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On the norm-closure of the
class of hypercyclic operators

by CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. Let T be a bounded linear operator acting on a complex, separable, infinite-
dimensional Hilbert space and let f : D — C be an analytic function defined on an open
set D C C which contains the spectrum of 7. If T is the limit of hypercyclic operators
and if f is nonconstant on every connected component of D, then f(T') is the limit of
hypercyclic operators if and only if f(ow (7)) U{z € C : |z| = 1} is connected, where
ow (T) denotes the Weyl spectrum of 7.

1. Terminology and introduction. In this note X always denotes a
complex, infinite-dimensional Banach space and £(X) the Banach algebra of
all bounded linear operators on X. We write (X)) for the ideal of all com-
pact operators on X. For T' € L(X) the spectrum of T is denoted by o (7).
The reader is referred to [5] for the definitions and properties of Fredholm op-
erators, semi-Fredholm operators and the index ind(7") of a semi-Fredholm
operator T in L(X). For T € £(X) we will use the following notations:

or(T) =C\or(T), 0ur(T)=C\ 0ur(T),
ow(T)=C\ ow(T) (Weyl spectrum),

f is holomorphic},

HSITT) = {f € Hol(T') : f is nonconstant on every connected
component of D(f)}.
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For f € Hol(T), the operator f(T') is defined by the well known analytic
calculus (see [5]).

If X is separable, then T' € £(X) is called hypercyclic if {z, Tx, T?x, ...}
is dense in X for some x € X. We denote by HC(X) the class of all hyper-
cyclic operators in £(X). The following simple spectral description of the
norm-closure HC(X )~ is due to D. A. Herrero [3], Theorem 2.1:

THEOREM 1. If X is a separable Hilbert space, then A € HC(X)™ if and
only if A satisfies the conditions
(1) ow(A)U{z € C: |z| = 1} is connected,
(2) 09(A) =0, and
(3) ind(AI — A) >0 for all X € g, r(A).
Furthermore, HC(X)™ + K(X) = {A € L(X) : A satisfies (1) and (3)}.
The main result of the present note reads as follows:

THEOREM 2. Let X be a separable Hilbert space, T € HC(X)~ and let
f € Hol(T'). Then the following assertions are equivalent:

(1) f(T) € HC(X)™.
(2) f(T) € HC(X)™ + K(X).
(3) flow(T))U{z € C:|z| =1} is connected.

As an immediate consequence we have:

COROLLARY. Let X, T and f be asin Theorem 2. If ow(T) is connected
and |f(Xo)| =1 for some Ao € ow(T), then f(T) € HC(X)™.

A result closely related to the above corollary can be found in [4], The-
orem 2.

The proof of Theorem 2 will be given in Section 3 of this paper. For this
proof we need some preliminary results, which we collect in Section 2. Many
of these preliminary results can be found in [1], Section 3, in the Hilbert
space case.

2. Preliminary results. In this section X will denote an arbitrary
complex Banach space.

PROPOSITION 1. Let T € L(X) and f € Hol(T).

(1) f(or(T)) = or(f(T)).
) flosr(T )) C oo r(f(T)) (if f is univalent, we have equality).

(2

(3) If £ € HOI(T), then oo(£(T)) C f(oo(T)).

(4) If ind(AI —=T) > 0 for all A € op(T) or ind(AM —T) < 0 for all
A€ or(T), then

ow(f(T)) = flow(T)).
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Proof. (1) op(T) is the spectrum of T'+ K(X) in the Banach algebra
L(X)/K(X). Hence the spectral mapping theorem holds for op (7).

(2) See [6], Corollary 1, or [2], Theorem 1.

(3) Let po € oo(f(T)); thus uo is an isolated point in o(f(T")) = f(a(T))
and po € or(f(T)). We have pg = f(Ao) for some \g € o(T). By (1), A\g €
or(T'). Let C denote the connected component of D(f) which contains Ao.
Assume that A\ is not isolated in o(T'), thus there is a sequence (\,) in
C No(T) such that A, — Ag and \,, # Ao for all n€ N. This gives f(\,)—
f(Xo) = po (n — o0). Since f(\,) € f(o(T)) = o(f(T)) and po is isolated
in o(f(T)), we derive f(\,) = po for all n. By the uniqueness theorem for
analytic functions, it follows that f(A) = ug for all A € C, a contradiction.
Thus \g is an isolated point in o (7). Since \g € or(T), we get Ao € oo(T),
hence po = f(Ao) € f(o0(T)).

(4) follows from [8], Theorem 3.6. =

Remark. In general, the spectral mapping theorem for the Weyl spec-
trum ow (7T') does not hold (see [2], p. 23, or [8], Example 3.3).

NotAaTIONS. For T' € L(X), we write a(T") for the dimension of the
kernel of T and B(T') for the co-dimension of the range of T'. Thus, if T is
semi-Fredholm,

ind(T) = a(T) — B(T) € ZU {—00, +00}.

According to C. Pearcy [7], the next proposition has already appeared
in the preprint Fredholm operators by P. R. Halmos in 1967. For the conve-
nience of the reader we shall include a proof.

PROPOSITION 2. If T and S are semi-Fredholm operators with «(T)
and o(S) finite [resp. B(T) and ((S) finite], then T'S is a semi-Fredholm
operator with a(TS) < oo [resp. B(TS) < oo] and

ind(7'S) = ind(T) + ind(S).
Proof. It suffices to consider the case where a(T'), a(5) < oc.

Case 1: T and S are Fredholm operators. Then it is well known that
TS is Fredholm and ind(7'S) = ind(7") + ind(S) (see [5], §71).

Case 2: T or S is not Fredholm. Thus 3(T) = oo or 3(S) = co. Use
[5], §82, Aufgaben 2,4, to get: T'S is semi-Fredholm, a(T'S) < 00, B(T'S) = 0.
Hence ind(T'S) = —oo = ind(7T") + ind(S). =

PROPOSITION 3. Let T' € L(X) satisfy

oo(T)=0 and ind(\I —=T)>0 forall X € o.r(T).

If f € Hol(T') then we have
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(1) o0(f(T)) =0,
(2) ind(ul — f(T)) 2 0 for all p € osr(f(T))-

Proof. (1) follows from Proposition 1(3).

(2) Take po € 0sr(f(T)) and put g(\) = o — f(N). If g has no zeroes in
o(T), then g(T') = pol — f(T') is invertible in £(X), thus ind(uol — f(T"))
= 0. If g has zeroes in ¢(T'), then g has only a finite number of zeroes in

o(T), since f € Hol(T'). Let Aq,...,\; be those zeroes and vy, ..., v their
respective orders. Then we have

k
HA—)\

with h € Hol(T') and h(A) # 0 for all A € o(T'). Therefore h(T') is invertible
and

k
H (M —T)"
Since 0 € p.#(9(T")), we get, by Proposition 1(2),
My Mk € 05w (T).
Since ind(A\;1 —T') > 0, we have
BANI—-T)<oo forj=1,... k.
Thus by Proposition 2 (recall that G(h(T)) =0 < c0),

ind(u01 — £(T)) = ind(9(T))

k
= ind(h( +Zl/]1nd)\l 7)>0. m
0 =1 >
= >0

Remark. The description of the index in [1], Theorem 3.7, sheds more
light on claim (4) of Proposition 1 and on claim (2) of Proposition 3 in the
Hilbert space case.

3. Proof of Theorem 2. (1)=(2). Clear.
(3)=(1). Use Proposition 1(4), Proposition 3 and Theorem 1.
f

(2)=-(3). By Theorem 1, ow(f(T))U{z € C: |z| = 1} is connected. Use
again Proposition 1(4) to derive (3). =
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