�1(pk) = 0 (p 2 T ):Finally, for jzj < 1 and n = p� with p 2 T , � 2 N we �nd the representation1Xk=0�n(pk)zk = G�1p (z) 1Xk=0 g(p�+k)zk = z���1�G�1p (z) ��1Xk=0 g(pk)zk�;the right side of whi
h is an absolutely 
onvergent power series for jzj � 1.By applying Abel's limit theorem again, we arrive at (3n) for all n 2 T .In parti
ular, Example 1 shows that there exist in�nitely many sequen
esg 2M satisfying (3n) for all n 2 N, with g(n) = O(1) as n!1. We leavethe problem open whether the 
orresponding series1Xn=1 g(n)e(nx) (x 2 T)
an be the Fourier series of L(T) fun
tions.



266 L. G. Lu
ht4. Multipli
ative re
urrent sequen
es. A

ording to Theorem 1(a),every sequen
e g 2 F with g(1) = 1 uniquely determines a system S offun
tional equations. Apart from the 
lassi
al 
ase g 2 T , where �n = g(n)"for all n 2 N, there exists no general expli
it formula for the 
orrespondingsequen
es �n 2 F . However, for generating sequen
es g 2 M \ Rq wedes
ribe a 
onstru
tive method based on Lemmas 1 and 2, whi
h enablesus to determine S in many 
ases. The following theorem 
hara
terizes thelo
al polynomial-exponential type stru
ture of sequen
es g 2M\Rq.Theorem 5. For g 2M the following assertions are equivalent :(a) g 2 Rp for some p 2 P,(b) g 2 Rq for some q 2 N, q 6= 1,(
) there exist integers p 2 P, k; l 2 N0 with k + l 6= 0, and 
oeÆ
ients
0; : : : ; 
k�1 2 C , 
0 6= 0, su
h that g satis�es the linear re
urren
e equationg(p�+k) + 
k�1g(p�+k�1) + : : :+ 
0g(p�) = 0 (� 2 N0 ; � � l);(d) there exist integers p 2 P, k; l; r 2 N0 with k + l 6= 0, k1; : : : ; kr 2 Nsatisfying k1+ : : :+kr = k, and polynomials P%(x) 2 C [x℄ of degree � k%�1or P%(x) � 0 (% = 1; : : : ; r), su
h thatg(p�) = X1�%�rP%(�)��% (� 2 N0 ; � � l):P r o o f. Trivially, (a) implies (b). If g 2 Rq and q 6= 1 is a power of p 2 Pthen a re
urren
e equation of type (
) follows from (b) by taking a = p�with � 2 N0 in (5q). Now, let q = q1q2 be any 
oprime de
omposition withq1; q2 2 N n f1g and a prime power q2. If g(q%1b) 6= 0 for in�nitely manyexponents % 2 N and some b 2 N with (b; q2) = 1 then it follows from (b)and g 2M by taking a = q%1q�2 b in (5q) thatg(ql+%+k1 b)g(ql+�+k2 ) + 
k�1g(ql+%+k�11 b)g(ql+�+k�12 ) + : : :+ 
0g(ql+%1 b)g(ql+�2 ) = 0:Fix % and b su
h that g(ql+%1 b) 6= 0. Thendkg(ql+�+k2 ) + dk�1g(ql+�+k�12 ) + : : : + d0g(ql+�2 ) = 0with 
ertain 
oeÆ
ients d0; : : : ; dk�1; dk 2 C , d0 6= 0, whi
h gives a re-
urren
e equation a

ording to (
). If g(q%1b) = 0 for all suÆ
iently large% 2 N and all b 2 N with (b; q2) = 1 then, by the multipli
ativity of g, alsog(q%1a) = 0 for all suÆ
iently large % 2 N and all a 2 N. Hen
e g 2 Rq1where q1 has a redu
ed number of prime divisors. In this 
ase pro
eedindu
tively to obtain (
).The equivalen
e of (
) and (d) follows from Lemma 1. It remains toshow that (
) implies (a). Every a 2 N has a 
oprime de
omposition of the



Certain fun
tional equations 267form a = p��lb with � 2 N0 , � � l. Now g 2M impliesg(pl+ka) + 
k�1g(pl+k�1a) + : : :+ 
0g(pla)= g(b) � (g(p�+k) + 
k�1g(p�+k�1) + : : :+ 
0g(p�)) = 0;whi
h 
ompletes the proof.With g 2M and p 2 P we asso
iate the p-�bre gp 2M de�ned bygp(n) = � g(n) if n 2 hpi,0 otherwise, (n 2 N)and the formal power seriesGp(z) = 1X�=0 g(p�)z� (z 2 C );whi
h takes the form of the Diri
hlet series egp(s) of gp by substituting z =p�s. Further we set Np = fg 2 M : g = " on hpig. Obviously Np � Rp.The following theorem des
ribes the multipli
ative stru
ture ofM\Rp withrespe
t to the Diri
hlet 
onvolution.Theorem 6. For every p 2 P, M\Rp forms a group under the Diri
h-let 
onvolution, and there is a group homomorphism  with kernel Np fromM \ Rp onto the multipli
ative group of all quotients P (z)=Q(z) of rela-tively prime polynomials P (z); Q(z) 2 C [z℄ satisfying P (0) = Q(0) = 1. Inparti
ular , (g) = Gp(z); Q(z) = zkfp�1z�; P (z) = Q(z)Gp(z);where k 2 N0 is the degree of the 
ompanion polynomial fp(z) of g 2M\Rp.P r o o f. First, observe that for g 2M the rationality of the power seriesGp(z) is equivalent to g 2 Rp. Hen
e, if g; h 2M\Rp then g �h 2M, andthe 
orresponding power series Gp(z);Hp(z) as well as their Cau
hy produ
tGp(z)Hp(z) = 1X�=0 X%+�=� gp(p%)hp(p�)z�are rational fun
tions. This gives g � h 2 M\Rp and shows that M\Rpis 
losed under the Diri
hlet 
onvolution.Further, the inverse g�1 of g 2 M belongs to M. From Theorem 5we know that the power series Gp(z), asso
iated with g 2 M \ Rp andrepresenting a rational fun
tion, has positive radius of 
onvergen
e, andGp(0) = 1. By the Cau
hy{Taylor theorem, the same is true for G�1p (z),and the Cau
hy produ
t with Gp(z) obviously 
orresponds to g�1 � g = "on the set hpi. Therefore, g�1 2M\Rp.
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htNext, noti
e that Np is a subgroup of the group M\Rp. The mappingg 7! gp is 
learly a group homomorphism with kernel Np. The Diri
hletseries egp(s) of gp 2M\Rp is absolutely 
onvergent in some right half planeof the 
omplex plane, and gp 7! Gp(p�s) = egp(s) represents an isomorphi
mapping from (M\Rp)=Np onto the multipli
ative group of rational powerseries R(z) with a positive radius of 
onvergen
e and R(0) = 1.Finally, by multiplying the re
urren
e equation in Theorem 5(
) withz�+k and summing over all � 2 N0 , we see that Gp(z)zkfp(1=z) is a polyno-mial P (z) of degree � k + l � 1 with P (0) = 1, whi
h is relatively prime toQ(z) = zkfp(1=z), due to the minimality of k = k(p). This 
ompletes theproof of Theorem 6.The divisor fun
tion � 2M is de�ned by � = 1 � 1, where 1 denotes the
onstant sequen
e with value 1 on N.Example 2. For s 2 C let the system S be generated by the sequen
eg = (�(n)n�s) 2 M. Observe that g 2 Rp for every p 2 P with fp(z) =(z � p�s)2. For n = p� 2 P� we obtain1Xk=0�n(pk)zk = (1� p�sz)2 1X%=0(� + %+ 1)p�(�+%)sz%= p��s(� + 1� �p�sz);whi
h gives �p� (pk) = ( (� + 1)p��s if k = 0,��p�(�+1)s if k = 1,0 if k > 1.Hen
e S 
onsists of the equations1n n�1X�=0 F�x+ �n � = n�sXdjn �(d)��nd�d�sF (dx) (n 2 N);and dimPg � 2. In parti
ular, for Re s � 0, s 6= 0, the null fun
tion isthe only solution F 2 L(T) of S , and for s = 0 the spa
e Pg of solutionsF 2 L(T) of S 
onsists of all 
onstant fun
tions. For Re s > 0 that spa
eis spanned by the 
osine and the sine part of the seriesT (x) = 1Xn=1 �(n)n�se2�inx;if these are the Fourier series of L(T) fun
tions respe
tively. This is obviousfor Re s > 1 only, due to the absolute 
onvergen
e of T (x).In a similar way extended repli
ativity systems S generated, for in-stan
e, by the sequen
es ('(n)n�s) or (�(n)n�s), where ' and � denote
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tional equations 269respe
tively the Euler fun
tion and the sum of divisors fun
tion, and theirsolutions F 2 L(T) 
an be treated.5. Aperiodi
 solutions. For intervals I � R we denote by C(I) the setof 
ontinuous fun
tions F : I ! C . We are interested in aperiodi
 solutionsF 2 C(R+) of systems S , generated by some sequen
e g 2 F , g(1) = 1.One may expe
t that they are rather ex
eptional.It is well known that the Hurwitz zeta fun
tion de�ned by�(s; x) = 1X�=0 (x+ �)�s (Re s > 1; x 2 R+)extends to a fun
tion holomorphi
 for s 2 C n f1g and x 2 C � = C n fx 2R : x � 0g, with a simple pole at s = 1 with residue 1. The polylogarithmfun
tion de�ned byLs(z) = 1X�=1 ��sz� (s 2 C ; z 2 U)extends to a fun
tion holomorphi
 for s 2 C and z 2 C n [1;1). In parti
-ular, we have the following two lemmas, whi
h are taken from Milnor [8℄,Lemma 1, Lemma 2 and Theorem 1.Lemma 4. The fun
tionBs(x) = �s�(1� s; x)is holomorphi
 for s 2 C and x 2 C � , with B0(x) = 1. For ea
h s 2 Cthe fun
tion Bs : R+ ! C solves both the 
lassi
al repli
ativity system Sgenerated by g(n) = n�s and the di�eren
e equationBs(x+ 1)�Bs(x) = sxs�1:Moreover , if s 2 N0 then Bs(x) 2 Q [x℄ is the sth Bernoulli polynomial andBs = Bs(0) is the sth Bernoulli number.Lemma 5. For every s 2 C the linear spa
e 
onsisting of all 
ontinuoussolutions F : (0; 1) ! C of the 
lassi
al system S generated by g(n) = n�shas dimension 2. For s 62 N0 it is spanned by Bs(x) and Bs(1�x), for s = 0by B0(x) and 
ot(�x), for s 2 N by Bs(x) and ReLs(e2�ix).Now we 
an formulate our main result on aperiodi
 solutions of S .Theorem 7. Let g 2M\Rq for two di�erent q 2 P, and let the systemS be generated by g. Then S has an aperiodi
 solution F 2 C(R+ ) if andonly if S is the 
lassi
al system generated by g(n) = n�s with some s 6= 0.In this 
ase(11) F (x) = 
Bs(x) + �(x) (x 2 R+)with some 
onstant 
 2 C� and some 1-periodi
 solution � 2 C(R+ ) of S .
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htThe important point to note here is that the existen
e of aperiodi
 so-lutions F 2 C(R+ ) of extended repli
ativity systems S generated by mul-tipli
ative re
urrent sequen
es shrinks S to the 
lassi
al system. This ex-
ludes the o

urren
e of aperiodi
 solutions F 2 C(R+ ) in many 
ases.Observe that the previous result of Yoder [12℄, Theorem 4, is 
ontained inTheorem 7 above, sin
e every g 2 T has the property g 2 M \Rq for allq 2 P.P r o o f (of Theorem 7). By Lemmas 4 and 5 we only need to showthat the existen
e of an aperiodi
 solution F 2 C(R+) of S implies thatg(n) = n�s with some s 2 C . We set�(x) = F (x+ 1)� F (x) (x 2 R+)and denote for ! 2 R+ by R! the ring of !-periodi
 fun
tions � 2 C(R).The �rst step of the proof 
onsists in deriving from g 2 Rq for some q 2 N,q 6= 1, a fun
tional equation of the type(12) q�k�� xqk�+ 
k�1q�(k�1)�� xqk�1�+ : : : + 
0�(x) = 0 (x 2 R+)with 
ertain 
oeÆ
ients 
k�1; : : : ; 
0 2 C , 
0 6= 0, and from g 2 M thesystem of fun
tional equations(13) �� xp�+1�� p�g(p�)��xp�= 1p p�1X%=0���x+ %p�+1 �� p�g(p�)��x+ %p �� (x 2 R+)for all p 2 P and � 2 N. In the se
ond step of the proof, while assuming(12) for two numbers q 2 N having Q-linearly independent logarithms (e.g.for di�erent primes), we obtain the expli
it formula(14) �(x) =Xs2S Ps(log x)xs�1 (x 2 R+ )with some �nite set S � C and 
ertain polynomials Ps(x) 2 C [x℄. Furtherwe put (13) into the form(15) �� xp�+1�� p�g(p�)��xp� = X�2Tp h�;p;�(x)�x;where Tp is the set of zeros of the polynomial tp(z) = (zp � 1)=(z � 1) � pand h�;p;� 2 R1. In the third step we insert (14) into (15) to 
on
lude from� 6� 0 that �(x) = axs�1 with some 
onstants a; s 2 C , a 6= 0. Finally, wederive that g(n) = n�s for all n 2 N.In parti
ular, suppose that the system S is generated by some sequen
eg 2 Rq, g(1) = 1, where 1 6= q 2 N. Then, similar to the proof of Theorem 2,
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tional equations 271equation (5q) may be rewritten as�ql+k + 
k�1�ql+k�1 + : : : + 
0�ql = 0;from whi
h it follows that�ql+k(d)F (dx) + 
k�1�ql+k�1(d)F (dx) + : : : + 
0�ql(d)F (dx) = 0for all d 2 N, x 2 R+ . Summing over d 2 N and writing again Fn(x) for theleft side of equation (2n), we infer that(16) Fql+k (x) + 
k�1Fql+k�1(x) + : : :+ 
0Fql(x) = 0 (x 2 R+):Observe that Fn(x+ 1) � Fn(x) = (1=n)�(x=n) for all n 2 N and x 2 R+ ,and subtra
t equation (16) at x from that at x+ 1. It follows that1ql+k�� xql+k�+
k�1 1ql+k�1�� xql+k�1�+: : :+
0 1ql�� xql� = 0 (x 2 R+);whi
h is equivalent to (12).Next, assume that the system S is generated by some sequen
e g 2M.Observe that S turns into the system of fun
tional equations for �,1n��xn� = 1Xd=1 �n(d) d�1XÆ=0�(dx+ Æ) (n 2 N):By multiplying the identity (8) withpk�1XÆ=0 �(pkx+ Æ);summing over k 2 N and applying Lemma 2, we obtain1p��� xp��� g(p�)�(x)� 1p�+1 p�1X%=0��px+ %p�+1 � = g(p�)�p;for all p 2 P and � 2 N0 , where�p = 1Xk=1 g�1(pk) pk�1XÆ=0 �(pkx+ Æ):In parti
ular, for � = 0 we see that�p = �1p p�1X%=0��px+ %p �;from whi
h (13) follows with px instead of x.The derivation of (14) and (15) from (12) and (13) requires two morelemmas 
on
erning di�eren
e equations and will be given in the next se
tion.



272 L. G. Lu
htCombining (14) and (15) givesXs2S�xp�s�1(p��sPs(log x� log p�+1)� g(p�)Ps(log x� log p))= p�� X�2Tp h�;p;�(x)�x:Observe that 1 2 Tp and all � 2 Tp, � 6= 1, satisfy j�j > 1. Therefore theright side of the above equation redu
es to the term p��h1;p;�(x) = hp;�(x),say, and with px instead of x we arrive atXs2S xs�1(p��sPs(log x� log p�)� g(p�)Ps(log x)) = hp;�(px);where hp;� 2 R1. It follows from �(x) 6� 0 that �(x) = axs�1 with some
onstants a 6= 0, s 2 S. Moreover, g(p�) = p��s or s = 1. Sin
e g 2M, the�rst equation is valid for all p 2 P and � 2 N if s 6= 1. If s = 1 then we seefrom Lemma 4 that F (x) = aB1(x) + �(x) with some fun
tion � 2 R1. Oninserting this into (2n) we obtaina 1Xd=1 �n(d)B1(dx)� anB1(x) = 1n n�1X�=0 ��x+ �n �� 1Xd=1 �n(d)�(dx)where the right side represents a fun
tion 	n 2 R1, say. Now B1(x) = x�1=2yields 1Xd=1 �n(d)d = n�1and a2� 1n � f(n)� = 	n(x);where, for abbreviation, f(n) = 1Xd=1 �n(d):By integrating over T we see that b	n(0) = b�(0)(1 � f(n)), leading to(17) a2� 1n � f(n)� = b�(0)(1 � f(n)):Suppose that b�(0) 6= 0. Thenf(n)�b�(0)� a2� = b�(0)� a2n and b�(0) 6= a2 ;
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tional equations 273so that f(n) = b�(0)� a=(2n)b�(0) � a=2 :By Lemma 3, f is multipli
ative, and we 
on
lude from f(mn) = f(m)f(n)for 
oprime m;n 2 N that b�(0) = 0, 
ontrary to our assumption. Hen
eb�(0) = 0 and f(n) = n�1 by (17). Applying Lemma 3 again we obtaing(n) = n�1, whi
h is the desired 
on
lusion.Example 3. A

ording to Example 2, the sequen
e g = (�(n)n�s)belongs to M \ Rq for every q 2 P. By Theorem 7 the 
orrespondingsystem S has no aperiodi
 solutions F 2 C(R+). The same holds forthe extended repli
ativity systems, generated for instan
e by the sequen
es('(n)n�s) and (�(n)n�s).6. Di�eren
e equations. In this se
tion we 
lose the gap in the pre
ed-ing proof of Theorem 7 by deriving the equations (14) and (15) respe
tivelyfrom the fun
tional equations (12) and (13). We begin with two lemmas
on
erning the 
ontinuous solutions of homogeneous di�eren
e equations.For �xed ! 2 R+ we are interested in the solutions � 2 C(R) of thelinear homogeneous equation(18) �(x+ k!) + 
k�1�(x+ (k � 1)!) + : : :+ 
0�(x) = 0 (x 2 R)where k 2 N, 
0; : : : ; 
k�1 2 C , 
0 6= 0. We may 
onsider C(R) as anR!-module and interpret the indeterminate z in the 
ompanion polynomial(19) f(z) = zk + 
k�1zk�1 + : : : + 
0 2 C [z℄of equation (18) as the endomorphism of C(R) de�ned by � 7! z� withz�(x) = �(x + !) for all x 2 R. Further, we may write the 
ompositionof endomorphisms as produ
t. Then (18) takes the form f(z)�(x) = 0,and the problem of solving (18) 
onsists in determining ker f(z) � C(R).Observe that ker f(z) is a k-dimensional R!-submodule of C(R). Namely,if �1; : : : ; �r 2 C� are the distin
t zeros of f(z) of order k1; : : : ; kr 2 N; k1+: : :+ kr = k, thenker f(z) = ker(z � �1)k1 � : : :� ker(z � �r)kr :It remains to determine ker(z � �)k where � 2 C� , k 2 N. Noti
e thatthe bran
hes of the multi-valued fun
tion �x=! = e(x=!) log � only di�er by afa
tor of the form e(mx=!) 2 R! with m 2 Z. Now(z � �)k�x=!P (x) = �k�x=!(z � 1)kP (x)vanishes for all x 2 R if and only if (z� 1)kP (x) � 0, whi
h is equivalent toP (x) 2 R![x℄, degP (x) � k�1, or P (x) � 0. We thus arrive at the followingwell known result (see, for instan
e, N�orlund [9℄, Chapter 10, no. 156).
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htLemma 6. Let �% 2 C� be the distin
t zeros of order k% 2 N (% = 1; : : : ; r)of the 
ompanion polynomial (19), asso
iated with equation (18). Then � 2C(R) solves (18) if and only if�(x) = X1�%�rP%(x)�x=!%with polynomials P%(x) 2 R![x℄, degP%(x) � k% � 1, or P%(x) � 0 (% =1; : : : ; r).In the sequel, we indi
ate the dependen
y on ! 2 R+ of the shift operatorz de�ned above by writing z!. The following lemma extends a theorem ofPopovi
iu [10℄ (see Ku
zma [4℄, Theorem 13.5).Lemma 7. Let !1; !2 2 R+ su
h that !1=!2 62 Q . Let f1(z); f2(z) 2 C [z℄satisfy f1(0)f2(0) 6= 0, and let A be the (�nite) set of (uniquely determined)solutions � 2 C of the systemf1(e�!1) = f2(e�!2) = 0:Then every � 2 ker f1(z!1) \ ker f2(z!2) has the form�(x) = X�2AP�(x)e�xwith 
ertain polynomials P�(x) 2 C [x℄.P r o o f. Be
ause of the dire
t sum representation of the kernels of f1(z!1)and f2(z!2) it suÆ
es to prove the following spe
ial 
ase: Let �1; �2 2 C�and k 2 N. Then the existen
e of a non-trivial solution � 2 C(R) of thedi�eren
e equations(z!1 � �1)k� = 0; (z!2 � �2)k� = 0implies that �1 = e�!1 , �2 = e�!2 with a uniquely determined number � 2 C ,and �(x) = P (x)e�x with some polynomial P (x) 2 C [x℄, degP (x) � k � 1.Fix some values �1 of (log �1)=!1 and �2 of (log �2)=!2. Then, by theirrationality of !1=!2, the equation(20) �1 + 2m1�i!1 = �2 + 2m2�i!2has at most one solution (m1;m2) 2 Z2.Lemma 6 yields the representations�(x) = P1(x)e�1x = P2(x)e�2x (x 2 R)with polynomials P1(x) 2 R!1 [x℄, P2(x) 2 R!2 [x℄ of degree � k � 1. By
omparing summands we obtain(21) h1�(x)x�e�1x = h2�(x)x�e�2x (x 2 R; 0 � � < k)
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tional equations 275where h1� 2 R!1 , h2� 2 R!2 . In parti
ular, with h = h1� and Æ = �2 � �1,it follows that h(x+ !1) = h(x) and h(x + !2) = eÆ!2h(x) for all x 2 R or,equivalently,(22) h(x+m!1 + n!2) = enÆ!2h(x) (m;n 2 Z; x 2 R):By Krone
ker's theorem (see for instan
e Hardy and Wright [2℄, Theo-rem 444) the set fm!1 + n!2 : m;n 2 Zg is dense in R. Consequently,for every y 2 R there exists a sequen
e of pairs (m� ; n�) 2 Z2 dependingonly on y su
h that the 
orresponding sequen
e (m�!1 + n�!2) tends to yas � tends to in�nity. Sin
e h is 
ontinuous, (22) impliesh(x+ y) = h(x)H(y) (x; y 2 R)with some fun
tion H : R ! C . We may assume that h(x) 6� 0. Then h iszerofree on R and h(y) = h(0)H(y). Therefore, H is 
ontinuous and zerofreetoo, and additionally satis�es the fun
tional equationH(x+ y) = H(x)H(y) (x; y 2 R):These fun
tions are given by H(x) = e�x, whi
h leads to h(x) = 
e�x, withsome 
onstants � 2 C , 
 2 C � . By inserting we see from (22) that e�!1 = 1and e�!2 = eÆ!2 or, equivalently, �!1 = 2%1�i and �!2 = Æ!2 + 2%2�i with
ertain numbers %1; %2 2 Z. It follows that(23) Æ = 2k�i!1 � 2l�i!2 ;whi
h shows that (20) has at least one solution. We 
on
lude that � is wellde�ned.A
tually, the equations (20), (21) and (23) yield that the fun
tion de�nedby x 7! h1�(x)e�� %1!1x� = h2�(x)e�� %2!2x� (x 2 R)belongs to R!1 \ R!2 and therefore must be a 
onstant. This means that�(x) = P (x)e�x with a polynomial P (x) 2 C [x℄ of degree � k � 1, whi
h isthe desired 
on
lusion.In order to derive (14) from (12) we multiply (12) with x, repla
e x byex, put �(x) = ex�(ex) and ! = log q. This yields the di�eren
e equation(24) �(x� k!) + 
k�1�(x� (k � 1)!) + : : : + 
0�(x) = 0 (x 2 R):With the 
ompanion polynomial fq(z) of g 2 Rq a

ording to (6), the
ompanion polynomial of equation (24) equals zkfq(1=z). Therefore thezeros �% 2 Zq (% = 1; : : : ; r) of order k% 2 N of fq(z) 
orrespond to thezeros ��1% 2 C� of the same order of zkfq(1=z). By applying Lemma 6 and
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htreturning to � we obtain�(x) = X1�%�rP%(log x)xs%�1 (x 2 R+)with polynomials P%(x) 2 R![x℄, degP%(x) � k% � 1, or P%(x) � 0, wheres% is some �xed value of �(log �%)=! for % = 1; : : : ; r.Now we asso
iate with g 2 Rq the set Sq = fs 2 C : fq(q�s) = 0g.Observe that Sq = ; if and only if k = 0, and 
ardSq = 1 for k 2 N,sin
e every zero � 2 Zq of the 
ompanion polynomial fq(z) 
ontributes thedistin
t elements � log � + 2m�ilog q (m 2 Z)to Sq, where log � is some �xed logarithm of � 6= 0. Assume now that g 2Rq1 \ Rq2 , g(1) = 1, with !1 = log q1 and !2 = log q2 linearly independentover Q . Due to the irrationality of !1=!2, the interse
tion S = Sq1 \ Sq2is always a �nite set. Noti
e that for every s 2 S the numbers �1 = e�!1s,�2 = e�!2s are zeros of fq1(z) and fq2(z), respe
tively. Hen
e, by applyingLemma 7 to the (transformed) fun
tional equations (12) for q = q1; q2 weobtain (14).In order to derive (15) from (13) denote the left hand side of (13) byH(x). Then (13) takes the form of the di�eren
e equationH(x) = 1p p�1X%=0H(x+ %) (x 2 R+)with the 
ompanion polynomial tp(z) = (zp � 1)=(z � 1) � p having onlysimple zeros � 2 Tp. A

ording to Lemma 6, the solutions H 2 C(R+ ) aregiven by H(x) = P�2Tp h�(x)�x with fun
tions h� 2 R1, whi
h gives (15)and 
ompletes the proof of Theorem 7.A 
loser inspe
tion of the proof of Theorem 7 shows that the existen
eof aperiodi
 solutions F 2 C(R+) of 
ertain extended repli
ativity systemsS 
an be ex
luded by 
onsidering suitable �nite subsystems only. Thisrequires looking again at the 
ompanion polynomialfq(z) = 
kzk + 
k�1zk�1 + : : :+ 
0 2 C [z℄of g 2 Rq, where 
k = 1 and 
0 6= 0. We asso
iate with g 2 Rq the(non-empty) set Nq = fql+� : 0 � � � k; 
� 6= 0gof powers of q, where k; l 2 N0 are 
hosen minimal su
h that equation (5q)is valid.Theorem 8. For di�erent primes q1; q2 assume that the sequen
e g 2 F ,normalized by g(1) = 1, satis�es g 2 Rq and supp�n � hqi for all n 2 hqi,
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tional equations 277q 2 fq1; q2g. If the system S generated by g has aperiodi
 solutions F 2C(R+ ) then there exists some s 2 C su
h that g(n) = n�s for all n 2 hq1q2i.Hen
e, if the �nite subsystem ofS 
onsisting of the equations (2n) for alln 2 Nq1 [Nq2 does not 
oin
ide with that of the 
lassi
al system generatedby g(n) = n�s then S has no aperiodi
 solutions F 2 C(R+). For the proofof Theorem 8 we refer to that of Theorem 7.Example 4. A

ording to Example 2, the non-existen
e of aperiodi
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