Properties of some integrals related to partial differential equations of order higher than two

by Jan PopioŁek (Białystok)

Abstract

We construct fundamental solutions of some partial differential equations of order higher than two and examine properties of these solutions and of some related integrals. The results will be used in our next paper concerning boundary-value problems for these equations.

1. Introduction. Let $x=\chi_{p}(t), 0<t \leq T, p=1,2$, be equations of two non-intersecting curves on the (x, t) plane.

In the domain

$$
\begin{equation*}
\mathbf{S}_{T}=\left\{(x, t): \chi_{1}(t)<x<\chi_{2}(t), 0<t \leq T\right\}, \quad T=\text { const }<\infty, \tag{1}
\end{equation*}
$$

we consider the partial differential equation

$$
\begin{equation*}
\mathcal{L} u \equiv \sum_{i=0}^{n+2} \sum_{j=0}^{m} a_{i j}(x, t) D_{x}^{i} D_{t}^{j} u-D_{x}^{n} D_{t}^{m+1} u=0, \tag{2}
\end{equation*}
$$

where $n, m \in \mathbb{N}_{0} \equiv \mathbb{N} \cup\{0\}, n+m>0$ (for $n=m=0$ equation (2) is a parabolic equation of second order, the theory of which is well known), $D_{x}^{i}=\partial^{i} / \partial x^{i}, D_{t}^{j}=\partial^{j} / \partial t^{j}$.

We make the following assumptions:
(A.1) There are constants a_{0} and a_{1} such that

$$
0<a_{0} \leq a_{n+2, m}(x, t) \leq a_{1} \quad \text { for }(x, t) \in \overline{\mathbf{S}}_{T},
$$

where $\overline{\mathbf{S}}_{T}$ denotes the closure of \mathbf{S}_{T}.
(A.2) The coefficients $a_{i j}(i=0,1, \ldots, n+2, j=0,1, \ldots, m)$ are continuous in $\overline{\mathbf{S}}_{T}$ and satisfy the Hölder condition with respect to x with exponent α ($0<\alpha \leq 1$); moreover, $a_{n+2, m}$ satisfies the Hölder condition with respect to t with exponent $\frac{1}{2} \alpha$.

[^0](A.3) The functions $\chi_{p}(p=1,2)$ have continuous derivatives up to order $n_{*}=[(n+1) / 2]([k]$ denotes the largest integer not greater than $k)$ in the interval $[0, T]$ and the highest derivatives satisfy the Hölder condition
\[

\left|\Delta_{t}\left[\chi_{p}^{\left(n_{*}\right)}(t)\right]\right| \leq $$
\begin{cases}\operatorname{const}(\Delta t)^{\alpha / 2} & \text { if } n+1 \text { is even, } \\ \operatorname{const}(\Delta t)^{(\alpha+1) / 2} & \text { if } n+1 \text { is odd, }\end{cases}
$$
\]

where $\chi_{p}^{(0)}=\chi_{p}, \Delta_{t}\left[\chi_{p}(t)\right] \equiv \chi_{p}(t+\Delta t)-\chi_{p}(t), t, t+\Delta t \in[0, T], 0<\alpha \leq 1$.
2. Fundamental solutions. Let $n, m, r \in \mathbb{N}_{0}, r \leq n$. Consider the operators

$$
\begin{gather*}
\mathbf{P}_{m}[G(x, t ; \xi, \tau)]= \begin{cases}\int_{0}^{t-\tau} \mathbf{P}_{m-1}[G(x, s+\tau ; \xi, \tau)] d s, & m \in \mathbb{N}, \\
G(x, t ; \xi, \tau), & m=0,\end{cases} \tag{3}\\
\mathbf{Q}_{n, r}[G(x, t ; \xi, \tau)]= \begin{cases}-\int_{x-\xi}^{\infty} \mathbf{Q}_{n-1, r}[G(y+\xi, t ; \xi, \tau)] d y, & n \in \mathbb{N}, r=0, \\
\int_{0}^{x-\xi} \mathbf{Q}_{n-1, r-1}[G(y+\xi, t ; \xi, \tau)] d y, & n, r \in \mathbb{N}, \\
G(x, t ; \xi, \tau), & n=r=0,\end{cases}
\end{gather*}
$$

where G is a sufficiently regular function such that the expressions on the right-hand side of (3) and (4) make sense for all $(x, t),(\xi, \tau) \in \overline{\mathbf{S}}_{T}$.

Lemma 1. If G has continuous t-derivatives up to order $n_{*}=[(n+1) / 2]$, then

$$
D_{t}^{j} \mathbf{P}_{m}[G(x, t ; \xi, \tau)]= \begin{cases}\mathbf{P}_{m-j}[G(x, t ; \xi, \tau)] & \text { if } 0 \leq j \leq m, \\ D_{t}^{j-m} G(x, t ; \xi, \tau) & \text { if } m<j \leq m+n_{*},\end{cases}
$$

where $j=0,1, \ldots, m+n_{*}$ and $(x, t),(\xi, \tau) \in \overline{\mathbf{S}}_{T}$.
Lemma 2. If G has continuous x-derivatives up to order $m_{*}=2 m+1$, then

$$
D_{x}^{i} \mathbf{Q}_{n, r}[G(x, t ; \xi, \tau)]= \begin{cases}\mathbf{Q}_{n-i, r-i}[G(x, t ; \xi, \tau)], & 0 \leq i \leq r-1, \\ \mathbf{Q}_{n-i, 0}[G(x, t ; \xi, \tau)], & r \leq i \leq n, \\ D_{x}^{i-n} G(x, t ; \xi, \tau), & n<i \leq n+m_{*},\end{cases}
$$

where $i=0,1, \ldots, n+m_{*}$ and $(x, t),(\xi, \tau) \in \overline{\mathbf{S}}_{T}$.
The lemmas follow immediately from (3) and (4).
Define

$$
\begin{equation*}
\omega^{z, \sigma}(x, t ; \xi, \tau)=(t-\tau)^{-1 / 2} \exp \left[-\frac{(x-\xi)^{2}}{4 a_{n+2, m}(z, \sigma)(t-\tau)}\right], \tag{5}
\end{equation*}
$$

where $(x, t),(\xi, \tau),(z, \sigma) \in \overline{\mathbf{S}}_{T}$, and
(6) $\quad w_{r}(x, t ; \xi, \tau)=\left(\mathbf{P}_{m} \circ \mathbf{Q}_{n, r}\right)\left[\omega^{\xi, \tau}(x, t ; \xi, \tau)\right], \quad r=0,1, \ldots, n$.

By Lemmas 1 and 2 , the functions $w_{r}(r=0,1, \ldots, n)$ are quasi-solutions (see [4], p. 139) of equation (2). Applying Levi's method (see e.g. [4], p.
152) we can construct fundamental solutions of (2) in the form

$$
\begin{equation*}
\Lambda_{r}(x, t ; \xi, \tau)=w_{r}(x, t ; \xi, \tau)+\bar{w}_{r}(x, t ; \xi, \tau) \tag{7}
\end{equation*}
$$

$(r=0,1, \ldots, n)$, where

$$
\begin{equation*}
\bar{w}_{r}(x, t ; \xi, \tau)=\int_{0}^{t} \int_{\chi_{1}(\sigma)}^{\chi_{2}(\sigma)} w_{r}(x, t ; z, \sigma) \Phi_{r}(z, \sigma ; \xi, \tau) d z d \sigma \tag{8}
\end{equation*}
$$

$(r=0,1, \ldots, n)$ and Φ_{r} are solutions of the Volterra equation

$$
\Phi_{r}(x, t ; \xi, \tau)=\mathcal{L} w_{r}(x, t ; \xi, \tau)+\int_{\tau}^{t} \int_{\chi_{1}(\sigma)}^{\chi_{2}(\sigma)} \mathcal{L} w_{r}(x, t ; z, \sigma) \Phi_{r}(z, \sigma ; \xi, \tau) d z d \sigma
$$

It follows immediately from (5), (7) and (8) that

$$
\begin{align*}
& \text { (9) } \quad\left|D_{x}^{i} D_{t}^{j} w_{r}(x, t ; \xi, \tau)\right| \leq C(t-\tau)^{-(n-i+2 m-2 j-1) / 2} \exp \left[-\frac{(x-\xi)^{2}}{4 a_{0}(t-\tau)}\right] \tag{9}\\
& \text { (10) }\left|D_{x}^{i} D_{t}^{j} \bar{w}_{r}(x, t ; \xi, \tau)\right| \leq C(t-\tau)^{-(n-i+2 m-2 j-1+\alpha) / 2} \exp \left[-\frac{(x-\xi)^{2}}{4 a_{0}(t-\tau)}\right] \\
& \text { (11) } \quad\left|D_{x}^{i} D_{t}^{j} \Lambda_{r}(x, t ; \xi, \tau)\right| \leq C(t-\tau)^{-(n-i+2 m-2 j-1) / 2} \exp \left[-\frac{(x-\xi)^{2}}{4 a_{0}(t-\tau)}\right], \tag{11}
\end{align*}
$$

where $i, j \in \mathbb{N}_{0}, r \leq n,(x, t),(\xi, \tau) \in \overline{\mathbf{S}}_{T}, \tau<t, 0<\alpha \leq 1, C=$ const >0.
Lemma 3. We have
(12) $\quad D_{x}^{i} w_{r}(\chi(\tau), t ; \chi(\tau), \tau)$

$$
= \begin{cases}0, & 0 \leq i<r \\ (-1)^{n-i} \sqrt{\pi} \Gamma^{-1}\left(\frac{n-i+2 m+1}{2}\right)[\mathbf{a}(\tau)]^{(n-i) / 2}(t-\tau)^{(n-i+2 m-1) / 2} & r \leq i \leq n\end{cases}
$$

$(i, r=0,1, \ldots, n)$, where Γ is the Euler gamma function, $\mathbf{a}(\tau)=$ $a_{n+2, m}(\chi(\tau), \tau)$ and χ denotes χ_{1} or χ_{2}.

Proof. First we consider the case $0 \leq i<r$. Applying Lemma 2 and (6) we have

$$
D_{x}^{i} w_{r}(\chi(\tau), t ; \chi(\tau), \tau)=\mathbf{P}_{m}\left(\mathbf{Q}_{n-i, r-i}\left[\omega^{\chi(\tau), \tau}(\chi(\tau), t ; \chi(\tau), \tau)\right]\right)
$$

hence, by (4) we obtain

$$
\begin{aligned}
& \mathbf{Q}_{n-i, r-i}\left[\omega^{\chi(\tau), \tau}(\chi(\tau), t ; \chi(\tau), \tau)\right] \\
& \quad=\int_{0}^{\chi(\tau)-\chi(\tau)} \mathbf{Q}_{n-i-1, r-i-1}\left[\omega^{\chi(\tau), \tau}(\chi(\tau)+y, t ; \chi(\tau), \tau)\right] d y=0,
\end{aligned}
$$

whence $D_{x}^{i} w_{r}(\chi(\tau), t ; \chi(\tau), \tau)=0$.

For $r \leq i \leq n$, we make use of the relation

$$
\begin{align*}
D_{x}^{i} w_{r}(\chi(\tau), t ; \chi(t), \tau) & i=n, \tag{13}\\
& = \begin{cases}\mathbf{P}_{m}\left[\omega^{\chi(\tau), \tau}(\chi(\tau), t ; \chi(\tau), \tau)\right], & \mathbf{P}_{m}\left(\mathbf{Q}_{n-i, 0}[\omega \chi(\tau), \tau\right. \\
& (\chi(\tau), t ; \chi(\tau), \tau)]), \\
i<n .\end{cases}
\end{align*}
$$

Let $i<n$. Consider the function

$$
\mathbf{Q}_{n-i, 0}^{*}(t, \tau) \equiv \mathbf{Q}_{n-i, 0}\left[\omega^{\chi(\tau), \tau}(\chi(\tau), t ; \chi(\tau), \tau)\right] .
$$

Changing the order of integration we can write

$$
\begin{aligned}
\mathbf{Q}_{n-1,0}^{*}(t, \tau)= & \frac{(-1)^{n-i}}{(n-i-1)!} \int_{0}^{\infty}\left(\vartheta_{n-i}\right)^{n-i-1}(t-\tau)^{-1 / 2} \\
& \times \exp \left[-\frac{\left(\vartheta_{n-i}\right)^{2}}{4 \mathbf{a}(\tau)(t-\tau)}\right] d \vartheta_{n-i} .
\end{aligned}
$$

Thus, substituting $\eta=\frac{1}{4}\left(\vartheta_{n-i}\right)^{2}[\mathbf{a}(\tau)(t-\tau)]^{-1}$ we have

$$
\mathbf{Q}_{n-1,0}^{*}(t, \tau)=\frac{(-1)^{n-i}}{2(n-i-1)!}[4 \mathbf{a}(\tau)]^{(n-i) / 2} \Gamma^{-1}\left(\frac{n-i}{2}\right)(t-\tau)^{(n-i-1) / 2} .
$$

By (3) and (13) we finally obtain

$$
\begin{aligned}
D_{x}^{i} w_{r}(\chi(\tau), t ; \chi(\tau), \tau)= & (-1)^{n-i} \sqrt{\pi}[\mathbf{a}(\tau)]^{(n-i) / 2} \\
& \times \Gamma^{-1}\left(\frac{n-i+2 m+1}{2}\right)(t-\tau)^{(n-i+2 m-1) / 2} .
\end{aligned}
$$

By a similar argument we get (12) in the case $i=n$. Thus, the proof of Lemma 3 is complete.
3. Properties of the operators $\mathcal{R}_{1 / 2}, \mathbf{R}_{1 / 2}, \mathbf{I}_{\kappa}$. In the present section we consider the operators

$$
\begin{equation*}
\mathbf{R}_{1 / 2}[\varphi(t)]=\frac{1}{\sqrt{\pi}} D_{t}\left[\int_{0}^{t}(t-s)^{-1 / 2} \varphi(s) d s\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}_{1 / 2}[\Phi(t, \tau)]=\frac{1}{\sqrt{\pi}} D_{t}\left[\int_{\tau}^{t}(t-s)^{-1 / 2} \Phi(s, \tau) d s\right], \tag{15}
\end{equation*}
$$

where φ is defined and continuous for $t \in[0, T]$ and Φ is defined and continuous for $(t, \tau) \in[0, T] \times[0, T]$.

The operators $\mathbf{R}_{1 / 2}$ and $\mathcal{R}_{1 / 2}$ were introduced by Baderko [1].
Moreover, we define

$$
\begin{equation*}
\mathbf{R}_{1 / 2}^{k}[\varphi(t)]=\mathbf{R}_{1 / 2}\left[\mathbf{R}_{1 / 2}^{k-1}[\varphi(t)]\right], \quad k \in \mathbb{N}, \quad \mathbf{R}_{1 / 2}^{0}[\varphi(t)]=\varphi(t) \tag{16}
\end{equation*}
$$

and
(17) $\quad \mathcal{R}_{1 / 2}^{k}[\Phi(t, \tau)]=\mathcal{R}_{1 / 2}\left[\mathcal{R}_{1 / 2}^{k-1}[\Phi(t, \tau)]\right], \quad k \in \mathbb{N}, \quad \mathcal{R}_{1 / 2}^{0}[\Phi(t, \tau)]=\Phi(t, \tau)$.

Lemma 4. Let $N \in \mathbb{N}_{0}$. If a function Ψ has continuous derivatives $D_{t}^{j} \Psi$, $j=0,1, \ldots, N$, and
(18) $\left|D_{t}^{j} \Psi(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{N-j+\varrho-1}, \quad 0 \leq \tau<t \leq T, 0<\varrho<1$,
and a function φ is continuous in $[0, T]$, then

$$
\begin{align*}
& \mathbf{R}_{1 / 2}^{2 N}\left[\int_{0}^{t} \Psi(t, \tau) \varphi(\tau) d \tau\right]=\int_{0}^{t} D_{t}^{N} \Psi(t, \tau) \varphi(\tau) d \tau, \quad 0<\varrho \leq 1 / 2, \tag{19}\\
& \mathbf{R}_{1 / 2}^{2 N+1}\left[\int_{0}^{t} \Psi(t, \tau) \varphi(\tau) d \tau\right] \tag{20}
\end{align*} \quad=\int_{0}^{t} \mathcal{R}_{1 / 2}\left[D_{t}^{N} \Psi(t, \tau)\right] \varphi(\tau) d \tau, \quad 1 / 2<\varrho<1 . .
$$

Lemma 5. Let $N \in \mathbb{N}_{0}$. If a function ψ is defined in $[0, T]$ and has continuous derivatives $D_{t}^{j} \psi, j=0,1, \ldots, N$, and

$$
D_{t}^{j} \psi(0)=0, \quad j=0,1, \ldots, N
$$

then

$$
\mathbf{R}_{1 / 2}^{2 N}[\psi(t)]=D_{t}^{N} \psi(t), \quad \mathbf{R}_{1 / 2}^{2 N+1}[\psi(t)]=\mathfrak{R}_{1 / 2}\left[D_{t}^{N} \psi(t)\right], \quad 0<t \leq T
$$

We omit the inductive proofs of Lemmas 4 and 5.
Lemma 6. If Φ satisfies the conditions

$$
\begin{align*}
|\Phi(t, \tau)| \leq \operatorname{const}(t-\tau)^{(1+\alpha) / 2-1}, & 0 \leq \tau<t \leq T \tag{21}\\
\left|\Delta_{t} \Phi(t, \tau)\right| \leq \mathrm{const}(\Delta t)^{(1+\alpha) / 2}(t-\tau)^{\mu-1}, & 0 \leq \tau<t \leq t+\Delta t \leq T
\end{align*}
$$

where $\mu=\min \{\alpha / 2,1-\alpha / 2\}$, then

$$
\begin{array}{r}
\left|\mathcal{R}_{1 / 2}[\Phi(t, \tau)]\right| \leq \operatorname{const}(t-\tau)^{\alpha / 2-1}, \quad 0 \leq \tau<t \leq T \\
\left|\Delta_{t} \mathcal{R}_{1 / 2}[\Phi(t, \tau)]\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1} \tag{24}\\
\quad 0 \leq \tau<t \leq t+\Delta t \leq T
\end{array}
$$

where $0<\beta \leq \alpha \leq 1$.
The proof of Lemma 6 is similar to that of Lemma 3 in [1].
Now, let ψ be a function defined for all $t \in[0, T]$ and satisfying the Hölder condition with exponent $\alpha_{\psi} \in(0,1]$. Consider the operator \mathbf{I}_{κ} given by the formula

$$
\begin{equation*}
\mathbf{I}_{\kappa}[\psi(t)]=\Gamma^{-1}(\kappa) \int_{0}^{t}(t-\tau)^{\kappa-1} \psi(\tau) d \tau, \quad \kappa>0 \tag{25}
\end{equation*}
$$

The operator \mathbf{I}_{κ} was introduced in [1] where it was proved that

$$
\mathbf{R}_{1 / 2}\left[\mathbf{I}_{\kappa}[\psi(t)]\right]= \begin{cases}\mathbf{I}_{\kappa-1 / 2}[\psi(t)] & \text { if } \kappa>1 / 2, \\ \psi(t) & \text { if } \kappa=1 / 2 .\end{cases}
$$

One may prove the following
Lemma 7. Let $k \in \mathbb{N}$ and $\kappa \in[k / 2, \infty)$. Then

$$
\mathbf{R}_{1 / 2}^{k}\left[\mathbf{I}_{\kappa}[\psi(t)]\right]= \begin{cases}\mathbf{I}_{\kappa-k / 2}[\psi(t)] & \text { if } \kappa>k / 2, \\ \psi(t) & \text { if } \kappa=k / 2 .\end{cases}
$$

4. Properties of the functions $\mathbf{K}_{l q}^{p \sigma}$. Consider the functions

$$
\begin{equation*}
\mathbf{K}_{l q}^{p \sigma}(t, \tau)=\mathbf{B}_{l}^{p} \Lambda_{r_{q}^{\sigma}}\left(\chi_{p}(t), t ; \chi_{\sigma}(\tau), \tau\right) \tag{26}
\end{equation*}
$$

$$
- \begin{cases}0, & \sigma \neq p \text { or } \sigma=p, 1 \leq l<q, \\ D_{x}^{r_{l}^{p}} w_{r_{l}^{p}}\left(\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right), & \sigma=p, q \leq l \leq l_{0},\end{cases}
$$

where $0 \leq r_{1}^{p}<r_{2}^{p}<\ldots<r_{l_{0}}^{p} \leq n, r_{l}^{p} \in \mathbb{N}_{0}, p, \sigma=1,2, l, q=1,2, \ldots, l_{0}$, $l_{0}=[(n+3) / 2]$,

$$
\begin{equation*}
\mathbf{B}_{l}^{p} \equiv D_{x}^{r_{l}^{p}}+\sum_{k=0}^{r_{l}^{p}-1} b_{k l}^{p}(t) D_{x}^{k} \tag{27}
\end{equation*}
$$

and $b_{k l}^{p}$ has continuous derivatives up to order $\mathcal{M}=\left[d_{r} / 2\right], d_{r}=n-r_{l}^{p}+$ $2 m+1$.

Theorem 1. For $\nu=0,1, \ldots, \mathcal{M}$, we have

$$
\begin{align*}
& \text { (28) } \quad\left|D_{t}^{\nu} \mathbf{K}_{l q}^{p \sigma}\right| \leq \text { const }(t-\tau)^{\left(d_{r}-2 \nu+\alpha\right) / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{28}\\
& (29) \quad\left|\Delta_{t} D_{t}^{\mathcal{M}} \mathbf{K}_{l q}^{p \sigma}\right| \leq \text { const } \begin{cases}(\Delta t)^{\alpha / 2}(t-\tau)^{\mu-1} & \text { if } d_{r} \text { is even, } \\
(\Delta t)^{(\alpha+1) / 2}(t-\tau)^{\mu-1} & \text { if } d_{r} \text { odd, }\end{cases} \tag{29}\\
& (0 \leq \tau<t \leq t+\Delta t \leq T) \text {, where } \mu=\min \{\alpha / 2,1-\alpha / 2\}, 0<\alpha \leq 1 .
\end{align*}
$$

Proof. We consider in detail the case $\sigma=p$. The case $\sigma \neq p$ can be investigated in a similar way. The ν th derivative of $\mathbf{K}_{l q}^{p p}$ is given by the formula (see [3], p. 33)
(30) $D_{t}^{\nu} \mathbf{K}_{l q}^{p p}$
$=D_{t}^{\nu} D_{x}^{r_{i}^{p}} w_{r_{q}^{p}}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right)$
$+\sum_{j=1}^{\nu} \sum_{i_{1}+2 i_{2}+\ldots+\nu i_{\nu}=\nu} \sum_{i_{1}+i_{2}+\ldots+i_{\nu}=j} \frac{\nu!}{i_{1}!i_{2}!\ldots i_{\nu}!}$
$\times D_{t}^{\nu-j} D_{x}^{r_{1}^{p}+j} w_{r_{q}^{p}}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right)\left[\frac{\chi_{p}^{\prime}(t)}{1!}\right]^{i_{1}}\left[\frac{\chi_{p}^{\prime \prime}(t)}{2!}\right]^{i_{2}} \cdots\left[\frac{\chi_{p}^{(\nu)}(t)}{\nu!}\right]^{i_{\nu}}$

$$
+D_{t}^{\nu} D_{x}^{r_{i}^{p}} \bar{w}_{r_{q}^{p}}^{p}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right)+D_{t}^{\nu}\left[\sum_{k=0}^{r_{1}^{p}-1} b_{k l}^{p}(t) D_{x}^{k} \Lambda_{r_{q}^{p}}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right)\right]
$$

$$
(\nu=0,1, \ldots, \mathcal{M}) .
$$

We denote the summands on the right-hand side of (30) by $K_{1}(t, \tau)$, $K_{2}(t, \tau), K_{3}(t, \tau)$ and $K_{4}(t, \tau)$, respectively.

We only prove (29). The proof of (28) is similar, but easier.
Let d_{r} be even. We consider two cases: (i) $0 \leq r_{l}^{p}<r_{q}^{p} \leq n$, (ii) $0 \leq r_{q}^{p} \leq$ $r_{l}^{p} \leq n$.

In case (i) by Lemmas 1 and 3 we get

$$
K_{1}(t, \tau)=-\int_{0}^{\chi_{p}(t)-\chi_{p}(\tau)} \mathbf{Q}_{N, R}\left[D_{t}^{\left(n-r_{l}^{p}+1\right) / 2} \omega^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right)\right] d \xi_{1},
$$

where $\mathbf{Q}_{N, R}=\mathbf{Q}_{n-r_{l}^{p}-1, r_{q}^{p}-r_{l}^{p}-1}$, hence

$$
\begin{aligned}
& \Delta_{t} K_{1}(t, \tau) \\
& =-\int_{\chi_{p}(t)-\chi_{p}(\tau)}^{\chi_{p}(t+\Delta t)-\chi_{p}(\tau)} \mathbf{Q}_{N, R}\left[D_{t}^{\left(n-r_{l}^{p}+1\right) / 2} \omega^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t+\Delta t ; \chi_{p}(\tau), \tau\right)\right] d \xi_{1} \\
& \quad+\int_{0}^{\chi_{p}(t)-\chi_{p}(\tau)} \mathbf{Q}_{N, R}\left[D_{t}^{\left(n-r_{l}^{p}+1\right) / 2}{ }_{\omega^{\chi}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right)\right. \\
& \left.\quad-D_{t}^{\left(n-r_{l}^{p}+1\right) / 2}{ }_{\omega}{ }^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right)\right] d \xi_{1} \\
& \equiv \Delta_{t} K_{11}(t, \tau)+\Delta_{t} K_{12}(t, \tau) .
\end{aligned}
$$

Applying the estimate (2.11) of [2] and (4), we can write

$$
\begin{aligned}
& \left|\mathbf{Q}_{N, R}\left[D_{t}^{\left(n-r_{l}^{p}+1\right) / 2} \omega^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t+\Delta t ; \chi_{p}(\tau), \tau\right)\right]\right| \\
& \quad \leq \operatorname{const}(t+\Delta t-\tau)^{\left(r_{l}^{p}-r_{q}^{p}-1\right) / 2} \int_{0}^{\xi_{1}} \ldots \int_{0}^{\xi_{r_{l}^{p}-r_{q}^{p}-1}} d \xi_{r_{l}^{p}-r_{q}^{p}-1} \ldots d \xi_{1},
\end{aligned}
$$

and hence we obtain

$$
\left|\Delta_{t} K_{11}(t, \tau)\right| \leq \operatorname{const}(t+\Delta t-\tau)^{\left(r_{l}^{p}-r_{q}^{p}-1\right) / 2} \int_{\chi_{p}(t)-\chi_{p}(\tau)}^{\chi_{p}(t+\Delta t)-\chi_{p}(\tau)} \xi_{1}^{r_{l}^{p}-r_{q}^{p}-1} d \xi_{1} .
$$

Since in this case $r_{l}^{p}<r_{q}^{p}$ and $r_{l}^{p}, r_{q}^{p} \in \mathbb{N}$, we have the estimate

$$
\left|\Delta_{t} K_{11}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}(t-\tau)^{\mu-1}, \quad \mu \leq 1-\alpha / 2
$$

The estimation of $\Delta_{t} K_{12}$ is based on the inequality

$$
\begin{aligned}
&\left|\Delta_{t} D_{t}^{\left(n-r_{l}^{p}+1\right) / 2} \omega^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right)\right| \\
& \leq \operatorname{const}(\Delta t)^{\alpha / 2}(t-\tau)^{\left(n-r_{l}^{p}+2-\alpha\right) / 2} \exp \left[-\frac{\xi_{1}^{2}}{4 a_{0}(t-\tau)}\right] .
\end{aligned}
$$

As a consequence we get

$$
\left|\Delta_{t} K_{12}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}(t-\tau)^{\mu-1}, \quad \mu \leq 1-\alpha / 2
$$

Combining the results obtained above we have (in case (i))

$$
\begin{equation*}
\left|\Delta_{t} K_{1}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}(t-\tau)^{\mu-1}, \quad \mu \leq 1-\alpha / 2 . \tag{31}
\end{equation*}
$$

In case (ii), by Lemmas 1 and 2 , we can write

$$
\begin{aligned}
& K_{1}(t, \tau) \\
& =-\int_{0}^{\chi_{p}(t)-\chi_{p}(\tau)} \mathbf{Q}_{n-r_{l}^{p}-1,0}\left[D_{t}^{\left(n-r_{l}^{p}+1\right) / 2} \omega^{\chi_{p}(\tau), \tau}\left(\xi_{1}+\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right)\right] d \xi_{1}
\end{aligned}
$$

and hence, proceeding analogously to case (i), we also get the estimate (31).
Now, we estimate the expression $\Delta_{t} K_{2}$ appearing in (30). It suffices to consider $\Delta_{t} \widetilde{K}_{2}$, where

$$
\begin{equation*}
\widetilde{K}_{2}(t, \tau)=\chi(t) \bar{K}_{2}(t, \tau) \tag{32}
\end{equation*}
$$

with

$$
\begin{aligned}
& \chi(t)=\left[\frac{\chi_{p}^{\prime}(t)}{1!}\right]^{i_{1}}\left[\frac{\chi_{p}^{\prime \prime}(t)}{2!}\right]^{i_{2}} \ldots\left[\frac{\chi_{p}^{(\nu)}(t)}{\nu!}\right]^{i_{\nu}}, \\
& \bar{K}_{2}(t, \tau)=D_{t}^{\nu-j} D_{x}^{r_{t}^{p}+j} w_{r_{q}^{p}}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right) .
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\Delta_{t} \widetilde{K}_{2}(t, \tau)=\bar{K}_{2}(t+\Delta t, \tau) \Delta_{t} \chi(t)+\chi(t) \Delta_{t} \bar{K}_{2}(t, \tau) . \tag{33}
\end{equation*}
$$

It follows from inequality (9) and assumption (A.3) that

$$
\left|\bar{K}_{2}(t+\Delta t, \tau) \Delta_{t} \chi(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}(t-\tau)^{\mu-1}, \quad \mu \leq \alpha / 2 .
$$

The second expression appearing in (33) can be estimated in a similar manner by applying assumption (A.3). As a consequence we arive at an estimate analogous to (31).

Estimating $K_{3}(t, \tau)$ and $K_{4}(t, \tau)$ in (30) does not cause any additional difficulties. It is based on the inequalities (10) and (11), and also leads to inequalities analogous to (31).

We have proved (29) in the case when d_{r} is even. For d_{r} odd it can be proved in a similar way. Thus, the proof of Theorem 1 is complete.

Next, we consider the functions

$$
\begin{equation*}
\mathbf{K}_{l_{0} q}^{p \sigma}(t, \tau)=\mathbf{B}_{l_{0}}^{p} \Lambda_{r_{q}^{\sigma}}\left(\chi_{p}(t), t ; \chi_{\sigma}(\tau), \tau\right), \tag{34}
\end{equation*}
$$

where $p, \sigma=1,2, q=1, \ldots, l_{0}, l_{0}=[(n+3) / 2], 0 \leq \tau<t \leq T$ and the operators $\mathbf{B}_{l_{0}}^{p}$ are given by the formula

$$
\begin{equation*}
\mathbf{B}_{l_{0}}^{p} \equiv D_{x}^{n+1}+\sum_{k=0}^{n} b_{k, l_{0}}^{p}(t) D_{x}^{k} \tag{35}
\end{equation*}
$$

where $b_{k, l_{0}}^{p}$ has continuous derivatives up to order m.
Theorem 9. For $\nu=0,1, \ldots, m$, we have

$$
\begin{gather*}
\left|D_{t}^{\nu} \mathbf{K}_{l_{0} q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{(2 m-2 \nu+\alpha) / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{36}\\
\left|\Delta_{t} D_{t}^{p} \mathbf{K}_{l_{0} q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, \\
0 \leq \tau<t \leq t+\Delta t \leq T,
\end{gather*}
$$

where $\mu=\min \{\alpha / 2,1-\alpha / 2\}, 0<\beta \leq \alpha \leq 1$.
The proof of Theorem 2 is similar to that of Theorem 1.
5. Properties of the functions \boldsymbol{z}_{l}^{p}. Let $f(y, \tau)$ be defined and continuous for $(y, \tau) \in \mathbf{S}_{T}$. We consider the functions

$$
\begin{equation*}
z_{l}^{p}(t)=\iint_{\mathbf{S}_{t}} \mathbf{B}_{l}^{p} \Lambda_{0}\left(\chi_{p}(t), t ; y, \tau\right) f(y, \tau) d y d \tau, \tag{38}
\end{equation*}
$$

where $p=1,2, l=1, \ldots, l_{0}, l_{0}=[(n+3) / 2], \mathbf{B}_{l}^{p}$ is given by (27) and

$$
\mathbf{S}_{t}=\left\{(y, \tau): \chi_{1}(\tau) \leq y \leq \chi_{2}(\tau), 0<\tau<t\right\} .
$$

Lemma 8. For $\nu=0,1, \ldots, \mathcal{M}=\left[d_{r} / 2\right], d_{r}=n-r_{l}^{p}+2 m+1$, we have

$$
\left|\Delta_{t} D_{t}^{\mathcal{M}} \boldsymbol{z}_{l}^{p}(t)\right| \leq \text { const } \begin{cases}(\Delta t)^{\alpha / 2} & \text { if } d_{r} \text { is even }, \tag{39}\\ (\Delta t)^{(\alpha+1) / 2} & \text { if } d_{r} \text { is odd },\end{cases}
$$

$(0 \leq t<t+\Delta t \leq T, 0<\alpha \leq 1)$,

$$
\begin{equation*}
D_{t}^{\nu} z_{l}^{p}(0)=0, \quad \nu=0,1, \ldots, \mathcal{M} . \tag{40}
\end{equation*}
$$

Proof. We consider two cases: (i) d_{r} is even, (ii) d_{r} is odd.
In case (i) we use the decomposition

$$
\begin{align*}
D_{t}^{\nu} \boldsymbol{z}_{l}^{p}(t)= & \iint_{\mathbf{S}_{t}} D_{t}^{\nu} D_{x}^{r_{l}^{p}} \Lambda_{0}\left(\chi_{p}(t), t ; y, \tau\right) f(y, \tau) d y d \tau \tag{41}\\
& +\iint_{\mathbf{S}_{t}} D_{t}^{\nu}\left[\sum_{k=0}^{r_{l}^{p}-1} b_{k l}^{p}(t) D_{x}^{k} \Lambda_{0}\left(\chi_{p}(t), t ; y, \tau\right)\right] f(y, \tau) d y d \tau \\
= & \mathbf{z}_{1}(t)+\mathbf{z}_{2}(t) .
\end{align*}
$$

By (11) and (A.3) we have

$$
\left|D_{t}^{\mathcal{M}} D_{x}^{r_{l}^{p}} \Lambda_{0}\left(\chi_{p}(t), t ; y, \tau\right)\right| \leq \operatorname{const}(t-\tau)^{-1} \exp \left[-\frac{\left(\chi_{p}(t)-y\right)^{2}}{4 a_{0}(t-\tau)}\right]
$$

and hence,

$$
\left|\Delta_{t} \mathbf{z}_{1}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, \quad 0 \leq t<t+\Delta t \leq T .
$$

By a similar argument we get the same estimate for $\mathbf{z}_{2}(t)$.
The proof of (39) in case (ii) is analogous. Furthermore, (40) follows immediately from (41) and (11). Thus, the lemma is proved.

Finally, we consider the functions

$$
\begin{equation*}
\boldsymbol{z}_{l_{0}}^{p}(t)=\iint_{\mathbf{S}_{t}} \mathbf{B}_{l_{0}}^{p} \Lambda_{0}\left(\chi_{p}(t), t ; y, \tau\right) f(y, \tau) d y d \tau, \tag{42}
\end{equation*}
$$

where $p=1,2, l_{0}=[(n+3) / 2]$ and $\mathbf{B}_{l_{0}}^{p}$ is defined by (35).
Lemma 9. For $\nu=0,1, \ldots, m$, we have

$$
\begin{align*}
\left|\Delta_{t} D_{t}^{m} \boldsymbol{z}_{l_{0}}^{p}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, & 0 \leq t<t+\Delta t \leq T, 0<\alpha \leq 1, \tag{43}\\
& D_{t}^{\nu} \boldsymbol{z}_{l_{0}}^{p}(0)=0, \tag{44}
\end{align*} \quad \nu=0,1, \ldots, m . \quad .
$$

The proof is similar to that of Lemma 8 .

References

[1] E. A. Baderko, On solvability of boundary-value problems for parabolic equations of higher order in domains with curvilinear boundaries, Differentsial'nye Uravneniya 12 (1976), 1782-1792 (in Russian).
[2] T. D. Dzhuraev, The boundary-value problems for equations of mixed and mixedcomposite types, FAN, Tashkent, 1979 (in Russian).
[3] I. S. Gradshteĭn and E. M. Ryzhik, Tables of Integrals, Sums, Series and Products, Nauka, Moscow, 1962 (in Russian).
[4] W. Pogorzelski, Integral Equations and their Applications, Vol. 2, PWN, Warszawa, 1958 (in Polish).

Institute of Mathematics
Warsaw University, Białystok Branch
Akademicka 2
15-267 Białystok, Poland
E-mail: popiolek@math.uw.bialystok.pl

[^0]: 1991 Mathematics Subject Classification: Primary 35G15; Secondary 45D05.
 Key words and phrases: partial differential equation, boundary-value problem, Volterra integral equation.

