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Properties of some integrals related to

partial differential equations of order higher than two

by Jan Popio lek (Bia lystok)

Abstract. We construct fundamental solutions of some partial differential equations
of order higher than two and examine properties of these solutions and of some related
integrals. The results will be used in our next paper concerning boundary-value problems
for these equations.

1. Introduction. Let x = χp(t), 0 < t ≤ T , p = 1, 2, be equations of
two non-intersecting curves on the (x, t) plane.

In the domain

(1) ST = {(x, t) : χ1(t) < x < χ2(t), 0 < t ≤ T}, T = const <∞,

we consider the partial differential equation

(2) Lu ≡
n+2∑

i=0

m∑

j=0

aij(x, t)D
i
xD

j
tu−Dn

xD
m+1
t u = 0,

where n,m ∈ N0 ≡ N ∪ {0}, n + m > 0 (for n = m = 0 equation (2) is
a parabolic equation of second order, the theory of which is well known),
Di
x = ∂i/∂xi,Dj

t = ∂j/∂tj .
We make the following assumptions:

(A.1) There are constants a0 and a1 such that

0 < a0 ≤ an+2,m(x, t) ≤ a1 for (x, t) ∈ ST ,

where ST denotes the closure of ST .
(A.2) The coefficients aij (i = 0, 1, . . . , n+2, j = 0, 1, . . . ,m) are continu-

ous in ST and satisfy the Hölder condition with respect to x with exponent α
(0 < α ≤ 1); moreover, an+2,m satisfies the Hölder condition with respect
to t with exponent 1

2
α.
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(A.3) The functions χp (p = 1, 2) have continuous derivatives up to
order n∗ = [(n+ 1)/2] ([k] denotes the largest integer not greater than k) in
the interval [0, T ] and the highest derivatives satisfy the Hölder condition

|∆t[χ
(n∗)
p (t)]| ≤

{
const (∆t)α/2 if n+ 1 is even,
const (∆t)(α+1)/2 if n+ 1 is odd,

where χ
(0)
p = χp, ∆t[χp(t)] ≡ χp(t+∆t)−χp(t), t, t+∆t ∈ [0, T ], 0 < α ≤ 1.

2. Fundamental solutions. Let n,m, r ∈ N0, r ≤ n. Consider the
operators

(3) Pm[G(x, t; ξ, τ)] =

{Tt−τ
0

Pm−1[G(x, s + τ ; ξ, τ)] ds, m ∈ N,
G(x, t; ξ, τ), m = 0,

(4) Qn,r[G(x, t; ξ, τ)] =





−
T∞
x−ξ

Qn−1,r[G(y+ ξ, t; ξ, τ)] dy, n∈N, r= 0,Tx−ξ
0

Qn−1,r−1[G(y + ξ, t; ξ, τ)] dy, n, r ∈ N,

G(x, t; ξ, τ), n = r = 0,

where G is a sufficiently regular function such that the expressions on the
right-hand side of (3) and (4) make sense for all (x, t), (ξ, τ) ∈ ST .

Lemma 1. If G has continuous t-derivatives up to order n∗ = [(n+1)/2],
then

Dj
tPm[G(x, t; ξ, τ)] =

{
Pm−j [G(x, t; ξ, τ)] if 0 ≤ j ≤ m,

Dj−m
t G(x, t; ξ, τ) if m < j ≤ m+ n∗,

where j = 0, 1, . . . ,m+ n∗ and (x, t), (ξ, τ) ∈ ST .

Lemma 2. If G has continuous x-derivatives up to order m∗ = 2m + 1,
then

Di
xQn,r[G(x, t; ξ, τ)] =





Qn−i,r−i[G(x, t; ξ, τ)], 0 ≤ i ≤ r − 1,
Qn−i,0[G(x, t; ξ, τ)], r ≤ i ≤ n,

Di−n
x G(x, t; ξ, τ), n < i ≤ n+m∗,

where i = 0, 1, . . . , n+m∗ and (x, t), (ξ, τ) ∈ ST .

The lemmas follow immediately from (3) and (4).
Define

(5) ωz,σ(x, t; ξ, τ) = (t− τ)−1/2 exp

[
− (x− ξ)2

4an+2,m(z, σ)(t − τ)

]
,

where (x, t), (ξ, τ), (z, σ) ∈ ST , and

(6) wr(x, t; ξ, τ) = (Pm ◦ Qn,r)[ω
ξ,τ (x, t; ξ, τ)], r = 0, 1, . . . , n.

By Lemmas 1 and 2, the functions wr(r = 0, 1, . . . , n) are quasi-solutions
(see [4], p. 139) of equation (2). Applying Levi’s method (see e.g. [4], p.
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152) we can construct fundamental solutions of (2) in the form

(7) Λr(x, t; ξ, τ) = wr(x, t; ξ, τ) + wr(x, t; ξ, τ)

(r = 0, 1, . . . , n), where

(8) wr(x, t; ξ, τ) =

t\
0

χ2(σ)\
χ1(σ)

wr(x, t; z, σ)Φr(z, σ; ξ, τ) dz dσ

(r = 0, 1, . . . , n) and Φr are solutions of the Volterra equation

Φr(x, t; ξ, τ) = Lwr(x, t; ξ, τ) +

t\
τ

χ2(σ)\
χ1(σ)

Lwr(x, t; z, σ)Φr(z, σ; ξ, τ) dz dσ.

It follows immediately from (5), (7) and (8) that

(9) |Di
xD

j
twr(x, t; ξ, τ)| ≤C(t− τ)−(n−i+2m−2j−1)/2 exp

[
− (x− ξ)2

4a0(t− τ)

]
,

(10) |Di
xD

j
twr(x, t; ξ, τ)| ≤C(t− τ)−(n−i+2m−2j−1+α)/2 exp

[
− (x− ξ)2

4a0(t− τ)

]
,

(11) |Di
xD

j
tΛr(x, t; ξ, τ)| ≤C(t− τ)−(n−i+2m−2j−1)/2 exp

[
− (x− ξ)2

4a0(t− τ)

]
,

where i, j ∈ N0, r ≤ n, (x, t), (ξ, τ) ∈ ST , τ < t, 0 < α ≤ 1, C = const > 0.

Lemma 3. We have

(12) Di
xwr(χ(τ), t;χ(τ), τ)

=

{
0, 0 ≤ i < r,
(−1)n−i

√
π Γ−1

(
n−i+2m+1

2

)
[a(τ)](n−i)/2(t− τ)(n−i+2m−1)/2 r ≤ i ≤n,

(i, r = 0, 1, . . . , n), where Γ is the Euler gamma function, a(τ) =
an+2,m(χ(τ), τ) and χ denotes χ1 or χ2.

P r o o f. First we consider the case 0 ≤ i < r. Applying Lemma 2 and
(6) we have

Di
xwr(χ(τ), t;χ(τ), τ) = Pm(Qn−i,r−i[ω

χ(τ),τ (χ(τ), t;χ(τ), τ)]),

hence, by (4) we obtain

Qn−i,r−i[ω
χ(τ),τ (χ(τ), t;χ(τ), τ)]

=

χ(τ)−χ(τ)\
0

Qn−i−1,r−i−1[ωχ(τ),τ (χ(τ) + y, t;χ(τ), τ)] dy = 0,

whence Di
xwr(χ(τ), t;χ(τ), τ) = 0.
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For r ≤ i ≤ n, we make use of the relation

(13) Di
xwr(χ(τ), t;χ(t), τ)

=

{
Pm[ωχ(τ),τ (χ(τ), t;χ(τ), τ)], i = n,
Pm(Qn−i,0[ωχ(τ),τ (χ(τ), t;χ(τ), τ)]), i < n.

Let i < n. Consider the function

Q∗

n−i,0(t, τ) ≡ Qn−i,0[ωχ(τ),τ (χ(τ), t;χ(τ), τ)].

Changing the order of integration we can write

Q∗

n−1,0(t, τ) =
(−1)n−i

(n− i− 1)!

∞\
0

(ϑn−i)
n−i−1(t− τ)−1/2

× exp

[
− (ϑn−i)

2

4a(τ)(t− τ)

]
dϑn−i.

Thus, substituting η = 1
4 (ϑn−i)

2[a(τ)(t− τ)]−1 we have

Q∗

n−1,0(t, τ) =
(−1)n−i

2(n− i− 1)!
[4a(τ)](n−i)/2Γ−1

(
n− i

2

)
(t− τ)(n−i−1)/2.

By (3) and (13) we finally obtain

Di
xwr(χ(τ), t;χ(τ), τ) = (−1)n−i

√
π[a(τ)](n−i)/2

× Γ−1

(
n− i+ 2m + 1

2

)
(t− τ)(n−i+2m−1)/2.

By a similar argument we get (12) in the case i = n. Thus, the proof of
Lemma 3 is complete.

3. Properties of the operators R1/2,R1/2, Iκ. In the present section
we consider the operators

R1/2[ϕ(t)] =
1√
π
Dt

[ t\
0

(t− s)−1/2ϕ(s) ds
]

(14)

and

R1/2[Φ(t, τ)] =
1√
π
Dt

[ t\
τ

(t− s)−1/2Φ(s, τ) ds
]
,(15)

where ϕ is defined and continuous for t ∈ [0, T ] and Φ is defined and con-
tinuous for (t, τ) ∈ [0, T ] × [0, T ].

The operators R1/2 and R1/2 were introduced by Baderko [1].

Moreover, we define

(16) R
k
1/2[ϕ(t)] = R1/2[Rk−1

1/2 [ϕ(t)]], k ∈ N, R
0
1/2[ϕ(t)] = ϕ(t)
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and

(17) R
k
1/2[Φ(t, τ)] = R1/2[Rk−1

1/2 [Φ(t, τ)]], k ∈ N, R
0
1/2[Φ(t, τ)] = Φ(t, τ).

Lemma 4. Let N ∈ N0. If a function Ψ has continuous derivatives Dj
tΨ ,

j = 0, 1, . . . , N , and

(18) |Dj
tΨ(t, τ)| ≤ const (t− τ)N−j+̺−1, 0 ≤ τ < t ≤ T, 0 < ̺ < 1,

and a function ϕ is continuous in [0, T ], then

(19) R2N
1/2

[ t\
0

Ψ(t, τ)ϕ(τ) dτ
]

=

t\
0

DN
t Ψ(t, τ)ϕ(τ) dτ, 0 < ̺ ≤ 1/2,

(20) R
2N+1
1/2

[ t\
0

Ψ(t, τ)ϕ(τ) dτ
]

=

t\
0

R1/2[DN
t Ψ(t, τ)]ϕ(τ) dτ, 1/2 < ̺ < 1.

Lemma 5. Let N ∈ N0. If a function ψ is defined in [0, T ] and has

continuous derivatives Dj
tψ, j = 0, 1, . . . , N , and

Dj
tψ(0) = 0, j = 0, 1, . . . , N,

then

R2N
1/2[ψ(t)] = DN

t ψ(t), R2N+1
1/2 [ψ(t)] = R1/2[DN

t ψ(t)], 0 < t ≤ T.

We omit the inductive proofs of Lemmas 4 and 5.

Lemma 6. If Φ satisfies the conditions

(21) |Φ(t, τ)| ≤ const (t− τ)(1+α)/2−1, 0 ≤ τ < t ≤ T,

(22) |∆tΦ(t, τ)| ≤ const (∆t)(1+α)/2(t− τ)µ−1, 0 ≤ τ < t ≤ t+∆t ≤ T,

where µ = min{α/2, 1 − α/2}, then

(23) |R1/2[Φ(t, τ)]| ≤ const (t− τ)α/2−1, 0 ≤ τ < t ≤ T,

(24) |∆tR1/2[Φ(t, τ)]| ≤ const (∆t)β/2(t− τ)µ−1,

0 ≤ τ < t ≤ t+∆t ≤ T,

where 0 < β ≤ α ≤ 1.

The proof of Lemma 6 is similar to that of Lemma 3 in [1].
Now, let ψ be a function defined for all t ∈ [0, T ] and satisfying the

Hölder condition with exponent αψ ∈ (0, 1]. Consider the operator Iκ given
by the formula

(25) Iκ[ψ(t)] = Γ−1(κ)

t\
0

(t− τ)κ−1ψ(τ) dτ, κ > 0.
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The operator Iκ was introduced in [1] where it was proved that

R1/2[Iκ[ψ(t)]] =

{
Iκ−1/2[ψ(t)] if κ > 1/2,

ψ(t) if κ = 1/2.

One may prove the following

Lemma 7. Let k ∈ N and κ ∈ [k/2,∞). Then

Rk1/2[Iκ[ψ(t)]] =

{
Iκ−k/2[ψ(t)] if κ > k/2,

ψ(t) if κ = k/2.

4. Properties of the functions K
pσ
lq . Consider the functions

(26) K
pσ
lq (t, τ) = B

p
l Λrσ

q
(χp(t), t;χσ(τ), τ)

−
{

0, σ 6= p or σ = p, 1 ≤ l < q,

D
rp

l
x wrp

l
(χp(τ), t;χp(τ), τ), σ = p, q ≤ l ≤ l0,

where 0 ≤ rp1 < rp2 < . . . < rpl0 ≤ n, rpl ∈ N0, p, σ = 1, 2, l, q = 1, 2, . . . , l0,
l0 = [(n+ 3)/2],

(27) B
p
l ≡ D

rp

l
x +

rp

l
−1∑

k=0

bpkl(t)D
k
x

and bpkl has continuous derivatives up to order M = [dr/2], dr = n − rpl +
2m+ 1.

Theorem 1. For ν = 0, 1, . . . , M, we have

(28) |Dν
t K

pσ
lq | ≤ const (t− τ)(dr−2ν+α)/2−1, 0 ≤ τ < t ≤ T,

(29) |∆tD
M

t K
pσ
lq | ≤ const

{
(∆t)α/2(t− τ)µ−1 if dr is even,

(∆t)(α+1)/2(t− τ)µ−1 if dr odd ,

(0 ≤ τ < t ≤ t+∆t ≤ T ), where µ = min{α/2, 1 − α/2}, 0 < α ≤ 1.

P r o o f. We consider in detail the case σ = p. The case σ 6= p can be
investigated in a similar way. The νth derivative of K

pp
lq is given by the

formula (see [3], p. 33)

(30) Dν
t K

pp
lq

= Dν
tD

rp

l
x wrp

q
(χp(t), t;χp(τ), τ)

+
ν∑

j=1

∑

i1+2i2+...+νiν=ν

∑

i1+i2+...+iν=j

ν!

i1!i2! . . . iν !

×Dν−j
t D

rp

l
+j

x wrp
q
(χp(t), t;χp(τ), τ)

[
χ′
p(t)

1!

]i1[χ′′
p(t)

2!

]i2
. . .

[
χ

(ν)
p (t)

ν!

]iν
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+Dν
tD

rp

l
x wrp

q
(χp(t), t;χp(τ), τ) +Dν

t

[ rp

l
−1∑

k=0

bpkl(t)D
k
xΛrp

q
(χp(t), t;χp(τ), τ)

]

(ν = 0, 1, . . . ,M).

We denote the summands on the right-hand side of (30) by K1(t, τ),
K2(t, τ), K3(t, τ) and K4(t, τ), respectively.

We only prove (29). The proof of (28) is similar, but easier.

Let dr be even. We consider two cases: (i) 0≤ rpl < rpq ≤n, (ii) 0≤ rpq ≤
rpl ≤n.

In case (i) by Lemmas 1 and 3 we get

K1(t, τ)= −
χp(t)−χp(τ)\

0

QN,R[D
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1+χp(τ), t;χp(τ), τ)]dξ1,

where QN,R = Qn−rp

l
−1,rp

q−r
p

l
−1, hence

∆tK1(t, τ)

= −
χp(t+∆t)−χp(τ)\
χp(t)−χp(τ)

QN,R[D
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 +χp(τ), t+∆t;χp(τ), τ)]dξ1

+

χp(t)−χp(τ)\
0

QN,R[D
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 + χp(τ), t;χp(τ), τ)

−D
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 + χp(τ), t;χp(τ), τ)] dξ1

≡ ∆tK11(t, τ) +∆tK12(t, τ).

Applying the estimate (2.11) of [2] and (4), we can write

|QN,R[D
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 + χp(τ), t +∆t;χp(τ), τ)]|

≤ const (t +∆t− τ)(r
p

l
−rp

q−1)/2

ξ1\
0

. . .

ξ
r

p

l
−r

p
q−1\

0

dξrp

l
−rp

q−1 . . . dξ1,

and hence we obtain

|∆tK11(t, τ)| ≤ const (t +∆t− τ)(r
p

l
−rp

q−1)/2

χp(t+∆t)−χp(τ)\
χp(t)−χp(τ)

ξ
rp

l
−rp

q−1

1 dξ1.

Since in this case rpl < rpq and rpl , r
p
q ∈ N, we have the estimate

|∆tK11(t, τ)| ≤ const (∆t)α/2(t− τ)µ−1, µ ≤ 1 − α/2.
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The estimation of ∆tK12 is based on the inequality

|∆tD
(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 + χp(τ), t;χp(τ), τ)|

≤ const (∆t)α/2(t− τ)(n−r
p

l
+2−α)/2 exp

[
− ξ21

4a0(t− τ)

]
.

As a consequence we get

|∆tK12(t, τ)| ≤ const (∆t)α/2(t− τ)µ−1, µ ≤ 1 − α/2.

Combining the results obtained above we have (in case (i))

(31) |∆tK1(t, τ)| ≤ const (∆t)α/2(t− τ)µ−1, µ ≤ 1 − α/2.

In case (ii), by Lemmas 1 and 2, we can write

K1(t, τ)

= −
χp(t)−χp(τ)\

0

Qn−rp

l
−1,0[D

(n−rp

l
+1)/2

t ωχp(τ),τ (ξ1 + χp(t), t;χp(τ), τ)] dξ1

and hence, proceeding analogously to case (i), we also get the estimate (31).

Now, we estimate the expression ∆tK2 appearing in (30). It suffices to

consider ∆tK̃2, where

(32) K̃2(t, τ) = χ(t)K2(t, τ)

with

χ(t) =

[
χ′
p(t)

1!

]i1[χ′′
p(t)

2!

]i2
. . .

[
χ

(ν)
p (t)

ν!

]iν
,

K2(t, τ) = Dν−j
t D

rp

l
+j

x wrp
q
(χp(t), t;χp(τ), τ).

Clearly,

(33) ∆tK̃2(t, τ) =K2(t+∆t, τ)∆tχ(t) + χ(t)∆tK2(t, τ).

It follows from inequality (9) and assumption (A.3) that

|K2(t +∆t, τ)∆tχ(t)| ≤ const (∆t)α/2(t− τ)µ−1, µ ≤ α/2.

The second expression appearing in (33) can be estimated in a similar
manner by applying assumption (A.3). As a consequence we arive at an
estimate analogous to (31).

Estimating K3(t, τ) and K4(t, τ) in (30) does not cause any additional
difficulties. It is based on the inequalities (10) and (11), and also leads to
inequalities analogous to (31).

We have proved (29) in the case when dr is even. For dr odd it can be
proved in a similar way. Thus, the proof of Theorem 1 is complete.
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Next, we consider the functions

(34) K
pσ
l0q

(t, τ) = B
p
l0
Λrσ

q
(χp(t), t;χσ(τ), τ),

where p, σ = 1, 2, q = 1, . . . , l0, l0 = [(n + 3)/2], 0 ≤ τ < t ≤ T and the
operators B

p
l0

are given by the formula

(35) B
p
l0
≡ Dn+1

x +
n∑

k=0

bpk,l0(t)Dk
x

where bpk,l0 has continuous derivatives up to order m.

Theorem 9. For ν = 0, 1, . . . ,m, we have

(36) |Dν
t K

pσ
l0q

(t, τ)| ≤ const (t− τ)(2m−2ν+α)/2−1, 0 ≤ τ < t ≤ T,

(37) |∆tD
m
t K

pσ
l0q

(t, τ)| ≤ const (∆t)β/2(t− τ)µ−1,

0 ≤ τ < t ≤ t+∆t ≤ T,

where µ = min{α/2, 1 − α/2}, 0 < β ≤ α ≤ 1.

The proof of Theorem 2 is similar to that of Theorem 1.

5. Properties of the functions z
p
l . Let f(y, τ) be defined and continu-

ous for (y, τ) ∈ ST . We consider the functions

(38) z
p
l (t) =

\\
St

B
p
l Λ0(χp(t), t; y, τ)f(y, τ) dy dτ,

where p = 1, 2, l = 1, . . . , l0, l0 = [(n+ 3)/2], B
p
l is given by (27) and

St = {(y, τ) : χ1(τ) ≤ y ≤ χ2(τ), 0 < τ < t}.

Lemma 8. For ν = 0, 1, . . . ,M = [dr/2], dr = n− rpl + 2m+ 1, we have

(39) |∆tD
M

t z
p
l (t)| ≤ const

{
(∆t)α/2 if dr is even,
(∆t)(α+1)/2 if dr is odd ,

(0 ≤ t < t+∆t ≤ T , 0 < α ≤ 1),

(40) Dν
t z

p
l (0) = 0, ν = 0, 1, . . . ,M.

P r o o f. We consider two cases: (i) dr is even, (ii) dr is odd.
In case (i) we use the decomposition

Dν
t z

p
l (t) =

\\
St

Dν
tD

rp

l
x Λ0(χp(t), t; y, τ)f(y, τ) dy dτ(41)

+
\\
St

Dν
t

[ rp

l
−1∑

k=0

bpkl(t)D
k
xΛ0(χp(t), t; y, τ)

]
f(y, τ) dy dτ

= z1(t) + z2(t).
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By (11) and (A.3) we have

|DM

t D
rp

l
x Λ0(χp(t), t; y, τ)| ≤ const (t− τ)−1 exp

[
− (χp(t) − y)2

4a0(t− τ)

]
,

and hence,

|∆tz1(t)| ≤ const (∆t)α/2, 0 ≤ t < t+∆t ≤ T.

By a similar argument we get the same estimate for z2(t).
The proof of (39) in case (ii) is analogous. Furthermore, (40) follows

immediately from (41) and (11). Thus, the lemma is proved.

Finally, we consider the functions

(42) z
p
l0

(t) =
\\
St

B
p
l0
Λ0(χp(t), t; y, τ)f(y, τ) dy dτ,

where p = 1, 2, l0 = [(n+ 3)/2] and B
p
l0

is defined by (35).

Lemma 9. For ν = 0, 1, . . . ,m, we have

(43) |∆tD
m
t z

p
l0

(t)| ≤ const (∆t)α/2, 0 ≤ t < t+∆t ≤ T, 0 < α ≤ 1,

(44) Dν
t z

p
l0

(0) = 0, ν = 0, 1, . . . ,m.

The proof is similar to that of Lemma 8.
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