On continuous solutions of a functional equation

by Kazimierz Dankiewicz (Zawiercie)

Abstract. This paper discusses continuous solutions of the functional equation
$\varphi[f(x)]=g(x, \varphi(x))$ in topological spaces. $\varphi[f(x)]=g(x, \varphi(x))$ in topological spaces.

Let us consider the equation

$$
\begin{equation*}
\varphi[f(x)]=g(x, \varphi(x)) \tag{1}
\end{equation*}
$$

with $\varphi: X \rightarrow Y$ as unknown function.
In order to obtain a solution of equation (1), it is enough to extend a function defined on a set which for every x contains exactly one element of the form $f^{k}(x)$, where $k=0, \pm 1, \pm 2, \ldots$ and $f^{k}(x)$ denotes the k th iterate of the function f (cf. [3] and [4]). In the case when X is an open interval and Y is a Banach space, it is well known under what conditions these extensions are continuous (cf. [5]). Paper [6] by M. Sablik brings theorems which answer the above question for X and Y contained in some Banach spaces ($[6, \mathrm{Th}$. 2.1, Th. 2.2]). In the case when X and Y are locally convex vector spaces the continuity of similar extensions was examined by W . Smajdor in $[7]$ but for the Schröder equation (i.e. $\varphi[f(x)]=s \varphi(x), 0<|s|<1$). We are going to adopt the method given in that paper to the more general situation.

We shall employ Baron's Extension Theorem proved in [1] (cf. also [2]). This theorem concerns extending solutions of functional equations from a neighbourhood of a distinguished point (Lemma 7).

We shall deal with the following hypotheses:
(i) X is a Hausdorff topological space; ξ is a given (and fixed) point of $X ; Y$ is a topological space.
(ii) The function f maps X into X in such a manner that
(2) $\quad f$ is homeomorphism of X onto $f(X)$;
(3) $\quad \xi \in \operatorname{int} f(X)$;
(4) $\quad \lim _{n \rightarrow \infty} f^{n}(x)=\xi$ for every $x \in X$;
(5) each neighbourhood U of the point ξ contains a neighbourhood W of ξ such that $\mathrm{cl} f(W) \subset W \subset U$.
(iii) The function $g: X \times Y \rightarrow Y$ is continuous; for every $x \in X \backslash\{\xi\}$ the function $g(x, \cdot)$ is a bijection and the function $h:(X \backslash\{\xi\}) \times Y \rightarrow Y$ defined by

$$
h(x, y)=g(x, \cdot)^{-1}(y)
$$

is continuous.
Evidently
(6)

$$
f(\xi)=\xi
$$

According to (3) and (5) we can find a neighbourhood W of ξ such that $W \subset$ int $f(X)$ and $\operatorname{cl} f(W) \subset W$. Obviously $f^{2}(W) \subset f(W)$, thus $\operatorname{cl} f^{2}(W) \subset$ $\operatorname{cl} f(W) \subset W \subset f(X)$. By (2) we have

$$
\operatorname{cl} f^{2}(W)=\operatorname{cl} f^{2}(W) \cap f(X)=f(\operatorname{cl} f(W)) \subset f(W)
$$

Putting $V_{0}:=f(W)$ we obtain an open set with the following properties:

$$
\begin{gather*}
\xi \in V_{0}, \quad \operatorname{cl} V_{0} \subset \operatorname{int} f(X), \tag{7}\\
\operatorname{cl} f\left(V_{0}\right) \subset V_{0} . \tag{8}
\end{gather*}
$$

Moreover, by induction we have

$$
\begin{gather*}
f^{k}\left(V_{0}\right) \text { is open, } \quad k=0,1,2, \ldots, \tag{9}\\
\operatorname{cl} f^{k+1}\left(V_{0}\right) \subset f^{k}\left(V_{0}\right), \quad k=0,1,2, \ldots \tag{10}
\end{gather*}
$$

Fix an open set V_{0} satisfying (7) and (8) and put

$$
\begin{align*}
& A_{0}:=\operatorname{cl} V_{0} \backslash \operatorname{cl} f\left(V_{0}\right), \tag{11}\\
& C_{0}:=\operatorname{cl} V_{0} \backslash V_{0} \tag{12}
\end{align*}
$$

We have the following
Lemma 1.

$$
\begin{gather*}
A_{0}=C_{0} \cup \operatorname{int} A_{0} \tag{13}\\
\operatorname{cl} A_{0} \subset A_{0} \cup f\left(C_{0}\right) \tag{14}
\end{gather*}
$$

Proof of (13). Recalling (11) and (12) we have $A_{0} \subset C_{0} \cup\left(A_{0} \backslash C_{0}\right) \subset$ $C_{0} \cup\left(V_{0} \backslash \mathrm{cl} f\left(V_{0}\right)\right) \subset C_{0} \cup \operatorname{int} A_{0}$. The converse inclusion follows immediately from (11), (12) and (8).

Proof of (14). Let $x \in \operatorname{cl} A_{0} \backslash A_{0}$. Then from the definition of A_{0} we infer that $x \in \operatorname{cl} f\left(V_{0}\right)$. Since, by (9) and (11), $f\left(V_{0}\right)$ is an open set disjoint from A_{0}, it follows that $x \notin f\left(V_{0}\right)$. Applying (8), (7) and (2) we get $x \in \operatorname{cl} f\left(V_{0}\right) \backslash f\left(V_{0}\right)=\operatorname{cl} f\left(V_{0}\right) \cap f(X) \backslash f\left(V_{0}\right)=f\left(\operatorname{cl} V_{0}\right) \backslash f\left(V_{0}\right)=$ $f\left(\mathrm{cl} V_{0} \backslash V_{0}\right)=f\left(C_{0}\right)$, which was to be proved.

Put

$$
\begin{array}{ll}
A_{k}=f^{k}\left(A_{0}\right), & k=0,1,2, \ldots \tag{15}\\
C_{k}=f^{k}\left(C_{0}\right), & k=0,1,2, \ldots
\end{array}
$$

By continuity of $f^{k}, k=0,1,2, \ldots$, from (15), (11), (10) and (7) we have

$$
\begin{align*}
\operatorname{cl} A_{k} & \subset \operatorname{cl} f^{k}\left(A_{0}\right) \subset \operatorname{cl} f^{k}\left(\operatorname{cl} V_{0}\right) \subset \operatorname{clcl} f^{k}\left(V_{0}\right) \subset \operatorname{cl} f^{k}\left(V_{0}\right) \tag{17}\\
& \subset \operatorname{cl} V_{0} \subset \operatorname{int} f(X) \subset f(X)
\end{align*}
$$

Using the above inclusions and induction we can derive from Lemma 1 the next one:

Lemma 2.

$$
\begin{align*}
A_{k}=C_{k} \cup \operatorname{int} A_{k}, & k=0,1,2, \ldots, \tag{18}\\
\operatorname{cl} A_{k} \subset A_{k} \cup C_{k+1}, & k=0,1,2, \ldots
\end{align*}
$$

We have
Lemma 3.
(20)

$$
A_{k} \cap A_{l}=\emptyset \quad \text { for } k \neq l, k, l=0,1,2, \ldots
$$

Proof. Fix $l, k \in\{0,1,2, \ldots\}, l \neq k$. Let $l \geq k+1$. Then, by (2) and (10) we get $A_{l} \subset f^{l}\left(\operatorname{cl} V_{0}\right)=\operatorname{cl} f^{l}\left(V_{0}\right) \subset \operatorname{cl} f^{k+1}\left(V_{0}\right)=f^{k}\left(\operatorname{cl} f\left(V_{0}\right)\right)$. Now,
(20) follows from the fact that $A_{k} \cap f^{k}\left(\mathrm{cl} f\left(V_{0}\right)\right)=\emptyset$.

Put

$$
\begin{equation*}
P:=\bigcap_{k=0}^{\infty} f^{k}\left(V_{0}\right) . \tag{21}
\end{equation*}
$$

Lemma 4.

$$
\begin{gather*}
P \text { is closed; } \tag{22}\\
\xi \in P ; \tag{23}\\
f(P)=P \tag{24}\\
f\left(V_{0} \backslash P\right) \subset V_{0} \backslash P \tag{25}\\
P \neq X \quad \text { implies } \quad \xi \notin \operatorname{int} P \tag{26}
\end{gather*}
$$

$$
\begin{equation*}
X \backslash P=\bigcup_{k=0}^{\infty}\left[f^{-k}\left(V_{0}\right) \backslash P\right] \tag{27}
\end{equation*}
$$

Proof. It follows from (10) that $\bigcap_{n=0}^{\infty} f^{n}\left(V_{0}\right)=\bigcap_{n=0}^{\infty} \operatorname{cl} f^{n}\left(V_{0}\right)$ thus (22) is true. (23) follows from (6) and (7), and (24) results from (10). Since $f\left(V_{0} \backslash P\right)=f\left(V_{0}\right) \backslash f(P),(25)$ follows from (8) and (24).

To prove (26) let $x \in X \backslash P$. Then, by (24), $f^{k}(x) \in X \backslash P, k=0,1,2, \ldots$ and $\xi=\lim _{k \rightarrow \infty} f^{k}(x) \in X \backslash \operatorname{int} P$.

Finally, (27) follows from (4) and (7).

Lemma 5.

$$
\operatorname{cl} V_{0} \backslash P=\bigcup_{k=0}^{\infty} A_{k}
$$

Proof. Fix $k \in\{0,1,2, \ldots\}$ and $x \in A_{k}$. Then $x \in \operatorname{cl} V_{0}$ by (17). Using the definition of A_{k} we infer that $x \notin f^{k}\left[\operatorname{cl} f\left(V_{0}\right)\right]$. This implies that $x \notin$ $f^{k+1}\left(V_{0}\right)$ and, consequently, $x \notin P$. Now, fix $x \in \operatorname{cl} V_{0} \backslash P$. Take the smallest non-negative k such that $x \notin f^{k}\left(V_{0}\right)$. If $k=0$, then $x \in \operatorname{cl} V_{0} \backslash V_{0} \subset A_{0}$. If $k>0$, then either $x \in \operatorname{cl} f^{k}\left(V_{0}\right)$ or not. In the first case, recalling (15), we have $x \in \operatorname{cl} f^{k}\left(V_{0}\right) \backslash f^{k}\left(V_{0}\right) \subset A_{k}$. In the other case we have $x \in \operatorname{cl} f^{k-1}\left(V_{0}\right) \backslash$ $\mathrm{cl} f^{k}\left(V_{0}\right)=A_{k-1}$. This implies that $x \in \bigcup_{k=0}^{\infty} A_{k}$.

Lemma 6. For every $x \in X \backslash P$ the set A_{0} contains exactly one element of the orbit $C(x):=\left\{f^{k}(x): k=0, \pm 1, \pm 2, \ldots\right.$ and $f^{k}(x)$ is defined $\}$.

Proof. First we prove the uniqueness. Suppose that for some $x \in X \backslash P$, x_{0} and y_{0} are two different elements of $A_{0} \cap C(x)$. Then there exists $k>0$ such that $y_{0}=f^{k}\left(x_{0}\right)$ (otherwise we interchange x_{0} and y_{0}). Since $x_{0} \in \operatorname{cl} V_{0}$ we infer that $y_{0} \in f^{k}\left(\mathrm{cl} V_{0}\right)=\operatorname{cl} f^{k}\left(V_{0}\right) \subset \operatorname{cl} f\left(V_{0}\right)$, which is impossible.

To prove the existence suppose that $A_{0} \cap C(x)=\emptyset$ for some $x \in X \backslash P$. In view of (4) there exists an integer $n \geq 0$ such that $f^{n}(x) \in V_{0}$. Defining $r:=f^{n}(x)$ we have $r \in V_{0} \cap C(x)$. Since $A_{0} \cap C(x)=\emptyset$ we obtain $r \in \operatorname{cl} f\left(V_{0}\right)$, i.e. $r \in f(X)$ in view of (8) and (7). This implies that $f^{-1}(r)$ is defined. We have

$$
f^{-1}(r) \in f^{-1}\left(\operatorname{cl} f\left(V_{0}\right)\right) \subset f^{-1}\left(\operatorname{cl} f\left(V_{0}\right) \cap f(X)\right)=f^{-1}\left(f\left(\operatorname{cl} V_{0}\right)\right)=\operatorname{cl} V_{0}
$$

Hence $f^{-1}(r) \in \operatorname{cl} V_{0} \cap C(x)$, which again implies that $f^{-1}(r) \in \operatorname{cl} f\left(V_{0}\right) \subset$ $V_{0} \subset f(X)$. By induction we can prove that $f^{-i}(r)$ is defined for every integer $i \geq 0$ and $f^{-i}(r) \in V_{0}$. This together with the equation $r=$ $f^{i}\left[f^{-i}(r)\right], i=0,1,2, \ldots$, implies that $r \in P$. This yields $x \in P$, which is impossible. Thus $A_{0} \cap C(x)=\emptyset$.

Lemma 7 (K. Baron). Let X and Y be topological spaces, $U \subset X$ an open set, $h: X \times Y \rightarrow Y$ and $f: X \rightarrow X$ continuous functions. If $f(U) \subset U$ and for every $x \in X$ there exists a positive integer k such that $f^{k}(x) \in U$, then for every solution $\varphi_{0}: U \rightarrow Y$ of the functional equation

$$
\varphi(x)=h(x, \varphi[f(x)])
$$

there exists exactly one solution $\varphi: X \rightarrow Y$ of this equation such that $\varphi(x)=\varphi_{0}(x), x \in U$. If φ_{0} is continuous then so is φ.

Theorem. Let hypotheses (i)-(iii) be satisfied. Let V_{0} be an open set satisfying (7) and (8) and let the sets P, A_{0}, C_{1} be defined by (21), (11) and (16). Then for every continuous function $\psi: A_{0} \cup C_{1} \rightarrow Y$ such that

$$
\begin{equation*}
\psi(x)=g\left(f^{-1}(x), \psi\left[f^{-1}(x)\right]\right) \quad \text { for } x \in C_{1} \tag{28}
\end{equation*}
$$

there exists exactly one solution $\varphi: X \backslash P \rightarrow Y$ of equation (1) such that

$$
\begin{equation*}
\left.\varphi\right|_{A_{0} \cup C_{1}}=\psi \tag{29}
\end{equation*}
$$

Proof. In view of Lemma 6 the Theorem from [3] (cf. also [4, Theorem 1.1]) may be applied. It follows from that theorem and Lemma 5 that the function $\Phi: \operatorname{cl} V_{0} \backslash P \rightarrow Y$ defined by

$$
\begin{equation*}
\Phi(x)=\psi_{n}(x), \quad x \in A_{n}, n \geq 0 \tag{30}
\end{equation*}
$$

where the functions $\psi_{n}: A_{n} \rightarrow Y$ are given by

$$
\begin{equation*}
\psi_{0}=\left.\psi\right|_{A_{0}}, \quad \psi_{n+1}(x)=g\left(f^{-1}(x), \psi_{n}\left[f^{-1}(x)\right]\right) \tag{31}
\end{equation*}
$$

is a unique solution of equation (1) on $\mathrm{cl} V_{0} \backslash P$ such that

$$
\begin{equation*}
\left.\Phi\right|_{A_{0}}=\psi_{0} \tag{32}
\end{equation*}
$$

We are going to prove that Φ is continuous on $\mathrm{cl} V_{0} \backslash P$. By definition of Φ and Lemma 3 it follows that Φ is continuous on $\bigcup_{k=0}^{\infty} \operatorname{int} A_{k}$. We shall show that it is also continuous on C_{1}. First observe that

$$
\begin{equation*}
\Phi(x)=\psi(x) \quad \text { for } x \in A_{0} \cup C_{1} . \tag{33}
\end{equation*}
$$

Indeed, if $x \in C_{1}$ then $f^{-1}(x) \in C_{0} \subset A_{0}$ and by (30), (31) and (28) we have

$$
\Phi(x)=\psi_{1}(x)=g\left(f^{-1}(x), \psi_{0}\left[f^{-1}(x)\right]\right)=g\left(f^{-1}(x), \psi\left[f^{-1}(x)\right]\right)=\psi(x)
$$

Next, fix an $x_{0} \in C_{1}$ and a neighbourhood U of $\Phi\left(x_{0}\right)$. From the continuity of ψ on $A_{0} \cup C_{1}$ and (33) there exists a neighbourhood $V_{x_{0}}^{1}$ of x_{0} such that

$$
\begin{equation*}
\Phi\left(V_{x_{0}}^{1} \cap\left(A_{0} \cup C_{1}\right)\right) \subset U \tag{34}
\end{equation*}
$$

By the continuity of $g(\cdot, \psi(\cdot))$ on $A_{0} \cup C_{1}$ and since $f^{-1}\left(x_{0}\right) \in A_{0}$ and $g\left(f^{-1}\left(x_{0}\right), \psi\left[f^{-1}\left(x_{0}\right)\right]\right)=\Phi\left(x_{0}\right)$ we can find a neighbourhood W of $f^{-1}\left(x_{0}\right)$ such that

$$
\begin{equation*}
g(\cdot, \psi(\cdot))\left[W \cap\left(A_{0} \cup C_{1}\right)\right] \subset U \tag{35}
\end{equation*}
$$

Putting $V_{x_{0}}^{2}:=f(W) \cap V_{0}$ we obtain a neighbourhood of x_{0} such that

$$
\begin{equation*}
\Phi\left(V_{x_{0}}^{2} \cap\left(A_{1} \cup C_{2}\right)\right) \subset U \tag{36}
\end{equation*}
$$

Indeed, for $x \in V_{x_{0}}^{2} \cap\left(A_{1} \cup C_{2}\right)$ we have $f^{-1}(x) \in W \cap\left(A_{0} \cup C_{1}\right)$ and by (33) and (35), $\Phi(x)=g\left(f^{-1}(x), \Phi\left[f^{-1}(x)\right]\right)=g\left(f^{-1}(x), \psi\left[f^{-1}(x)\right]\right) \in U$. Now $x_{0} \in C_{1}$ implies that $x_{0} \notin f\left(V_{0}\right)$ and by (10), $x_{0} \notin \mathrm{cl} f^{2}\left(V_{0}\right)$. Hence $V_{x_{0}}:=V_{0} \cap V_{x_{0}}^{1} \cap V_{x_{0}}^{2} \backslash \mathrm{cl} f^{2}\left(V_{0}\right)$ is an open neighbourhood of x_{0}. Moreover, since $V_{x_{0}} \subset \operatorname{cl} V_{0} \backslash f^{2}\left(V_{0}\right) \subset A_{0} \cup C_{1}$ by (34) and (36) we get $\Phi\left(V_{x_{0}}\right) \subset U$. This proves the continuity of Φ at points of C_{1}. Hence the continuity of Φ on $C_{k}, k=0,1,2, \ldots$ may be obtained by induction. From (18) and Lemma 5 we see that Φ is continuous on $\mathrm{cl} V_{0} \backslash P$.

Hypothesis (iii) implies that $\left.\Phi\right|_{V_{0} \backslash P}$ is a solution of the equation

$$
\begin{equation*}
\Phi(x)=h(x, \Phi[f(x)]) \tag{37}
\end{equation*}
$$

on $V_{0} \backslash P$. Observe that by (22) the set $V_{0} \backslash P$ is open in $X \backslash P$ and that for every $x \in X \backslash P$ there exists $k \in\{0,1,2, \ldots\}$ such that $f^{k}(x) \in V_{0} \backslash P$ (by (4) and (7)). Thus from Lemma 7 it follows that there exists exactly one solution $\varphi: X \backslash P \rightarrow Y$ of (37). It is easy to verify that the function φ satisfies equation (1) and condition (29).

References

[1] K. Baron, On extending solutions of a functional equation, Aequationes Math. 13 (1975), 285-288.
[2] -, Functional equations of infinite order, Prace Nauk. Uniw. Śląsk. 265 (1978).
[3] M. Kuczma, General solution of the functional equation $\varphi[f(x)]=G(x, \varphi(x))$, Ann. Polon. Math. 9 (1960), 275-284.
[4] -, Functional Equations in a Single Variable, Monograf. Mat. 46, PWN, Warszawa, 1968.
[5] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, 1990.
[6] M. Sablik, Differentiable solutions of functional equations in Banach spaces, Ann. Math. Sil. 7 (1993), 17-55.
[7] W. Smajdor, On continuous solutions of the Schröder equation, Ann. Polon. Math. 32 (1976), 111-118.

Katolickie Liceum Ogólnokształca̧ce
Paderewskiego 28
42-400 Zawiercie, Poland

