
ANNALES

POLONICI MATHEMATICI

LXV.3 (1997)

On n-circled H∞-domains of holomorphy

by Marek Jarnicki (Kraków) and Peter Pflug (Oldenburg)

Abstract. We present various characterizations of n-circled domains of holomorphy
G ⊂ Cn with respect to some subspaces of H∞(G).

Introduction. We say that a domain G ⊂ Cn is n-circled if (eiθ1z1, . . .
. . . , eiθnzn) ∈ G for arbitrary (z1, . . . , zn) ∈ G and (θ1, . . . , θn) ∈ Rn.

Put log G := {(x1, . . . , xn) ∈ Rn : (ex1 , . . . , exn) ∈ G}.
If X ⊂ Rn is a convex domain, then E(X) denotes the largest vector

subspace F ⊂ Rn such that X + F = X.
A vector subspace F ⊂ Rn is said to be of rational type if F is spanned

by F ∩ Zn.
Let

L2
h(G) := O(G) ∩ L2(G)

and

Ak(G) := {f ∈ O(G) : ∀σ∈(Z+)n, |σ|≤k ∃fσ∈C(Ḡ) : fσ = ∂σf in G},

k ∈ Z+ ∪ {∞},

where

∂σ :=
∂|σ|

∂zσ1

1 . . . ∂zσn
n

, σ = (σ1, . . . , σn) ∈ (Z+)n.

For α = (α1, . . . , αn) ∈ Rn put

Ω(α) := {(z1, . . . , zn) ∈ Cn : ∀j∈{1,...,n} : αj < 0 ⇒ zj 6= 0}.

A domain G ⊂ Cn is said to be an F(G)-domain of holomorphy (F(G) ⊂

O(G)) if for any pair of domains G0, G̃ ⊂ Cn with ∅ 6= G0 ⊂ G̃∩G, G̃ 6⊂ G,
there exists a function f ∈ F(G) such that f |G0

is not the restriction of a

function f̃ ∈ O(G̃).
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The following results are known.

Proposition 1 ([Jar–Pfl 1]). Let G ⊂ Cn be an n-circled domain of

holomorphy. Then the following conditions are equivalent :

(i) G is fat (i.e. G = int G) and the space E(log G) is of rational type;
(ii) there exist A ⊂ Zn and a function c : A → R>0 such that

G = int
⋂

α∈A

{z ∈ Ω(α) : |zα| < c(α)};

(iii) G is an H∞(G)-domain of holomorphy.

Proposition 2 ([Jar–Pfl 1]). Let G  Cn be a fat n-circled domain of

holomorphy. Then the following conditions are equivalent :

(i) E(log G) = {0};
(ii) L2

h(G) 6= {0};
(iii) G is an L2

h(G)-domain of holomorphy.

Proposition 3 ([Sib]). Let G = {(z1, z2) ∈ C2 : |z1| < |z2| < 1} (the
Hartogs triangle). Then:

(a) G is an Ak(G)-domain of holomorphy for arbitrary k ∈ Z+,
(b) G is not an A∞(G)-domain of holomorphy.

The aim of this paper is to generalize Propositions 1, 2, 3. The starting
point of these investigations was our attempt to understand the general
situation behind Proposition 3.

Proposition 4. Let G ⊂ Cn be a fat n-circled domain of holomorphy.

Then G is an Ak(G)-domain of holomorphy for arbitrary k ∈ Z+.

Let

V0 := {(z1 . . . , zn) ∈ Cn : z1 · . . . · zn = 0}

and

H∞(G, loc) := {f ∈ O(G) :

for any bounded domain D ⊂ Cn, f ∈ H∞(G ∩ D)}.

R e m a r k 5. Let G ⊂ Cn be an n-circled domain of holomorphy. Then
(int G)\G ⊂ V0 (cf. [Jar–Pfl 1]). In particular, if G is an H∞(G, loc)-domain
of holomorphy (e.g. G is an A0(G)-domain of holomorphy), then G is fat.

For j = 1, . . . , n let

Vj := {(z1, . . . , zn) ∈ Cn : zj = 0},

G̃(j) := {(z1, . . . , zj−1, λzj , zj+1, . . . , zn) ∈ Cn : (z1, . . . , zn) ∈ G, λ ∈ E},

where E denotes the unit disc. Define

H∞,∞(G, loc) := {f ∈ O(G) : ∀σ∈(Z+)n : ∂σf ∈ H∞(G, loc)}.
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Proposition 6. Let G ⊂ Cn be an n-circled domain of holomorphy.

Then the following conditions are equivalent :

(i) G is fat and

(∗) ∀j∈{1,...,n} : (∂G) ∩ Vj 6= ∅ ⇒ G̃(j) ⊂ G;

(ii) G is an H∞,∞(G, loc)-domain of holomorphy ;
(iii) G is an A∞(G)-domain of holomorphy ;
(iv) G is an O(G)-domain of holomorphy.

Moreover , if G is an H∞(G)-domain of holomorphy , then each of the

above conditions is equivalent to the following one:

(v) G is an H∞(G) ∩ O(G)-domain of holomorphy.

R e m a r k 7. (a) The Hartogs triangle does not satisfy (∗) and therefore
Proposition 3 follows from Propositions 4 and 6.

(b) It is clear that if G is complete, then (∗) is automatically satisfied.
(c) One can prove (cf. [Fu]) that (∗) is satisfied whenever ∂G is C1.

For p ∈ [1,∞], k ∈ Z+ let

Lp,k
h (G) := {f ∈ O(G) : ∀|σ|≤k : ∂σf ∈ Lp(G)},

Lp
h(G) := Lp,0

h (G), H∞,k(G) := L∞,k
h (G),

L⋄,k
h (G) :=

⋂

p∈[1,∞]

Lp,k
h (G).

R e m a r k 8. (a) We have L⋄,k
h ⊂ H∞,k(G), k ∈ Z+. Moreover, equality

holds for one k (and then for all k) iff G has finite volume.
(b) If G is bounded, then Ak(G) ⊂ H∞,k(G).
(c) We will show (Lemma 18) that if G is n-circled, then H∞,k(G) ⊂

Ak−1(G). Observe that for G = {(z1, z2) ∈ E2 : |z1| < |z2|} the function
f(z) := z2k

1 /zk
2 belongs to H∞,k(G), but not to Ak(G).

Proposition 9. Let G ⊂ Cn be an n-circled domain of holomorphy.

Then the following conditions are equivalent :

(i) G is fat and E(log G) = {0};
(ii) G is fat and there exists p ∈ [1,∞) such that Lp

h(G) 6= {0};

(iii) G  Cn and for each k ∈ Z+ the domain G is an L⋄,k
h (G)-domain

of holomorphy.

R e m a r k 10. Condition (iii) is equivalent (cf. Remark 8(c)) to the
following one:

(iv) G  Cn and for each k ∈ Z+ the domain G is an L⋄,k
h (G)∩Ak(G)-

domain of holomorphy.

In particular, if G is bounded we get another proof of Proposition 4.



256 M. Jarnicki and P. Pflug

Proposition 11. Let G ⊂ Cn be an n-circled domain of holomorphy.

Then the following conditions are equivalent :

(i) G is fat and there exist 0 ≤ m ≤ n and a permutation of coordinates

such that G = D × Cn−m with E(log D) = {0};
(ii) G is an H∞,1(G)-domain of holomorphy ;
(iii) G is an H∞,k(G)-domain of holomorphy for any k ∈ Z+.

Let

H∞,Σ := {f ∈ O(G) : ∀σ∈Σ : ∂σf ∈ H∞(G)}, Σ ⊂ (Z+)n,

Σk := {σ ∈ (Z+)n : |σ| = k}, k ∈ Z+.

Let e1, . . . , en denote the canonical basis of Rn.

Proposition 12. Let G ⊂ Cn be an n-circled domain. Then the follow-

ing conditions are equivalent :

(i) G is an H∞,Σ1(G)-domain of holomorphy ;
(ii) there exist A ⊂ Zn and functions b1, . . . , bn : A → R>0 such that

(1) G = int
⋂

ν∈A

{z ∈ Ω(ν) : ∀j∈{1,...,n} : νj 6= 0 ⇒ |zν−ej | < bj(ν)}.

Example 13. Let G ⊂ C2 be a 2-circled H∞,Σ1(G)-domain of holomor-
phy. Assume that E(log G) 6= {0} and that G is not a Cartesian product of
two plane domains. Then, by Proposition 12,

G := {(z1, z2) ∈ C
2 : |z1| < |z2|}

up to a permutation and rescaling of coordinates.
Note that G is not an H∞,1(G)-domain of holomorphy (Proposition 11).
This example shows that there are domains G and Fréchet spaces F1(G)

and F2(G) of holomorphic functions on G such that G is an Fj(G)-domain
of holomorphy, j = 1, 2, but not an F1(G) ∩ F2(G)-domain of holomorphy.

R e m a r k 14. Let F(G) be one of the spaces

Ak(G), H∞,Σ(G), Lp,k
h (G), L⋄,k

h (G).

Then F(G) has a natural structure of a Fréchet space. Consequently, G is
an F(G)-domain of holomorphy iff there exists a function f ∈ F(G) such
that G is the domain of existence of f .

In [Sic 1,2] J. Siciak characterized those balanced domains of holomorphy
G ⊂ Cn which are H∞(G) (resp. H∞(G)∩A∞(G))-domains of holomorphy.
Moreover, it is known that any bounded balanced domain of holomorphy
G ⊂ Cn is an L2

h(G)-domain of holomorphy (cf. [Jar–Pfl 2]). A general
discussion for balanced domains of holomorphy (like the above for n-circled
domains) is still lacking.
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Proof of Proposition 4

Lemma 15. Let α = (α1, . . . , αn) ∈ (R \ {0})n,

(2) Dε := {(z1, . . . , zn) ∈ Ω(α) : |z1|
α1 · . . . · |zn|

αn < 1 + ε}, ε ≥ 0.

Then for any ε > 0 there exists a neighborhood U of the set (∂D0)\Dε such

that

(3) dDε
(z) ≥ |z2|, z ∈ U ∩ D0,

where dD denotes the distance to ∂D with respect to the maximum norm,
i.e. dD(z) = sup{r > 0 : P (z, r) ⊂ D}, z ∈ D (where P (z, r) is the polydisc

with center at z and radius r), 2 := (2, . . . , 2) ∈ Nn.

P r o o f. We may assume that α1, . . . , αs > 0, αs+1, . . . , αn < 0 for some
0 < s < n. Fix ε > 0 and a = (a1, . . . , an) ∈ (∂D0) \ Dε. Note that
a1 · . . . · as = as+1 · . . . · an = 0.

We have to prove that there exists a neighborhood U of a such that
P (z, |z2|) ⊂ Dε for any z ∈ U ∩ D0 \ V0.

Let U be a neighborhood of a such that |z2−ej | < 1, j = 1, . . . , n, and

s∏

j=1

(1 + |z2−ej |)αj

n∏

j=s+1

(1 − |z2−ej |)αj < 1 + ε, z ∈ U.

Then
s∏

j=1

(|zj | + |z2|)αj

n∏

j=s+1

(|zj | − |z2|)αj < 1 + ε, z ∈ U ∩ D0,

and therefore P (z, |z2|) ⊂ Dε, z ∈ U ∩ D0 \ V0.

R e m a r k 16. The proof shows that, under the assumptions of the
lemma, the following slightly stronger assertion holds:

For any ε > 0, η > 1, there exists a neighborhood U of the set (∂D0)\Dε

such that

dDε
(z) ≥ |z1 · . . . · zn|

η, z = (z1, . . . , zn) ∈ U ∩ D0.

We pass to the proof of Proposition 4. Fix a k ∈ Z+. Since G is a fat
n-circled domain of holomorphy, there exist a family A ⊂ Rn and a function
c : A → R>0 such that

(4) G = int
⋂

α∈A

{z ∈ Ω(α) : |z1|
α1 · . . . · |zn|

αn < c(α)}.

Consequently, it suffices to consider the case

G = {z ∈ Ω(α) : |z1|
α1 · . . . · |zn|

αn < c}



258 M. Jarnicki and P. Pflug

for some α ∈ Rn and c > 0. Furthermore, we may also assume that α ∈
(R \ {0})n (otherwise we can pass to Cn−1) and that c = 1. Thus we may
assume that G = D0, where D0 is as in (2).

Suppose that G is not an Ak(G)-domain of holomorphy and let G0, G̃

be domains such that ∅ 6= G0 ⊂ G̃ ∩ G, G̃ 6⊂ G, and for each f ∈ Ak(G)

there exists f̃ ∈ O(G̃) with f̃ = f on G0. Since G is fat, we may assume

that G̃ ∩ V0 = ∅ and that G̃ 6⊂ G. Let ε > 0 be such that G̃ 6⊂ Dε (Dε is
given by (2)) and let U be as in Lemma 15.

It is known (cf. [Pfl]) that there exist N > 0 and a function g ∈ O(Dε)
such that Dε is the domain of existence of g and δN

Dε
|g| ≤ 1, where

δDε
(z) := min

{
distDε

(z),
1√

1 + ‖z‖2

}
,

distDε
denoting the distance to ∂Dε with respect to the Euclidean norm.

(In fact, we know (cf. [Jar–Pfl 1]) that such a function exists for arbitrary
N > 0.) Let µ ∈ N be such that µ ≥ 2N + 3k + 1. We will show that

f := zµ1g|G ∈ Ak(G) (1 := (1, . . . , 1) ∈ Nn). Then the function z−µ1f̃ ∈

O(G̃) extends g and this will be a contradiction.
It suffices to prove that

lim
G∋z→a

zµ1−σ∂τg(z) = 0, a ∈ (∂G) \ Dε, σ, τ ∈ (Z+)n, |σ| + |τ | ≤ k.

Fix an a ∈ (∂G) \ Dε. It may be easily proved (cf. [Fer]) that

δN+k
Dε

|∂τg| ≤ c0, |τ | ≤ k,

where c0 depends only on n, N , and k. Then, by virtue of (3), for z ∈ G∩U ,
z near a, we get

|zµ1−σ∂τg(z)| ≤ c0|z
µ1−σ |δ

−(N+k)
Dε

(z)

≤ c1|z
µ1−σ |d

−(N+k)
Dε

(z) ≤ c1|z
µ1−σ−2(N+k)1| ≤ c2|z

1|,

where c1, c2 are independent of z. The proof of Proposition 4 is complete.

Proof of Proposition 6

Lemma 17. Let D  Cn be n-circled and Σ ⊂ (Z+)n be such that there

exists k0 ∈ Z+ with Σk0
⊂ Σ. Assume that D is an H∞,Σ(D)-domain

of holomorphy. Then there exist A ⊂ Zn and functions a : A → R>0,
b : Σ → R+ such that

(5) D = int
⋂

(ν,σ)∈A×Σ:(ν

σ)6=0

{
z ∈ Ω(ν) :

∣∣∣∣σ!

(
ν

σ

)
zν−σ

∣∣∣∣ < a(ν)b(σ)

}
.

Moreover , if Σ = (Z+)n, then D satisfies (∗).
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P r o o f. Let f ∈ H∞,Σ(D) be such that D is the domain of existence
of f (cf. Remark 14). Write

f(z) =
∑

ν∈A

aνzν , z ∈ D,

where A ⊂ Zn is such that aν 6= 0 for ν ∈ A. Note that

(6) ∂σf(z) =
∑

ν∈A

σ!

(
ν

σ

)
aνzν−σ , z ∈ D, σ ∈ Σ.

Put a(ν) := 1/|aν |, ν ∈ A, b(σ) := ‖∂σf‖H∞(D), σ ∈ Σ. By the Cauchy
inequalities, we get

∣∣∣∣σ!

(
ν

σ

)
zν−σ

∣∣∣∣ < a(ν)b(σ), z ∈ D, (ν, σ) ∈ A × Σ,

(
ν

σ

)
6= 0.

Thus D ⊂ D̃, where D̃ is the domain defined by the right side of (5).

It is clear that for each σ ∈ Σ the series (6) is convergent in D̃. Suppose

that D  D̃. Since D̃ is connected, there exist a ∈ D, r > 0 such that
P (a, r) ⊂ D̃ but P (a, r) 6⊂ D.

Observe that if g ∈ O(D) is such that each derivative ∂g/∂zj extends to
a function gj ∈ O(P (a, r)), j = 1, . . . , n, then the function g itself extends
to P (a, r). Indeed, the extension may be given by the formula

g̃(z) = g(a) +

n∑

j=1

(zj − aj)

1\
0

gj(a + t(z − a)) dt, z ∈ P (a, r).

The above property and the fact that Σk0
⊂ Σ easily imply that the

function f extends to P (a, r); a contradiction.
Now, suppose that Σ = (Z+)n and that ∂D ∩ Vj0 6= ∅ for some

j0 ∈ {1, . . . , n}. By virtue of (5), to prove that D̃(j0) = D it suffices to
show that νj0 ≥ 0 for any ν ∈ A. Fix a ν ∈ A and let σ = (σ1, . . . , σn),
σj := max{0, νj}, j = 1, . . . , n. Observe that

(
ν
σ

)
6= 0 and therefore

zν−σ =
∏

j:νj<0

z
νj

j

is bounded on D. In particular, νj0 ≥ 0.

The implications (v)⇒(iv)⇒(iii)⇒(ii) in Proposition 6 are evident.
(ii)⇒(i). It is clear that G is fat (cf. Remark 5). Suppose that ∂G∩Vj0 6=∅

for some j0 ∈ {1, . . . , n}. Then for any r > 0 the domain Dr := G ∩
P (0, r) is an H∞,(Z+)n

(Dr)-domain of holomorphy. Hence, by Lemma 17, if

Dr ∩ Vj0 6= ∅, then D̃
(j0)
r = Dr. Consequently, G̃(j0) = G.

(i)⇒(iv) (resp. (i)⇒(v) provided that G is an H∞(G)-domain of holo-
morphy). Suppose that G is not an O(G) (resp. H∞(G)∩O(G))-domain of
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holomorphy and let G0, G̃ be domains such that ∅ 6= G0 ⊂ G̃ ∩ G, G̃ 6⊂ G,
and for each f ∈ O(G) (resp. f ∈ H∞(G) ∩ O(G)) there exists f̃ ∈ O(G̃)

with f̃ = f on G0. We know that G may be represented in the form (4) with
A ⊂ Rn (resp. A ⊂ Zn). Let α ∈ A, c > 0, ε > 0 be such that

G ⊂ {z ∈ Ω(α) : |z1|
α1 · . . . · |zn|

αn < c}

⊂ Dε := {z ∈ Ω(α) : |z1|
α1 · . . . · |zn|

αn < (1 + ε)c}, G̃ 6⊂ Dε.

Observe that Dε is a domain of holomorphy (resp. Dε is an H∞(Dε)-domain
of holomorphy). If we prove that G ⊂ Dε, then we get a contradiction.

Obviously, G \ V0 ⊂ Dε. Suppose that (∂G) ∩ Vj0 6= ∅ for some j0 ∈
{1, . . . , n}. Since G satisfies (∗), we get

|λ|αj0 |z1|
α1 · . . . · |zn|

αn < c, z ∈ G, λ ∈ E.

Consequently, αj0 ≥ 0. Thus (∂G) ∩ V0 ⊂ Dε.

The proof of Proposition 6 is complete.

Proof of Proposition 9

Lemma 18. Let D ⊂ Cn be n-circled. Then H∞,Σ1(D) ⊂ A0(D). In

particular , H∞,k(D) ⊂ Ak−1(D), k ∈ N.

P r o o f. Note that D has univalent H∞(D)-envelope of holomorphy.
Therefore, we may assume that D is a domain of holomorphy. Fix f ∈
H∞,Σ1(D). Let ̺D denote the arc-length distance on D. Obviously,

|f(z′) − f(z′′)| ≤ sup
z∈D

{‖f ′(z)‖} · ̺D(z′, z′′), z′, z′′ ∈ D.

For J = (j1, . . . , js), 1 ≤ j1 < . . . < js ≤ n with 0 ≤ s ≤ n, let
pJ : Cn → Cs denote the natural projection (z1, . . . , zn) → (zj1 , . . . , zjs

),
where p∅ := 0.

To show that f extends continuously to D it suffices to prove that for any
point a = (a1, . . . , an) ∈ ∂D there exist a constant c > 0 and a neighborhood
U of a such that

̺D(z′, z′′) ≤ c(‖z′ − z′′‖ + ‖pJ (z′)‖ + ‖pJ (z′′)‖), z′, z′′ ∈ U ∩ D,

where J is such that aj = 0 iff j ∈ J . Fix an a. We may assume that
J = (1, . . . , s). Let w′ := (|z′1|, . . . , |z

′
s|, z

′
s+1, . . . , z

′
n). Since D is n-circled,

w′ ∈ D and

̺D(z′, w′) ≤ 2π(|z′1| + . . . + |z′s|).

Let w′′ be defined in the same way for z′′. Thus it remains to prove that
there exist a constant c′ > 0 and a neighborhood U of a such that

̺D(w′, w′′) ≤ c′‖z′ − z′′‖, z′, z′′ ∈ U ∩ D.
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By continuity, it suffices to consider only the case where 0 6= |z′j | 6= |z′′j | 6= 0,
j = 1, . . . , n. Let L1 = . . . = Ls := Log = the principal branch of the
logarithm. Furthermore, for j ≥ s + 1, let Lj be a branch of the logarithm.
Put γ = (γ1, . . . , γn) : [0, 1] → Cn, γj(t) := exp((1 − t)Lj(w

′
j) + tLj(w

′′
j )),

j = 1, . . . , n. Since D is logarithmically convex, γ([0, 1]) ⊂ D. We only need
to show that for each j there exists c′j > 0 such that the length lj of γj is
≤ c′j |z

′
j − z′′j | provided that z′j , z

′′
j are near aj .

If j ≤ s, then lj ≤ ||z′j | − |z′′j || ≤ |z′j − z′′j |.
If j ≥ s + 1, then let Uj be a neighborhood of aj such that |zj − aj | <

|aj |/2, z ∈ Uj . Consequently, for z′j , z
′′
j ∈ Uj we get

lj =

1\
0

|γ′
j(t)| dt =

1\
0

|z′j |
1−t|z′′j |

t|Lj(z
′
j) − Lj(z

′′
j )| dt

≤ 2|aj |(2/|aj |)|z
′
j − z′′j | = 4|z′j − z′′j |.

(iii)⇒(ii) in Proposition 9 follows from Remark 5.

(ii)⇒(i). Let f =
∑

ν∈Zn aνzν ∈ Lp
h(G), f 6≡ 0. Then\

G

|aνzν |p dΛ2n(z) = (2π)n
\

|G|

∣∣∣∣
1

(2πi)n

\
|ζj |=rj

j=1,...,n

f(ζ)

ζν+1
dζ

∣∣∣∣
p

rpν+1 dΛn(r)

≤ (2π)n(1−p)
\

|G|

( \
[0,2π]n

|f(reiθ)| dΛn(θ)
)p

r1 dΛn(r)

≤
\

|G|

\
[0,2π]n

|f(reiθ)|p dΛn(θ) r1 dΛn(r)

=
\
G

|f |pdΛ2n,

where |G| := {(|z1|, . . . , |zn|) : (z1, . . . , zn) ∈ G} and Λn denotes Lebesgue
measure in Rn. Consequently, there exists ν0 ∈ Zn such that zν0 ∈ Lp

h(G).

Suppose that F := E(log G) 6= {0}. Let m := dim F and let Y ⊂ F⊥ be
a convex domain such that log G = Y + F . We have\

G

|zν0 |p dΛ2n(z) = (2π)n
\

log G

e〈x,pν0+2〉 dΛn(x)

=
\
Y

e〈x
′,pν0+2〉 dΛn−m(x′)

\
F

e〈x
′′,pν0+2〉 dΛm(x′′) = ∞,

where 〈 , 〉 is the Euclidean scalar product in Rn. We have got a contradic-
tion.

(i)⇒(iii). Fix k∈Z+. Suppose that there exist domains G0, G̃⊂Cn such

that ∅ 6= G0⊂ 1G∩G̃, G̃ 6⊂ G, and for each f ∈L⋄,k
h (G) there exists f̃ ∈O(G̃)
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with f̃ = f on G0. We may assume that G̃ 6⊂ G and that G̃ ∩ V0 = ∅.

Since E(log G) = {0} and G is fat, there exist R-linearly independent
vectors αj = (αj,1, . . . , αj,n) ∈ Zn, j = 1, . . . , n, and c > 0 such that

G ⊂ D0 := {z ∈ Ω : |zαj | < c, j = 1, . . . , n}

⊂ Dε := {z ∈ Ω : |zαj | < (1 + ε)c, j = 1, . . . , n}, G̃ 6⊂ Dε,

where Ω := Ω(α1)∩ . . .∩Ω(αn) (cf. [Jar–Pfl 1]). We may assume that c=1.

Fix an a ∈ G̃ \ Dε and let j0 ∈ {1, . . . , n} be such that |aαj0 | ≥ 1 + ε.

Put α := α1 + . . . + αn. For N ∈ N define

fN(z) :=
zNα

zαj0 − aαj0

, z ∈ Dε.

Obviously, fN ∈ O(Dε). We will show that there exists N ∈ N such that

fN ∈ L⋄,k
h (D0). Then f̃N(z)(zαj0 − aαj0 ) = zNα, z ∈ G̃, which will give a

contradiction.

Observe that any derivative ∂σfN , σ ∈ (Z+)n, |σ| ≤ k, is a finite sum of
terms of the form

d
zNα+lαj0

−σ

(zαj0 − aαj0 )l+1
,

where d∈Z, l∈{0, . . . , k}. Thus it suffices to find N such that ‖zNα−σ‖Lp(D0)

≤ 1, |σ| ≤ k, 1 ≤ p ≤ ∞.

Let

A := [αj,l]j,l=1,...,n, B := A−1,

Tj(x) := (xB)j =

n∑

l=1

Bl,jxl, j = 1, . . . , n, x = (x1, . . . , xn) ∈ Rn.

For p ∈ [1,∞) and ν ∈ Zn we have\
D0

|zν |p dΛ2n(z) = (2π)n
\

log D0

e〈x,pν+2〉 dΛn(x)

= (2π)n
\

{ξ<0}

e〈B(ξ),pν+2〉 |detB| dΛn(ξ)

=
(2π)n

|det A|T1(pν + 2) · . . . · Tn(pν + 2)

provided that Tj(pν + 2) > 0, j = 1 . . . , n. In particular, if

Tj(ν) ≥
1

p

(
2π

|detA|1/n
− Tj(2)

)
, j = 1, . . . , n,

then ‖zν‖Lp(D0) ≤ 1. Hence, if ν = Nα − σ and if
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N ≥ N0 := sup

{
Tj(σ) +

1

p

(
2π

|det A|1/n
− Tj(2)

)
:

j = 1, . . . , n, σ ∈ (Z+)n, |σ| ≤ k, p ∈ [1,∞)

}
,

then ‖zNα−σ‖Lp(D0) ≤ 1 for arbitrary p ∈ [1,∞) and |σ| ≤ k.

Moreover, N0 ≥ Tj(σ), j = 1, . . . , n, and therefore Nα − σ ∈ R+α1 +
. . . + R+αn, which shows that ‖zNα−σ‖H∞(D0) ≤ 1 for arbitrary |σ| ≤ k.

Proof of Proposition 11. (i)⇒(iii) follows from Proposition 9.
(iii)⇒(ii) is trivial.

(ii)⇒(i). Let F := E(log G), m := codim F . The cases m = 0 and m = n
are trivial. Assume 1 ≤ m ≤ n− 1. By Lemma 17 (with Σ := {0} ∪Σ1) we
know that there exist A ⊂ Zn and functions b0, . . . , bn : A → R>0 such that

G = int
⋂

ν∈A

{z ∈ Ω(ν) : |zν |< b0(ν), ∀j∈{1,...,n} : νj 6= 0 ⇒|zν−ej |< bj(ν)}.

Hence if ν∈A and νj 6= 0, then ν, ν − ej ∈F⊥, and, consequently, ej ∈ F⊥.
Since dim F⊥ = m, we may assume that es+1, . . . , en 6∈ F⊥ for some 0 ≤
s ≤ m. Hence G = D ×Cn−s. Clearly, F = E(log D)×Rn−s. Hence s = m
and therefore E(log D) = {0}.

Proof of Proposition 12. The implication (i)⇒(ii) follows from
Lemma 17. To prove that any domain G of the form (1) is an H∞,Σ1(G)-
domain of holomorphy it suffices to consider only the case where

G = {z ∈ Ω(ν) : ∀j∈{1,...,n} : νj 6= 0 ⇒ |zν−ej | < bj}

for some ν∈Zn and b1, . . . , bn > 0. We may assume that νj 6= 0, j = 1, . . . , n
(otherwise we can pass to Cn−1). It is enough to prove that for any point
a 6∈ G ∪ V0 there exists a function f ∈ H∞,Σ1(G) such that f cannot be
continued across a. Fix such an a and let j0 ∈ {1, . . . , n} be such that
|aν−ej0 | > bj0 . Then the function

f(z) :=
zν

zν−ej0 − aν−ej0

, z ∈ G,

belongs to H∞,Σ1(G) (cf. the proof of Proposition 9) and evidently cannot
be continued across a.
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