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On the norm-closure of the
class of hypercyclic operators

by Christoph Schmoeger (Karlsruhe)

Abstract. Let T be a bounded linear operator acting on a complex, separable, infinite-
dimensional Hilbert space and let f : D → C be an analytic function defined on an open
set D ⊆ C which contains the spectrum of T . If T is the limit of hypercyclic operators
and if f is nonconstant on every connected component of D, then f(T ) is the limit of
hypercyclic operators if and only if f(σW(T )) ∪ {z ∈ C : |z| = 1} is connected, where
σW(T ) denotes the Weyl spectrum of T .

1. Terminology and introduction. In this note X always denotes a
complex, infinite-dimensional Banach space and L(X) the Banach algebra of
all bounded linear operators on X. We write K(X) for the ideal of all com-
pact operators on X. For T ∈ L(X) the spectrum of T is denoted by σ(T ).
The reader is referred to [5] for the definitions and properties of Fredholm op-
erators, semi-Fredholm operators and the index ind(T ) of a semi-Fredholm
operator T in L(X). For T ∈ L(X) we will use the following notations:

%F (T ) = {λ ∈ C : λI − T is Fredholm},
%s-F(T ) = {λ ∈ C : λI − T is semi-Fredholm},
%W(T ) = {λ ∈ %F(T ) : ind(λI − T ) = 0},
σ0(T ) = {λ ∈ σ(T ) : λ is isolated in σ(T ), and λ ∈ %F(T )},
σF(T ) = C \ %F(T ), σs-F(T ) = C \ %s-F(T ),
σW(T ) = C \ %W(T ) (Weyl spectrum),
Hol(T ) = {f : D(f)→ C : D(f) is open, σ(T ) ⊆ D(f),

f is holomorphic},˜Hol(T ) = {f ∈ Hol(T ) : f is nonconstant on every connected
component of D(f)}.
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For f ∈ Hol(T ), the operator f(T ) is defined by the well known analytic
calculus (see [5]).

If X is separable, then T ∈ L(X) is called hypercyclic if {x, Tx, T 2x, . . .}
is dense in X for some x ∈ X. We denote by HC(X) the class of all hyper-
cyclic operators in L(X). The following simple spectral description of the
norm-closure HC(X)− is due to D. A. Herrero [3], Theorem 2.1:

Theorem 1. If X is a separable Hilbert space, then A ∈ HC(X)− if and
only if A satisfies the conditions

(1) σW(A) ∪ {z ∈ C : |z| = 1} is connected ,
(2) σ0(A) = ∅, and
(3) ind(λI −A) ≥ 0 for all λ ∈ %s-F(A).

Furthermore, HC(X)− +K(X) = {A ∈ L(X) : A satisfies (1) and (3)}.
The main result of the present note reads as follows:

Theorem 2. Let X be a separable Hilbert space, T ∈ HC(X)− and let
f ∈ ˜Hol(T ). Then the following assertions are equivalent :

(1) f(T ) ∈ HC(X)−.
(2) f(T ) ∈ HC(X)− +K(X).
(3) f(σW(T )) ∪ {z ∈ C : |z| = 1} is connected.

As an immediate consequence we have:

Corollary. Let X, T and f be as in Theorem 2. If σW(T ) is connected
and |f(λ0)| = 1 for some λ0 ∈ σW(T ), then f(T ) ∈ HC(X)−.

A result closely related to the above corollary can be found in [4], The-
orem 2.

The proof of Theorem 2 will be given in Section 3 of this paper. For this
proof we need some preliminary results, which we collect in Section 2. Many
of these preliminary results can be found in [1], Section 3, in the Hilbert
space case.

2. Preliminary results. In this section X will denote an arbitrary
complex Banach space.

Proposition 1. Let T ∈ L(X) and f ∈ Hol(T ).

(1) f(σF(T )) = σF(f(T )).
(2) f(σs-F(T )) ⊆ σs-F(f(T )) (if f is univalent , we have equality).
(3) If f ∈ ˜Hol(T ), then σ0(f(T )) ⊆ f(σ0(T )).
(4) If ind(λI − T ) ≥ 0 for all λ ∈ %F(T ) or ind(λI − T ) ≤ 0 for all

λ ∈ %F(T ), then
σW(f(T )) = f(σW(T )).
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P r o o f. (1) σF(T ) is the spectrum of T + K(X) in the Banach algebra
L(X)/K(X). Hence the spectral mapping theorem holds for σF(T ).

(2) See [6], Corollary 1, or [2], Theorem 1.
(3) Let µ0 ∈ σ0(f(T )); thus µ0 is an isolated point in σ(f(T )) = f(σ(T ))

and µ0 ∈ %F(f(T )). We have µ0 = f(λ0) for some λ0 ∈ σ(T ). By (1), λ0 ∈
%F(T ). Let C denote the connected component of D(f) which contains λ0.
Assume that λ0 is not isolated in σ(T ), thus there is a sequence (λn) in
C ∩ σ(T ) such that λn→ λ0 and λn 6= λ0 for all n∈ N. This gives f(λn)→
f(λ0) = µ0 (n → ∞). Since f(λn) ∈ f(σ(T )) = σ(f(T )) and µ0 is isolated
in σ(f(T )), we derive f(λn) = µ0 for all n. By the uniqueness theorem for
analytic functions, it follows that f(λ) = µ0 for all λ ∈ C, a contradiction.
Thus λ0 is an isolated point in σ(T ). Since λ0 ∈ %F(T ), we get λ0 ∈ σ0(T ),
hence µ0 = f(λ0) ∈ f(σ0(T )).

(4) follows from [8], Theorem 3.6.

R e m a r k. In general, the spectral mapping theorem for the Weyl spec-
trum σW(T ) does not hold (see [2], p. 23, or [8], Example 3.3).

Notations. For T ∈ L(X), we write α(T ) for the dimension of the
kernel of T and β(T ) for the co-dimension of the range of T . Thus, if T is
semi-Fredholm,

ind(T ) = α(T )− β(T ) ∈ Z ∪ {−∞,+∞}.

According to C. Pearcy [7], the next proposition has already appeared
in the preprint Fredholm operators by P. R. Halmos in 1967. For the conve-
nience of the reader we shall include a proof.

Proposition 2. If T and S are semi-Fredholm operators with α(T )
and α(S) finite [resp. β(T ) and β(S) finite], then TS is a semi-Fredholm
operator with α(TS) <∞ [resp. β(TS) <∞] and

ind(TS) = ind(T ) + ind(S).

P r o o f. It suffices to consider the case where α(T ), α(S) <∞.

C a s e 1: T and S are Fredholm operators. Then it is well known that
TS is Fredholm and ind(TS) = ind(T ) + ind(S) (see [5], §71).

C a s e 2: T or S is not Fredholm. Thus β(T ) = ∞ or β(S) = ∞. Use
[5], §82, Aufgaben 2, 4, to get: TS is semi-Fredholm, α(TS)<∞, β(TS)=∞.
Hence ind(TS) = −∞ = ind(T ) + ind(S).

Proposition 3. Let T ∈ L(X) satisfy

σ0(T ) = ∅ and ind(λI − T ) ≥ 0 for all λ ∈ %s-F(T ).

If f ∈ ˜Hol(T ) then we have
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(1) σ0(f(T )) = ∅,
(2) ind(µI − f(T )) ≥ 0 for all µ ∈ %s-F(f(T )).

P r o o f. (1) follows from Proposition 1(3).
(2) Take µ0 ∈ %s-F(f(T )) and put g(λ) = µ0− f(λ). If g has no zeroes in

σ(T ), then g(T ) = µ0I − f(T ) is invertible in L(X), thus ind(µ0I − f(T ))
= 0. If g has zeroes in σ(T ), then g has only a finite number of zeroes in
σ(T ), since f ∈ ˜Hol(T ). Let λ1, . . . , λk be those zeroes and ν1, . . . , νk their
respective orders. Then we have

g(λ) = h(λ)
k∏
j=1

(λj − λ)νj

with h ∈ Hol(T ) and h(λ) 6= 0 for all λ ∈ σ(T ). Therefore h(T ) is invertible
and

g(T ) = h(T )
k∏
j=1

(λjI − T )νj .

Since 0 ∈ %s-F(g(T )), we get, by Proposition 1(2),

λ1, . . . , λk ∈ %s-F(T ).

Since ind(λjI − T ) ≥ 0, we have

β(λjI − T ) <∞ for j = 1, . . . , k.

Thus by Proposition 2 (recall that β(h(T )) = 0 <∞),

ind(µ0I − f(T )) = ind(g(T ))

= ind(h(T ))︸ ︷︷ ︸
=0

+
k∑
j=1

νj ind(λjI − T )︸ ︷︷ ︸
≥0

≥ 0.

R e m a r k. The description of the index in [1], Theorem 3.7, sheds more
light on claim (4) of Proposition 1 and on claim (2) of Proposition 3 in the
Hilbert space case.

3. Proof of Theorem 2. (1)⇒(2). Clear.
(3)⇒(1). Use Proposition 1(4), Proposition 3 and Theorem 1.
(2)⇒(3). By Theorem 1, σW(f(T ))∪{z ∈ C : |z| = 1} is connected. Use

again Proposition 1(4) to derive (3).
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