On continuous solutions of a functional equation

by KAZIMIERZ DANKIEWICZ (Zawiercie)

Abstract. This paper discusses continuous solutions of the functional equation $\varphi[f(x)] = g(x, \varphi(x))$ in topological spaces.

Let us consider the equation

(1)
$$\varphi[f(x)] = g(x,\varphi(x))$$

with $\varphi: X \to Y$ as unknown function.

In order to obtain a solution of equation (1), it is enough to extend a function defined on a set which for every x contains exactly one element of the form $f^k(x)$, where $k = 0, \pm 1, \pm 2, \ldots$ and $f^k(x)$ denotes the kth iterate of the function f (cf. [3] and [4]). In the case when X is an open interval and Y is a Banach space, it is well known under what conditions these extensions are continuous (cf. [5]). Paper [6] by M. Sablik brings theorems which answer the above question for X and Y contained in some Banach spaces ([6, Th. 2.1, Th. 2.2]). In the case when X and Y are locally convex vector spaces the continuity of similar extensions was examined by W. Smajdor in [7] but for the Schröder equation (i.e. $\varphi[f(x)] = s\varphi(x), 0 < |s| < 1$). We are going to adopt the method given in that paper to the more general situation.

We shall employ Baron's Extension Theorem proved in [1] (cf. also [2]). This theorem concerns extending solutions of functional equations from a neighbourhood of a distinguished point (Lemma 7).

We shall deal with the following hypotheses:

(i) X is a Hausdorff topological space; ξ is a given (and fixed) point of X; Y is a topological space.

(ii) The function f maps X into X in such a manner that

(2) f is homeomorphism of X onto f(X);

(3) $\xi \in \operatorname{int} f(X);$

 $Key\ words\ and\ phrases:$ continuous solution, functional equation, extension.

¹⁹⁹¹ Mathematics Subject Classification: Primary 39B52.

(4) $\lim_{n\to\infty} f^n(x) = \xi$ for every $x \in X$;

(5) each neighbourhood U of the point ξ contains a neighbourhood W of ξ such that $\operatorname{cl} f(W) \subset W \subset U$.

(iii) The function $g: X \times Y \to Y$ is continuous; for every $x \in X \setminus \{\xi\}$ the function $g(x, \cdot)$ is a bijection and the function $h: (X \setminus \{\xi\}) \times Y \to Y$ defined by

$$h(x,y) = g(x,\cdot)^{-1}(y)$$

is continuous.

Evidently

$$f(\xi) = \xi.$$

According to (3) and (5) we can find a neighbourhood W of ξ such that $W \subset$ int f(X) and $\operatorname{cl} f(W) \subset W$. Obviously $f^2(W) \subset f(W)$, thus $\operatorname{cl} f^2(W) \subset$ $\operatorname{cl} f(W) \subset W \subset f(X)$. By (2) we have

$$\operatorname{cl} f^2(W) = \operatorname{cl} f^2(W) \cap f(X) = f(\operatorname{cl} f(W)) \subset f(W)$$

Putting $V_0 := f(W)$ we obtain an open set with the following properties:

(7)
$$\xi \in V_0, \quad \operatorname{cl} V_0 \subset \operatorname{int} f(X),$$

(8)
$$\operatorname{cl} f(V_0) \subset V_0.$$

Moreover, by induction we have

(9)
$$f^k(V_0)$$
 is open, $k = 0, 1, 2, ...,$

(10)
$$\operatorname{cl} f^{k+1}(V_0) \subset f^k(V_0), \quad k = 0, 1, 2, \dots$$

Fix an open set V_0 satisfying (7) and (8) and put

(11)
$$A_0 := \operatorname{cl} V_0 \setminus \operatorname{cl} f(V_0),$$

(12)
$$C_0 := \operatorname{cl} V_0 \setminus V_0.$$

We have the following

Lemma 1.

(13)
$$A_0 = C_0 \cup \operatorname{int} A_0,$$

(14)
$$\operatorname{cl} A_0 \subset A_0 \cup f(C_0).$$

Proof of (13). Recalling (11) and (12) we have $A_0 \subset C_0 \cup (A_0 \setminus C_0) \subset C_0 \cup (V_0 \setminus \operatorname{cl} f(V_0)) \subset C_0 \cup \operatorname{int} A_0$. The converse inclusion follows immediately from (11), (12) and (8).

Proof of (14). Let $x \in \operatorname{cl} A_0 \setminus A_0$. Then from the definition of A_0 we infer that $x \in \operatorname{cl} f(V_0)$. Since, by (9) and (11), $f(V_0)$ is an open set disjoint from A_0 , it follows that $x \notin f(V_0)$. Applying (8), (7) and (2) we get $x \in \operatorname{cl} f(V_0) \setminus f(V_0) = \operatorname{cl} f(V_0) \cap f(X) \setminus f(V_0) = f(\operatorname{cl} V_0) \setminus f(V_0) =$ $f(\operatorname{cl} V_0 \setminus V_0) = f(C_0)$, which was to be proved.

152

 Put

(15)
$$A_k = f^k(A_0), \quad k = 0, 1, 2, \dots,$$

(16) $C_k = f^k(C_0), \quad k = 0, 1, 2, \dots$

By continuity of f^k , $k = 0, 1, 2, \dots$, from (15), (11), (10) and (7) we have (17) $c \mid A_k \subset c \mid f^k(A_0) \subset c \mid f^k(c \mid V_0) \subset c \mid c \mid f^k(V_0) \subset c \mid f^k(V_0)$

$$(17) \qquad \operatorname{cl} A_k \subset \operatorname{cl} f'(A_0) \subset \operatorname{cl} f'(C(V_0)) \subset \operatorname{cl} f''(V_0) \subset \operatorname{cl} f''(V_0) \\ \subset \operatorname{cl} V_0 \subset \operatorname{int} f(X) \subset f(X).$$

Using the above inclusions and induction we can derive from Lemma 1 the next one:

Lemma 2.

(18)
$$A_k = C_k \cup \operatorname{int} A_k, \quad k = 0, 1, 2, \dots,$$

(19)
$$\operatorname{cl} A_k \subset A_k \cup C_{k+1}, \quad k = 0, 1, 2, \dots$$

We have

Lemma 3.

(20)
$$A_k \cap A_l = \emptyset \quad for \ k \neq l, \ k, l = 0, 1, 2, \dots$$

Proof. Fix $l, k \in \{0, 1, 2, ...\}$, $l \neq k$. Let $l \geq k + 1$. Then, by (2) and (10) we get $A_l \subset f^l(\operatorname{cl} V_0) = \operatorname{cl} f^l(V_0) \subset \operatorname{cl} f^{k+1}(V_0) = f^k(\operatorname{cl} f(V_0))$. Now, (20) follows from the fact that $A_k \cap f^k(\operatorname{cl} f(V_0)) = \emptyset$.

Put

(21)
$$P := \bigcap_{k=0}^{\infty} f^k(V_0).$$

Lemma 4.

- (23) $\xi \in P;$

(24)
$$f(P) = P;$$

(25)
$$f(V_0 \setminus P) \subset V_0 \setminus P;$$

(26)
$$P \neq X$$
 implies $\xi \notin \operatorname{int} P$;

(27)
$$X \setminus P = \bigcup_{k=0}^{\infty} [f^{-k}(V_0) \setminus P].$$

Proof. It follows from (10) that $\bigcap_{n=0}^{\infty} f^n(V_0) = \bigcap_{n=0}^{\infty} \operatorname{cl} f^n(V_0)$ thus (22) is true. (23) follows from (6) and (7), and (24) results from (10). Since $f(V_0 \setminus P) = f(V_0) \setminus f(P)$, (25) follows from (8) and (24).

 \sim

To prove (26) let $x \in X \setminus P$. Then, by (24), $f^k(x) \in X \setminus P$, k = 0, 1, 2, ...and $\xi = \lim_{k \to \infty} f^k(x) \in X \setminus \text{int } P$.

Finally, (27) follows from (4) and (7).

Lemma 5.

$$\operatorname{cl} V_0 \setminus P = \bigcup_{k=0}^{\infty} A_k.$$

Proof. Fix $k \in \{0, 1, 2, ...\}$ and $x \in A_k$. Then $x \in \operatorname{cl} V_0$ by (17). Using the definition of A_k we infer that $x \notin f^k[\operatorname{cl} f(V_0)]$. This implies that $x \notin f^{k+1}(V_0)$ and, consequently, $x \notin P$. Now, fix $x \in \operatorname{cl} V_0 \setminus P$. Take the smallest non-negative k such that $x \notin f^k(V_0)$. If k = 0, then $x \in \operatorname{cl} V_0 \setminus V_0 \subset A_0$. If k > 0, then either $x \in \operatorname{cl} f^k(V_0)$ or not. In the first case, recalling (15), we have $x \in \operatorname{cl} f^k(V_0) \setminus f^k(V_0) \subset A_k$. In the other case we have $x \in \operatorname{cl} f^{k-1}(V_0) \setminus$ $\operatorname{cl} f^k(V_0) = A_{k-1}$. This implies that $x \in \bigcup_{k=0}^{\infty} A_k$.

LEMMA 6. For every $x \in X \setminus P$ the set A_0 contains exactly one element of the orbit $C(x) := \{f^k(x) : k = 0, \pm 1, \pm 2, \dots \text{ and } f^k(x) \text{ is defined}\}.$

Proof. First we prove the uniqueness. Suppose that for some $x \in X \setminus P$, x_0 and y_0 are two different elements of $A_0 \cap C(x)$. Then there exists k > 0 such that $y_0 = f^k(x_0)$ (otherwise we interchange x_0 and y_0). Since $x_0 \in \operatorname{cl} V_0$ we infer that $y_0 \in f^k(\operatorname{cl} V_0) = \operatorname{cl} f^k(V_0) \subset \operatorname{cl} f(V_0)$, which is impossible.

To prove the existence suppose that $A_0 \cap C(x) = \emptyset$ for some $x \in X \setminus P$. In view of (4) there exists an integer $n \ge 0$ such that $f^n(x) \in V_0$. Defining $r := f^n(x)$ we have $r \in V_0 \cap C(x)$. Since $A_0 \cap C(x) = \emptyset$ we obtain $r \in \operatorname{cl} f(V_0)$, i.e. $r \in f(X)$ in view of (8) and (7). This implies that $f^{-1}(r)$ is defined. We have

$$f^{-1}(r) \in f^{-1}(\operatorname{cl} f(V_0)) \subset f^{-1}(\operatorname{cl} f(V_0) \cap f(X)) = f^{-1}(f(\operatorname{cl} V_0)) = \operatorname{cl} V_0.$$

Hence $f^{-1}(r) \in \operatorname{cl} V_0 \cap C(x)$, which again implies that $f^{-1}(r) \in \operatorname{cl} f(V_0) \subset V_0 \subset f(X)$. By induction we can prove that $f^{-i}(r)$ is defined for every integer $i \geq 0$ and $f^{-i}(r) \in V_0$. This together with the equation $r = f^i[f^{-i}(r)], i = 0, 1, 2, \ldots$, implies that $r \in P$. This yields $x \in P$, which is impossible. Thus $A_0 \cap C(x) = \emptyset$.

LEMMA 7 (K. Baron). Let X and Y be topological spaces, $U \subset X$ an open set, $h: X \times Y \to Y$ and $f: X \to X$ continuous functions. If $f(U) \subset U$ and for every $x \in X$ there exists a positive integer k such that $f^k(x) \in U$, then for every solution $\varphi_0: U \to Y$ of the functional equation

$$\varphi(x) = h(x, \varphi[f(x)])$$

there exists exactly one solution $\varphi : X \to Y$ of this equation such that $\varphi(x) = \varphi_0(x), x \in U$. If φ_0 is continuous then so is φ .

THEOREM. Let hypotheses (i)–(iii) be satisfied. Let V_0 be an open set satisfying (7) and (8) and let the sets P, A_0 , C_1 be defined by (21), (11) and (16). Then for every continuous function $\psi : A_0 \cup C_1 \to Y$ such that

(28)
$$\psi(x) = g(f^{-1}(x), \psi[f^{-1}(x)]) \quad \text{for } x \in C_1$$

154

there exists exactly one solution $\varphi: X \setminus P \to Y$ of equation (1) such that

(29)
$$\varphi|_{A_0\cup C_1} = \psi.$$

Proof. In view of Lemma 6 the Theorem from [3] (cf. also [4, Theorem 1.1]) may be applied. It follows from that theorem and Lemma 5 that the function $\Phi : \operatorname{cl} V_0 \setminus P \to Y$ defined by

(30)
$$\Phi(x) = \psi_n(x), \quad x \in A_n, \ n \ge 0,$$

where the functions $\psi_n : A_n \to Y$ are given by

(31)
$$\psi_0 = \psi|_{A_0}, \quad \psi_{n+1}(x) = g(f^{-1}(x), \psi_n[f^{-1}(x)]),$$

is a unique solution of equation (1) on $\operatorname{cl} V_0 \setminus P$ such that

(32)
$$\Phi|_{A_0} = \psi_0.$$

We are going to prove that Φ is continuous on $\operatorname{cl} V_0 \setminus P$. By definition of Φ and Lemma 3 it follows that Φ is continuous on $\bigcup_{k=0}^{\infty} \operatorname{int} A_k$. We shall show that it is also continuous on C_1 . First observe that

(33)
$$\Phi(x) = \psi(x) \quad \text{for } x \in A_0 \cup C_1.$$

Indeed, if $x \in C_1$ then $f^{-1}(x) \in C_0 \subset A_0$ and by (30), (31) and (28) we have

$$\Phi(x) = \psi_1(x) = g(f^{-1}(x), \psi_0[f^{-1}(x)]) = g(f^{-1}(x), \psi[f^{-1}(x)]) = \psi(x).$$

Next, fix an $x_0 \in C_1$ and a neighbourhood U of $\Phi(x_0)$. From the continuity of ψ on $A_0 \cup C_1$ and (33) there exists a neighbourhood $V_{x_0}^1$ of x_0 such that

(34)
$$\Phi(V_{x_0}^1 \cap (A_0 \cup C_1)) \subset U.$$

By the continuity of $g(\cdot, \psi(\cdot))$ on $A_0 \cup C_1$ and since $f^{-1}(x_0) \in A_0$ and $g(f^{-1}(x_0), \psi[f^{-1}(x_0)]) = \Phi(x_0)$ we can find a neighbourhood W of $f^{-1}(x_0)$ such that

(35)
$$g(\cdot,\psi(\cdot))[W \cap (A_0 \cup C_1)] \subset U$$

Putting $V_{x_0}^2 := f(W) \cap V_0$ we obtain a neighbourhood of x_0 such that

(36)
$$\Phi(V_{x_0}^2 \cap (A_1 \cup C_2)) \subset U.$$

Indeed, for $x \in V_{x_0}^2 \cap (A_1 \cup C_2)$ we have $f^{-1}(x) \in W \cap (A_0 \cup C_1)$ and by (33) and (35), $\Phi(x) = g(f^{-1}(x), \Phi[f^{-1}(x)]) = g(f^{-1}(x), \psi[f^{-1}(x)]) \in U$. Now $x_0 \in C_1$ implies that $x_0 \notin f(V_0)$ and by (10), $x_0 \notin \operatorname{cl} f^2(V_0)$. Hence $V_{x_0} := V_0 \cap V_{x_0}^1 \cap V_{x_0}^2 \setminus \operatorname{cl} f^2(V_0)$ is an open neighbourhood of x_0 . Moreover, since $V_{x_0} \subset \operatorname{cl} V_0 \setminus f^2(V_0) \subset A_0 \cup C_1$ by (34) and (36) we get $\Phi(V_{x_0}) \subset U$. This proves the continuity of Φ at points of C_1 . Hence the continuity of Φ on $C_k, k = 0, 1, 2, \ldots$ may be obtained by induction. From (18) and Lemma 5 we see that Φ is continuous on $\operatorname{cl} V_0 \setminus P$.

K. Dankiewicz

Hypothesis (iii) implies that $\Phi|_{V_0 \setminus P}$ is a solution of the equation

(37)
$$\Phi(x) = h(x, \Phi[f(x)])$$

on $V_0 \setminus P$. Observe that by (22) the set $V_0 \setminus P$ is open in $X \setminus P$ and that for every $x \in X \setminus P$ there exists $k \in \{0, 1, 2, ...\}$ such that $f^k(x) \in V_0 \setminus P$ (by (4) and (7)). Thus from Lemma 7 it follows that there exists exactly one solution $\varphi : X \setminus P \to Y$ of (37). It is easy to verify that the function φ satisfies equation (1) and condition (29).

References

- K. Baron, On extending solutions of a functional equation, Aequationes Math. 13 (1975), 285-288.
- [2] —, Functional equations of infinite order, Prace Nauk. Uniw. Śląsk. 265 (1978).
- [3] M. Kuczma, General solution of the functional equation $\varphi[f(x)] = G(x, \varphi(x))$, Ann. Polon. Math. 9 (1960), 275–284.
- [4] —, Functional Equations in a Single Variable, Monograf. Mat. 46, PWN, Warszawa, 1968.
- [5] M. Kuczma, B. Choczewski and R. Ger, *Iterative Functional Equations*, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, 1990.
- [6] M. Sablik, Differentiable solutions of functional equations in Banach spaces, Ann. Math. Sil. 7 (1993), 17–55.
- [7] W. Smajdor, On continuous solutions of the Schröder equation, Ann. Polon. Math. 32 (1976), 111–118.

Katolickie Liceum Ogólnokształcące Paderewskiego 28 42-400 Zawiercie, Poland

> Reçu par la Rédaction le 18.5.1995 Révisé le 3.1.1996