ACTA ARITHMETICA
LXXXII.4 (1997)

Gauss sums for orthogonal groups
over a finite field of characteristic two

by

DAE SAN KM (Seoul) and YouNGg HO PARK (Chuncheon)

1. Introduction. Let A be a nontrivial additive character of the finite
field IF,. Assume that g = 2¢ is a power of two. Then the exponential sum

(1.1) Z A(trw)

weG
is considered for each of the groups G, where G is one of the orthogonal
or special orthogonal groups O (2n,q), SO (2n,q),0~(2n,q), SO~ (2n,q)
and O(2n +1,q).

The purpose of this paper is to find an explicit expression of the sum
(1.1), for each of G listed above. It turns out that they can be expressed
as polynomials in ¢ with coefficients involving ordinary Kloosterman sums
and Gauss sums. In fact, except for the case O(2n+ 1, q) the expressions for
(1.1) are identical to the corresponding ones for ¢ odd (i.e., a power of an
odd prime). On the other hand, the expression for O(2n + 1, ¢) is identical
to the one for SO(2n + 1,¢q) with ¢ odd and differs by a constant from the
corresponding one for ¢ odd.

Here it should be stressed that, although our final expressions are (al-
most) identical to the corresponding ones for ¢ odd, there are many differ-
ences between the two cases in many respects.

Similar sums for other classical groups over a finite field have been con-
sidered and the results for these sums will appear in various places ([3]-[9]).

We now state some of the main results of this paper. Here again ¢ is a
power of two. For some notations, one is referred to the next section.
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THEOREM A. The sum Y, coni1,q Atrw) equals

AL D> Atrw),

weESp(2n,q)

so that it is A(1) times

) [n/2] n r ‘
qn -1 Z qr(r+1) |:27,:| H(q2371 o 1)
r=0

qj=1
[(n—2r+2)/2] -1
% Z qlK()\; 1’ 1)n—2r+2—2l Z H(q]V—QV o 1)’
=1 v=1

where Sp(2n,q) is the symplectic group over F,, K(\;1,1) is the usual
Kloosterman sum as in (2.21) and the innermost sum is over all integers
jla"'vjl—l satzsfymg 21 -1 Sjl—l Sjl—? S S]l S n—27“—|— 1.

THEOREM B. The sum ., co+(2n,q Mtrw) is given by

[n/2] r

n?—n— r(r n ) —

A DO F B (e
r=0

qj=1
[(n—2r+2)/2] -1
> Z qlK()\; 17 1)n72r+272l Z H(q]l,72y - 1)
=1 v=1
[(n—1)/2] n r4+1
r(r+1) 2j—1
IV AR R CEa)
r=0 9 j=1
[(n—2r+1)/2] 1—1
D SR R D Y ) (Ee
=1 v=1

where the first and second unspecified sums are respectively over all integers
sy i1 satisfying 2l — 1 < 51 < ji 2 < ... <j1 <n—2r+1 and over
the same set of integers satisfying 2l — 1 < j;_1 < jj_o < ... < j;1 <n-—2r.

THEOREM C. The sum 3 ,co-(an,q) Mirw) is given by

q—1

n?—n—1 1 j 2
q <—C]_12G(W,)\) +Q+1>

j=1
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[(n—1)/2] n—1 r
r(r+3) - 2j—1
><{ Z:O q [ 5 } [[@ -1

qj=1

[(n—27r+1)/2]

-1
% Z qlK()\; 1’ 1)n—2r+1—2l Z H(qu—QV - 1)
v=1

=1

[(n—2)/2] 43 n_17 "
_ r(r+3)+1 - 2j—-1
> o [ e -

qj=1

[((n—2r)/2] -1
D S D ) | ()
=1 v=1
where G(¢7,\) is the usual Gauss sum as in (2.20) with 1 a multiplicative
character of Fy of order q — 1, the first unspecified sum is over all integers
J1y ey g1—1 satisfying 2l — 1 < 511 < ji_o < ... < j1 < n —2r and the
second one is over all integers jy,...,5—1 satisfying 2l — 1 < j;_1 < jj_o <
o< <n—2r—1.
The above Theorems A, B, and C are respectively stated as Theorem 6.1,
Theorem 6.3, and Theorem 5.2.

2. Preliminaries. Unless otherwise stated, I, will denote the finite
field with ¢ = 2% elements. Whenever it is necessary to consider the case
g = p® with p an odd prime, we will say that ¢ is odd. As an excellent
background reference for matrix groups over finite fields, one may refer
to [11].

Let A be an additive character of ;. Then A = A, for a unique a € F,,
where, for a € F,

2d—1

)}

Aa(@) = exp{mi(aa + (aa)* + ... + (ac)

It is nontrivial if a # 0.

tr A denotes the trace of A for a square matrix A and !B indicates the
transpose of B for any matrix B.

An n x n matrix A = (a;;) over F, is called alternating if

{Gn’:O for1 <i<mn,

(21) A5 = —0Qj; = Qjj for 1 < 1< ] <n.

In the following discussion, we note that, up to equivalence, (Fi”“, 6%)

are all nondegenerate quadratic spaces of dimension 2n and (ngnﬂ)ﬂ, 0)

is the only nondegenerate quadratic space of dimension 2n + 1.

Let 67 be the nondegenerate quadratic form on the vector space ]F?I”Xl
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of all 2n x 1 column vectors over F,, given by

2n n
(2.2) 0+<Z$i€i> = inacnﬂ-,
i=1 i=1

where {e! =10 ... 0,2 =49010 ... 0],...,e?” =40 ... 0 1]} is the
standard basis of F?]”“.

GL(n, q) denotes the group of all n x n nonsingular matrices with entries
in [Fy.
Then the group of all isometries of (}FZ”XI, 67) is given by
(2.3)  O%(2n,q)
'AC and 'BD are alternating,
[A B] € GL(2n,q) | , . 8
¢ D AD+'"CB =1,
A B A'B and C'D are alternating,
€ GL(2n,
{[C D] (nQ)' A'D + B'C = 1,
(cf. (2.1)). Here A, B,C and D are of size n.
P*(2n,q) is the maximal parabolic subgroup of O (2n, q) defined by

- { [61 tAO—l} {1(;1 ﬁ] ‘ A€ GL(n,q), B alternating},

Let 6~ be the nondegenerate quadratic form on the vector space Fi"“,
given by

2n n—1
- ‘ 2 2
(2.5) 0 (Z xiel> = Z TiTp—14i + Top_1 + Tan—1T2, + a3,
i=1 i=1
where {el, ..., e?"} is the standard basis of ]F?I”Xl as above, and a is a fixed

element in [F, such that 22 4+ 2 + a is irreducible over F,.

Let P(x) = 2% + = denote the Artin—Schreier operator in characteristic
two. Then the sequence of groups

0—F5 —F} — P, —0
is exact so that
(2.6) P(Fy) ={b>+b|beF,}, [FI:PF,)] =2,

where the first map is the inclusion from the additive group of the prime
subfield of F, to that of F, and the second one is z — P(z) = 2% + z.
Moreover, 2% + z + a is irreducible over F, if and only if a € F, — P(F,).
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Let 6,4, 6, (with a the fixed element in F, as in (2.5)) and 7 denote the
special 2 x 2 matrices over [Fy:

1 1 ~ a 1 0 1
27) 5““[0 a]’ 5““[0 1}’ = [1 0]'
The group O~ (2n,q) of all isometries of (IF 3"“, 0~) consists of all ma-
trices in GL(2n,q),

A B e
(2.8) C D f],
g h 1

satisfying the following relations:
'AC + 'gd,g is alternating,
'!BD + 'hd,h is alternating,
tef 4+ %id,i + d, is alternating,
'AD +'CB + tgnh = 1,,_1,
PAf +'Ce+tgni =0,
'Bf +'De + "hni = 0;
or equivalently
A'B + ed,le is alternating,
C'D + fgat f is alternating,
(2.10) g'h + igatz' + ga is alternating,
A'D + B'C +en'f =1,_1,
A'h + Blg + en'i = 0,
C'h + D'g + fn'i = 0.
In (2.8), A, B, C, D are of size (n—1) x(n—1), e, f are of size (n—1) x 2,
g, h are of size 2 x (n — 1), and i is of size 2 x 2.
P~ (2n,q) is the maximal parabolic subgroup of O~ (2n, q) given by
(2.11) P~ (2n,q)
A 0 0] [1,.1 B ‘hlini]| A€ GL(n—1,q),
= 0 A=t 0 0 1,1 0 i€ 0 (2,9), ,
0O 0 1 0 h 1o 'B 4 'hé,h is alternating

where we note that O~ (2,¢) is the group of isometries of (F2*!,0~) with

- 1 2 2 2
0~ (x1e" + z9€”) = ] + 2122 + ax;

(ct. (2.5)).
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It can be shown that

(212) 0= (2,q) = SO~(2,9) 11 [é ﬂ SO~(2,9),

with
_ . d1 ad2
e so-aa={[4 ]

B { [dl ads ] dy + dsb € F,(b) with }
o do di+ds NIFq(b)/]Fq (dl + dgb) =1

where b € F, is a root of the irreducible polynomial 22 + z + a € F,[z]. So
SO7~(2,q) is a subgroup of index 2 in O~ (2,q), and

(2.14) 1SO7(2,9)| =q+1, [07(2,9) =2(¢+1).
The reason for defining SO~ (2, ¢) as in (2.13) will be explained in Section 3.

d3 + dydy + ad3 = 1}

Let 6 be the nondegenerate quadratic form on the vector space ngn“)“
of all (2n + 1) x 1 column vectors over F,, given by

2n—+1 n
(2.15) 9( Z ﬂfiez) = sz‘fﬂnﬂ‘ + x%n—l—l’
=1 =1

where {e! =110 ... 0},e2=7010 ... 0],...,e?""1 =10 ... 0 1]} is the
standard basis of FEI%H)XI.

The group of all isometries of (Fg2n+1)X1, 0) is given by
(2.16)  O(2n+1,q)

A B 0] *AC +'gg and 'BD + 'hh
= C D 0| €GL(2n+1,q) | are alternating,
Lg 1] 'AD+'CB =1,
A B 0] A'B 4+ B'gg'B + A'hh'A and
= C D 0| eGL2n+1,q)| C'D+ D'gg'D + C*hh'C are
g h 1) alternating, A'D + B'C =1,

Here A, B, C, D are of size n x n and g, h are 1 X n matrices.

It is worth observing, for example, that 'AC + tgg is alternating if and
only if YAC = 'CA and g = /diag(*AC), where the meaning of the latter
condition is as follows. Recall that every element in [F, can be written as
a? for a unique « € F,. Now,

(2.17)  \/diag(*AC) indicates the 1 x n matrix [a ag ... ] if the diag-
onal entries of AC are given by

(PAC) 1 = a3, ..., ("AC)pn = a2  for a; € F,.
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As is well known or can be checked immediately, there is an isomorphism
of groups

(2.18) t:02n+1,q9) — Sp(2n,q),
given by
A B 0
C D 0|+ [é g] .
g h 1

Let P(2n+1, q) be the maximal parabolic subgroup of O(2n+1, q) given
by

(2.19)  P(2n+1,q)

A 0 0 1 B 0
n A e GL(n,q),
=10t 0|0 1, 0 GLima),
0 0 1 0 1 B + *hh is alternating

For a multiplicative character x of F, and an additive character A of F,
G(x, ) denotes the Gauss sum defined by

(2.20) Ghen = 3 x0)@)
a€Fy

For a nontrivial additive character A of F,, and a,b € F,, K(\;a,b) is
the Kloosterman sum defined by

(2.21) K(Xa,b)= > Maa+ba™).
a€Fy

The order of the group GL(n,q) is given by

n—1 n
(2.22) g =" =) =ad® J]@ - 1.
§=0 j=1
Then we have, for integers n,r with 0 < r <mn,
o P
gn—rgr 7“ q

where [’Z]q is as in (2.24) just below.

From now on till the end of this section, ¢ will denote not just a power
of 2 but also an indeterminate.

For integers n,r with 0 < r < n, the ¢g-binomial coefficients are defined
as

(2.24) m T - v/ .
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For x an indeterminate, n a nonnegative integer,

(T3@)n =1 —2)1—=zq)...(1—xg""").

Then the ¢g-binomial theorem says

(2.25) zn: {”] q (=1)"¢® 2" = (5 ¢)n.

T
r=0

Finally, [y] denotes the largest integer < y, for a real number y.

3. Bruhat decompositions. In this section, we discuss the Bruhat de-
compositions of the orthogonal groups O™ (2n, ¢), 0~ (2n, q) and O(2n+1, q),
respectively, with respect to the maximal parabolic subgroups P*(2n,q),
P~ (2n,q) and P(2n +1,q).

As simple applications, we will show that these decompositions, when
combined with the g-binomial theorem, can be used to derive the orders of
those orthogonal groups.

Let FJ be the additive group of the prime subfield of F,. Then there are
epimorphisms 6+ : O*(2n,q) — F§ and 6~ : O~ (2n,q) — F5, which are
respectively related to the Clifford algebras C(F2"*!,0%) and C(F2"*!,67).
Explicit expressions for 67 and ¢~ can be obtained so that SO*(2n,q) :=
Kerdt, SO~ (2n,q) := Ker §~ are determined in the form of certain decom-
positions (cf. (3.46), (3.52)).

The Bruhat decomposition of O (2n, ¢) with respect to P = Pt (2n, q)
is given by

n

(3.1) Ot (2n,q) = [[ P*o, P,
r=0
where
0 0 1, 0
0 1, O 0
(3.2) of = 1 0 0 o | € O™ (2n,q).

0 0 0 1,—r
This can be proved in exactly the same manner as in the proof of Theo-
rem 3.1 of [9].
Write, for each r (0 < r < n),

(3.3) At ={w e P"(2n,q) | ow(o) ™t € PT(2n,q)}.

T

By expressing O (2n,q) as a disjoint union of right cosets of PT =
P*(2n,q), the Bruhat decomposition in (3.1) can be written as

(3.4) O"(2n,q) = ﬁ Prof(AN\PT).
r=0
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Write w € PT(2n,q) as

63 o=l ][5 0

with

A An t4—1 Eyn Eqs B 312]
A= oAl = , B= ,
[Am Ao Ey  Ea ‘Bia DB

Bi1 and By, alternating.

(3.6)

Here Aj1, Aja, As1, and Ay are respectively of sizes r x r, r X (n —r),
(n—7r)xr,and (n —r) x (n —r), and similarly for A=! and B.

Then, by multiplying out, we see that o, w(o;7)™! € P*(2n,q) if and
only if A5 =0, B1; = 0. Hence

(3.7) A = grgn_rq(3)qrGnsrin/2,
where g, is as in (2.22). Also, we have
(3.8) 1P+ (2n,q)| = ¢(*)g,..

From (3.7), (3.8) and (2.23), we get
(3.9) [AT\P (20, q)| = [”] g2,

q
(310) PRI = oD | 7] 40
q

Since we have, from (3.4),
n
(311) 0 (2m,q)| = 3 |P* (20, 0)?|4F .
r=0
(3.10) and (3.11), on applying the g-binomial theorem (2.25) with z = —1,
yield
) n—1 _
(3.12) 0F(2n,q)) =2¢" " (¢" = 1) [] (¢¥ - 1).
j=1
Note here that (3.7), (3.8), and hence (3.9) and (3.12) are the same as
the corresponding formulas in [9] for ¢ odd.
Next, the Bruhat decomposition of O~ (2n,q) with respect to P~ =
P~(2n,q) is

n—1
(3.13) O~ (2n,q) = [[ P70, P,
r=0



340 D. S. Kim and Y. H. Park

where
0 0 1, 0 0
0 1,1, O 0 0

(3.14) o, = |1, 0 0 0 0| €0 (2n,q).
0 0 0 1,1+ O

0 0 0 0 1

(3.13) can be shown in an exactly analogous manner to the proof of
Theorem 3.1 in [5].

For each r (0 <r <n—1), put
(3.15) A ={we P (2n,9) | o, w(o, )" € P~(2n,9)}.

Then the Bruhat decomposition in (3.13) can be written, expressed as a
disjoint union of right cosets of P~ = P~ (2n,q), as

[\V]

(3.16) 0~ (2n,q) = HPJ (A7\P7).

Write w € P~ (2n,q) as

A 0 0][l.s B ‘hlini
(3.17) w=|0 tA"l 0 0 1,1 0 |,

with

Az1 A Ey1 Ea Ba1 B
h = [h1 ha], "B+ "hd,h alternating

(cf. (2.7)). Here Aj1, Aja, A2, and Ayy are respectively of sizes r x r,
r X (n—l—r) (n—1—r)xr,and (n—1—17r) X (n—l—r), similarly for
tA=1 B, and hy is of size 2 x r. Then o w(o,”)~! € P~(2n,q) if and only
if A12 =0, B11 =0, hy = 0. So, recalhng the order of O7(2,q) from (2.14),
we get,

_ [An Am] t4-1 [En E12:| B [311 B12}
(3.18) ’ ’ ’

(319)  [A7| = 2(q + 1)grgn_1_pgn= D@2 /2gr@n—3r-5)/2,
where g, is as in (2.22). Also,
(3.20) |P~(2n,q)| = 2(q + 1)g_1qgm~ D +2/2,

From (3.19), (3.20) and (2.23), we get

(3.21) |AZ\P~(2n,q)| [” ] r(r+3)/2

(3.22) [P~ (2n,q)]2|AZ |7t = 2(¢+ 1)q ]:[ (¢ — 1) {”_1] g g2
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Note that we have, from (3.16),
n—1
(3.23) 07 (2n,q)| =) IP~(2n,9)] A7
r=0
From (3.22), (3.23) and applying the g-binomial theorem (2.25) with x =
—q?, we get

(329 0 @n.a)| = 20"~ (a" + 1) [] (@ 1)

Again, we see that (3.19), (3.20), and hence (3.21) and (3.24) are the
same as the corresponding formulas in [5] for ¢ odd.

Finally, the Bruhat decomposition of O(2n + 1, ¢) with respect to P =
P(2n+1,q)is

n
(3.25) 0@2n+1,q) =[] Po.P,
r=0
where
o 0 1. 0 0
0 1,., 0 0 0
(3.26) or=11, 0 0 0 0|ece0@n+1,9).
0 0 0 1, O
o 0 0 0 1

The decomposition in (3.25) can be proved, for example, by using the iso-
morphism ¢ in (2.18) and the well known Bruhat decomposition

n

(3.27) Sp(2n,q) = [[ P'olP,
r=0
where

(3.28) P = P'(2n,q)

{3 B[ ]| aecrna. m-n)

is a maximal parabolic subgroup of Sp(2n, q), and

0 0 1, 0
0 1, O 0
(3.29) o = 1 0 o0 o |E€ Sp(2n, q).

0 0 0 1,_,
As usual, (3.25) and (3.27) can be rewritten respectively as

(3.30) 0@2n+1,q) = ﬁ Po,(A\P)
r=0



342 D. S. Kim and Y. H. Park

and
(3.31) Sp(2n,q) = [] P'or(A\P),
r=0
where, for each r (0 < r < n),
(3.32) A, ={we P2n+1,q) | o,wo,* € P(2n+1,q)},
(3.33) A ={w e P'(2n,q) | ojw(oy) ™" € P'(2n,9)}.
Write w € P(2n + 1,q) as

(A0 o0][1, B 0
(3.34) w= |0 A7l 0 0 1, 0f,

0o 0 1]lo n 1
with

A A iy [En E12} [311 B12]
A= , AT = , B= ,

(3.35) Agr Aga | Ey Eao ‘Bia  Bao

Bi1 ='B11, Boy ='Bas, h=[hy hy] = /diag B

(cf. (2.17)). Here Ay1, Aj2, Aoy, and Agg are respectively of sizes r x r,
rx(n—r),(n—r)xr,(n—r)x(n—r),similarly for ‘A~! and B, and h,
is of size 1 x 7.

Then o,wo, ! € P(2n + 1,q) if and only if A;2 = 0, By; = 0. Thus

ntl T n—or—
(3.36) |Ar| = gogn_rgl"? ) gr@n=3r=1/2

where g, is as in (2.22). Also,

(3.37) IP2n+1,q)| = gng("2 ).
From (3.36), (3.37) and (2.23), we get
(3.39) APl = 7] o3,
339 IPeat LAl = Tl - 0| 7] o,

Since |0(2n+1,¢)| = >, |[P(2n+1,q)|? |A-| 7! from (3.30), by apply-
ing the g-binomial theorem (2.25) with z = —q we get

(3.40) 0@n+1,9)| = ¢" [](¢¥ - 1).
j=1

Note here again that (3.36), (3.37), and hence (3.38) and (3.40) are the
same as the corresponding formulas in [4] for ¢ odd.
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In order to define SO (2n,q) and SO~ (2n,q), we turn our attention
to the d-function defined on the group of isometries of an even-dimensional
nondegenerate quadratic space over a finite field of characteristic two.

Let (V,0) be a vector space V over Fy, of dimension 2n, together with the
nondegenerate quadratic form 6. Then the epimorphism § : O(V, 9) — Ff
can be described as follows, where ]F; is the additive group of the prime
subfield of F,. Assume that

(3.41) = (e1, f1) L L {en; fu),

where B(e;, f;) = 1 (z = 1,...,n) for the associated symmetric bilinear
form B of 5, and the orthogonality in (3.41) is with respect to f} Then, for
w € O(V,0),

n

(3.42) S(w) = Y (aizbisf(es) + ciydisf(f2) + bijes;).
ij=1
where
A B
(3.43) [l = [C D]
is the matrix of w relative to the ordered basis B = (e1,...,€n, f1,---, fn),

i.e., the columns of (3.43) are the “coordinate matrices” relative to B of the
images under w of the vectors in B, with A = (a;;), B = (b;;), C = (c45),
D = (d;j) n x n matrices.

It is known that ¢ is independent of a choice of basis as in (3.41). The
explicit formula of 0 in (3.42) can be obtained from the fact that, for each
w e O(V,0), 6(w) € F, satisfies

n n

doeifi=Y (we)(wfi) +8(w)
=1 =1
in the Clifford algebra C(V,8) of (V,0).

Writing
F2n><1 <€1 en+1> ... L <6n762n>’
we see from (3.42) that 0+ : O%(2n,q) — FJ is given by

(3.44) ot (w) = tr(B'C),
where

= {g IB;] € 0% (2n,q)
(cf. (2.3)).

On the other hand, writing
2nx1 __ 1 n 2 n+l1 n—1 2n—2 2n—1 2n
"0 = (et e™) L(e®e"™) L... L{e" e ) L (e ey,
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we see, from (3.42) again, that 6~ : O~ (2n,q) — Fg is given, for w €
O~ (2n,q), by

(3.45) 6 (w) = tr(*hdqg) + tr <e [(1) 0} tf) + tr(B'C) 4 126,41,

where 6, is as in (2.7), i = [i' %] with i',42 respectively denoting the first
and second columns of 7, and
A B e
w=|C D f| €O (2n,q)
g h 1

(cf. (2.8)—(2.10)).

Using (3.44), we see that 6 (w) = 0 for w € P+( n,q) (cf. (2.4)),
6% (o;F) =0 for r even, and 6 (o;7) =1 for r odd (cf. (3.2)). So, from (3.4),
we see that SOT(2n,q) := Kerdt is given by
(3.46) SO*t(2n,q) = [[ Proi(AN\PY).

0<r<n
reven

On the other hand, we see, by exploiting (3.45), that 6~ (o, ) = 0 for r
even and 6 (o, ) =1 for r odd (cf. (3.14)). Further, for w € P~(2n,q)
we have §~ (w ) = 425,41 in the notation of w in (2.8). Here i = [i! i?] €
07 (2,q). Thus, from (2.12) and (2.13), we see that §~(w) = 0 for i €
SO~ (2,q) and that 6~ (w) =1 for i € [é HSO‘(Zq).

Put
(347) Q" =Q (2n,q) =

A 0 0] [1lys B ‘thtigi] | A€ GL(n—1,q),
0 ‘A7 0 0 1,-1 O i€ SO~ (2,q), ,
0o 0 0 h 1o 'B 4 'hé,h is alternating

which is a subgroup of index 2 in P~ = P~ (2n, ¢q). Then the Bruhat decom-
position in (3.13) can be modified to give

(3.48) ~(2n,q) ]_[ P o Q.

Also, we put, for each r (0 <r <n—1),
(3.49) B ={wecQ (2n,q) | o, w(o;)"' € P~ (2n,q)}.

It is a subgroup of index 2 in A, (cf. (3.15)), and (3.48) can be rewritten
as

(3.50) 0~ (2n,q) = ]_[Pa (B\Q).
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Moreover,
(3.51) [BA\Q™| = [A\P7.
Now, from the above observation about the values of §~ and (3.50),

SO~ (2n,q) := Kerd~ is given by
(3.52) so~ena)=( I @ or(B\Q))

0<r<n—1
T even

n( I e@ o (B\Q)),

0<r<n—1
rodd
where
ln.o 0 00
(3.53) 0= 8 1"0—1 (1) (1) € P~(2n,q)
0 0 0 1
(cf. (2.11)).

4. Certain propositions
PROPOSITION 4.1. Let A be a nontrivial additive character of F,. Then:
(a) For any positive integer r,
(4.1) > Altréa'nh) = (—q)".
heF;*?
(b) For any positive even integer r,
(4.2) > Atrd.'nNR) =g
heFy*?

Here §, is as in (2.7), and N is the r X r matriz

0 1
4.3 N = 7“/2] :
(1) P
Proof. It is easily seen that the LHS of (4.1) equals
(3 e o)
z,y€lfy
where

(4.4) Z Mz? + 2y 4 ay?) = Z Z Mz? + 2y + ay?).

z,y€l, ye]}‘; z€lF,

Here one notes that }_ cp Az?) = > zer, M) = 0.
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For each fixed y € F,

Z Mz? + 2y + ay®) + Z AMx? + zy)
€l

T€l,
= Z)\(yQ(zQ—l—x—i—a Z)\ (2% + 1))
T€l, €l
YOSt +a)+ D /\(yQt)}
teP(F,) teP(F,)
=2) APPr)=2) Az)=
z€F, z€l,

(cf. (2.6)).
Thus (4.4) equals

—ZZ)\( z(z +vy)) ZZ)\ z(x+y)) ZAxy

y€Fx ©€Fy z€lF, yel, z,y€lfy

—{Z Z)\(y)—l—Zl}:—q.

z€F) yel, yel,
This shows (a). (b) is easy to see. m

The following proposition was proved in [1] and mentioned in [2, Theo-
rems 2.3 and 2.4].

PROPOSITION 4.2. (a) If B is an r X r alternating matriz of rank p
over Fy, then there exists A € GL(r,q) such that

0 1, 0
="A|1, 0 0|A (25=p).
0 0 0

(b) If B is anr xr symmetric, nonalternating matriz of rank p over F,
then there exists A € GL(r,q) such that

ot 0
s=aly ola

The next proposition contains special cases of Theorems 2 and 3 of [10]

PROPOSITION 4.3. Let s, and n, denote respectively the number of r x r
nonsingular symmetric matrices over Fy and that of r X r nonsingular alter-

nating matrices over Fy. So s, —n, equals the number of r X r nonsingular

symmetric, nonalternating matrices over Fy. Then s,,n,, s, —n, are respec-
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tively given by:

r/2
qr(”'Z)/‘il—I(quf1 —1) for r even,

(45) Sy = (7.+1)/2
g~/ H (¢* =1 —1) forr odd,
j=1
r/2
(4.6) n, = QT(T72)/4H(q2j_1 —1) forr even,
]:
0 for r odd,
r/2
g2 D] (¥ =1)  forr even,
— j=1
@7 s —ne = (r1)/2
g~/ H (¢¥~t—1) for r odd.
j=1

PROPOSITION 4.4. Let A be a nontrivial additive character of F,. For
each positive integer r, let (2, be the set of all v X r nonsingular symmetric
matrices over Fq. Then:

(48)  b(N)= > > Atrd.hBh)
Be2: pepr*?

r/2
q'"(”rﬁ)/4‘1—[(q2j_1 -1) for r even,

(r+1)/2
—g(r*Har—1)/4 H (¢* =1 —1) forr odd.

Proof. In view of Proposition 4.2 and with the notations of Proposi-
tion 4.3, b,(\) can be written as

Ny Z A(tr 8,'hNR) + Z A(tr6,'hh)  for r even,
heFer he]FrXZ
b.(\) =
W (89 —ny) Z A(tr 8,'hh) for r odd,
heF;*?

where 0, and N are respectively as in (2.7) and (4.3).
Now, our result follows from (4.1), (4.2), (4.6) and (4.7). =

Remark. It is amusing to note that the formula of b,()\) in (4.8)
coincides with that of the corresponding sum in (4.6) of [5] for ¢ odd.
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PROPOSITION 4.5. Let A be a nontrivial additive character of F,. Then

(4.9) S Arw) = — qil > G2,

weSO~(2,q)

(4.10) Z A(trdw) =q+1,
weSO~(2,9)

where 1 is a multiplicative character of F, of order ¢ —1 and

(4.11) 51 = [(1] H .

Proof. (4.10) is clear from (2.13) and (2.14), since A(tr d;w) = A(0) = 1
for each w € SO~ (2,q).

Let b € F, be a root of the irreducible polynomial 2% + z + a € F,[2]
(with a as in (2.5)). Then, for the quadratic extension K = Fy(b) of F, and

i [Z; dlafdz] € 50~ (2,q)
(cf. (2.13)), we have
trw = dy = trgr, (d1 + dab).
Thus the LHS of (4.9) can be rewritten as
> Ao tryr, (a).

a€K, N /p, ()=1

Now, (4.9) follows by using the same argument as in the proof of Proposi-
tion 4.5 of [5]. m

Remark. As in the odd ¢ case ([5], Remark after Proposition 4.5),
(4.9) yields the estimate

’ Z )\(trw)‘gq—l.

weSO~ (2,q)

5. O~ (2n,q) case. In this section, we will consider the sum
Z A(trw)
weG

for any nontrivial additive character A of F, and G = O~ (2n,q) or
SO~ (2n,q), and find explicit expressions for these by using the decomposi-
tions in (3.50) and (3.52).
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In view of (3.50), the sum - (2, ) A(trw) can be written as

(5.1) SBAQ T Y Altruwoy).

weP~
Here one has to observe that, for each y € Q—,
Z Atrwo, y) = Z Atrywo, ) = Z A(trwo,).
weP~ weP~ weP~

Write w € P~(2n,q) as in (3.17) with A,’A=1, B, h as in (3.18). Note
here that B and h are subject to the condition

!B + 'hé,h is alternating,
which is equivalent to the conditions:

tB11 + 'h1d,h, is alternating,
(5.2) tBog + thod,ho is alternating,
'B1g + "hadohy = "Bay + 'hidghos.

Now,
(5.3) > Atrwoy )= Y Atri) > A(tr Agg + tr Eay)
weP~ 1€0~(2,q) Ah
X Z )\(tr AllBll + tr A12321)-
B

For each fixed A, h and taking the last condition in (5.2) into consider-
ation, the last sum in (5.3) is over all By1, Ba1, Bag satisfying the first and
second conditions in (5.2), so that it equals

(54) q("—é—”') Z)\(U’AllBll)Z)\(tI‘ AIQBQI)-

B11 BZl
The inner sum in (5.4) is nonzero if and only if A;2 = 0, in which case it
equals ¢"(»=1=7). On the other hand, the sum over Bj; in (5.4) is nonzero
if and only if Ay; is symmetric, in which case it equals q(;))\(tr dah1A11'hy).
To see this, we let

— (v:- (A N hi1 hia ... hir
All - (alj)7 Bll - (/Bz]), h = h,21 h22 o hzr A

Then !By + thi6,h is alternating if and only if

{/Bzz = h%i + hiiho; + ah%i for1 <i<r,

(5:5) Bij = Bji + hijhaj + hyjhg; for 1 <i < j <.
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Using these relations, we see that

(5.6) trA;1 B = Z Oén'(h%i + hiihoi + ah%i)
i=1
+ Z ij(hiihaj + hajha:) + Z (g + i) By
1<i<j<r 1<i<j<r
Thus the sum over Bj; in (5.4) is nonzero if and only if a;; = «j; for

1 <i<j<r ie., Ay is symmetric. Moreover, in that case (5.6) can be
rewritten as trd,hi A11thy, so that

Z )\(tl" AllBll) = q(g))\(tr (5ah1A11th1).
B

A1n O

We have shown that (5.4) is nonzero if and only if A = [Am Ao

Aj1 nonsingular symmetric, in which case it equals

] with

n—1—r n—
2

q( 2 )Jr(g)JrT(niliT))\(tl"5ah1A11th1):q( 1))\(tr5ah1A11th1).

For such an A = [A“ 0 ],

Aoy Aoz
E11 E12 - tAl_ll *
Fy Exnl| | 0 A"

So the sum in (5.3) can be written as

=) ST ) D0 DT Altrdahi A ) D At Asa + tr Az

i€c0~(2,q) Ag1,ha Ai1,h1 Az
= q(n; )+2(n—1—7’)+7’(n—1—7‘) Z )\(tr i)bT(A)KGL(n—l—r,q) ()\, 1, ].)
1€0~(2,9)
= DR8N T At )b (MK Grn-1-rg (A 1,1),
€0~ (2,9)

where b,.(A) is as in (4.8), and in [8], for a,b € Fy, Kqgr1,q)(); a,b) is defined
as

(5.7) Kar,q(Asa,b) = Z Matrw +btrw™t).
weGL(t,q)
Putting everything together, the sum in (5.1) can be written as

(5.8) qnTNUEAZ N A (tri)
1€0~(2,9)

n—1
<3 1BAQ g ™ Vb (N Kgrno1-ng (A 1, 1).

r=0

An explicit expression for (5.7) was obtained in [8].
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THEOREM 5.1. For integers t > 1 and nonzero elements a, b of Fy, the
Kloosterman sum Kqr,,q)(A; a,b) is given by

[(t+2)/2]
(59) KGL(t,q)(/\§ a, b) — q(t—?)(t-ﬁ-l)/2 Z qlK()\; a, b)t+2—2l
=1

-1
x> T[@ ™ -,
v=1

where K(\;a,b) is the usual Kloosterman sum as in (2.21) and the inner
sum is over all integers ji,...,51—1 satisfying 21 — 1 < jj_1 < jj_9 < ... <
J1 <t+ 1. Here we agree that the inner sum is 1 forl = 1.

Remark. The inner sum in (5.9) is equivalently given by

-1
> I[@ -1

where the sum is over all integers ji,...,j;—1 satisfying 2l —3 < j; <t—1,
20-5 < jo < j1—2,...,1 < ji—1 < ji—2 — 2 (with the understanding
jo=t+1forl=2).

In view of (2.12), (4.9), (4.10), (3.51), (3.21), (4.8) and (5.9), we get the
following theorem from (5.8).

THEOREM 5.2. Let A be a nontrivial additive character of F,. Then the
Gauss sum over O~ (2n,q),

Z Atrw),

weO~(2n,q)

s given by

(5.10) q"Q—"—l( q_lszA +q+1>

[(n—1)/2]
{ Z qr(r+3)|:n_1:| H 2j-1

[(n—2r+1)/2]

-1
% Z qlK()\; 1’ 1>n—2r+1—2l Z H(qj,,—Qu o 1)
v=1

=1
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[(n—2)/2] S
_ r(r3)+1 | T — 2j-1 _
>« [2r + 1} H(q 2
r=0 7j5=1
[(n—2r)/2] =
x> dENLYTANY T - 1)},
=1 v=1

where G(y7,\) is the usual Gauss sum as in (2.20) with v a multiplicative
character of Fy of order ¢ —1, and K(X;1,1) is the usual Kloosterman sum
as in (2.21). In addition, the first unspecified sum in (5.10) is over all
integers ji,...,J1—1 satisfying 2l — 1 < j;_1 < jio < ... < j1 < n-—2r
and the second one is over all integers ji, ..., Ji—1 satisfying 2l —1 < j;_1 <
Ji2 <. < i <n—2r—-1

As to the Gauss sum Y-, c 55— (2n,q) A(tr w), we may write it, using the
decomposition in (3.52), as

(5.11) S Mew)= > [BA\QT] Y Altrwoy)

weSO~(2n,q) O%Te%gn—l wEQR™
+ Y IBAQT| Y Atrowo,).
0<r<n—1 wWEQR™
rodd

Here one has to observe that, for each y € Q—,

Z A(tr owo, y) = Z Atryowo, ) = Z A(tr oy/wo,)

weEQR™ wWER™ weR ™
= ) Altrowoy),
weR ™
where ' = o7 1yo € Q~ = Q~(2n, q¢) with g as in (3.53).
Glancing through the above argument about Zweo,@n,q) Atrw), we
see that (5.11) equals

q(n—l)(n+2)/2
Y M) > BRI T (N Kr 1 g (1 1)

1€S07(2,9) 0<r<n-—1
7 éven
+ Z )\(tI‘ 617’) Z ’BT_\Q_‘qr(n_r_g)br()‘)KGL(n—l—r,q) ()‘7 1, 1)};
1€S0~(2,q) OSTSd%—l
ro

where 6; is as in (4.11).

So we get the following result.

THEOREM 5.3. Let A be a nontrivial additive character of F,. Then the
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Gauss sum over SO~ (2n,q),

Z Atrw),

weSO~(2n,q)
s given by

(5.12) ¢!

{<— —12G (17, \) ) [(nim g [n_ 1L ]1[(q2j‘1 - 1)

j=1
[(n—2r+1)/2] -1
« Z qlK()\; 1’ 1)n—2r+1—21 Z H(q],,—2u o 1)
=1 r=1
[(n 2)/2] n—1 r+1
r(r+3)+1 - 2j—1
SCAED VIl P ) (G

[(n—2r)/2] -
x> @ KXNLY) AN T - 1)},
=1 v=1

where G(17,\) is the usual Gauss sum as in (2.20) with 1 a multiplicative
character of Ty of order ¢ —1, and K(X;1,1) is the usual Kloosterman sum
as in (2.21). In addition, the first unspecified sum in (5.12) is over all
integers ji,...,51—1 satisfying 2l — 1 < j;_1 < ji o < ... < j1 <n—2r
and the second one is over all integers ji,...,J1—1 satisfying 2l —1 < j;_1 <
Ji2 <. <1 <n—2r—1.

Remark. We see that the expressions in (5.10) and (5.12) are the same
as the corresponding ones in [5] for ¢ odd.

6. O"(2n,q) and O(2n + 1,q) cases. In this section, we will consider

the sum
Z A(trw)

weG
for any nontrivial additive character A of F, and G=07(2n, ¢) or SOT(2n, q)
or O(2n + 1,q), and find explicit expressions for them by using the decom-
positions in (3.4), (3.46) and (3.30).
First, we consider the sum

(6.1) Z A(trw).
weO(2n+1,q)

With P = P(2n+1,q),0,, A, respectively as in (2.19), (3.26), (3.32) and
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by using the decomposition in (3.30), (6.1) can be written as

n

(6.2) S IANPY  Atrwoy).

r=0 weP
With P’ = P'(2n,q), 0., Al respectively as in (3.28), (3.29), (3.33), we
see that
|AR\P| = [AJ\P']
(cf. (3.38) and [8], (3.10)), and, for w € P,
trwo, = tr(v(w)ol) + 1,

T

where ¢ is the isomorphism in (2.18).
So (6.2) can be rewritten as

MDD TTANP| D Mtre(w)or) = A1) Y JANP'] Y Atrwo))
r=0 weP r=0 we P’
= A(1) Z Atrw),
weSp(2n,q)

in view of the decomposition in (3.31) and the fact that «(P) = P’.
An explicit expression for }-, g 0,4 A(trw), for ¢ a power of any
prime, was obtained in Theorem 5.4 of [8].

THEOREM 6.1. Let A be a nontrivial additive character of F,. Then the
Gauss sum over O(2n +1,q),
Z A(tr w),

weO(2n+1,q)
equals

AL D Atrw),

weSp(2n,q)
so that it is A\(1) times

[n/2] r
n?— r(r n j —
e ] e -
r=0

qj=1
[(n—2r+2)/2] -1
« Z qlK()\; 1’ 1)n—2r+2—2l Z H(qu—zu - 1)’
=1 v=1

where K(X;1,1) is the usual Kloosterman sum as in (2.21) and the inner-
most sum is over all integers ji,...,5—1 satisfying 21 — 1 < j;_1 < ji_o <
o< <n—2r+1.
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Remark. The Gauss sum (6.1) has the same expression as the sum
> wes0(2n+1,q) Mtrw) for ¢ odd (cf. [4], Theorem 5.1). On the other hand,

the sum
Z A(trw)
weO(2n+1,q)

for ¢ odd is given by
AL +A=D) > Atrw)
weSp(2n,q)

(cf. [4], Theorem 6.1).
Next, we consider the sum

(6.3) > Atrw).
weOt(2n,q)

In view of the decomposition in (3.4), (6.3) can be written as

(6.4) f: AP > Atrwe)).
r=0

weP+

By proceeding just as in the odd ¢ case (cf. [9]), we see that (6.4) equals

n
¢ ST AP 5 Ky (N 1, 1),
r=0

where s, denotes the number of all » X r nonsingular symmetric matrices
over Fy (s, =1, for 7 = 0), and Kqp(n_rq)(X;1,1) is as in (5.7).
On the other hand, the sum
Z A(tr w)
weSOT(2n,q)
is given by
¢ 3 AP s Kap gy (A 1,1),

0<r<n
reven

in view of (3.46).

Note that |A\P*| and s, as well as Kgp(n—rq)(A;1,1) are the same
as the corresponding formulas for ¢ odd (cf. (3.9) and (4.5); [9], (3.13) and
(4.7)). So we should get the same results as for the odd ¢ case.

THEOREM 6.2. Let A be a nontrivial additive character of F,. Then the
Gauss sum over SO (2n, q),
Z A(trw),

weSOT(2n,q)

s given by
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(n/2] T
n?—n— r(r n j —
D S FAR | (R

r=0 q5=1
[(n—2r+2)/2] -1
% Z qlK()\; 1’ 1)n—2r+2—2l Z H(q]V—QV . 1)’
=1 v=1

where K(X;1,1) is the usual Kloosterman sum as in (2.21) and the inner-
most sum is over all integers ji,...,J1—1 satisfying 2l — 1 < j;_1 < ji_o9 <
o< <n—-2r+1.
THEOREM 6.3. Let A be a nontrivial additive character of F,. Then the
Gauss sum over O (2n,q),
Z Altrw),

weOt(2n,q)
s given by
) (n/2] e [ 1 r
n“—n—1 r(r+1 25—1
q {Zq [QT] [[@ -1
r=0 q =1
[(n—2r+2)/2] -1
« Z qlK()\; 1’ 1)n—27‘+2—2l Z H(qjl,—2u - 1)
=1 v=1
[((n—1)/2] n r+1
r(r+1) 2j—1
2y ] e -
r=0 qj=1
[(n—2r+1)/2] -1
D SR R ) ) (e
=1 v=1
where K(A;1,1) is the usual Kloosterman sum as in (2.21), and the first
and second unspecified sums are respectively over all integers ji,...,J51-1

satisfying 2l — 1 < j;_1 < ji_o < ... < j1 <n—2r+1 and over the same
set of integers satisfying 20l — 1 < j;_1 < ji_o <...<j1 <n—2r
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