A generalized periodic boundary value problem for the one-dimensional p-Laplacian

by Daqing Jiang and Junyu Wang (Changchun)

Abstract

The generalized periodic boundary value problem $-\left[g\left(u^{\prime}\right)\right]^{\prime}=f\left(t, u, u^{\prime}\right)$, $a<t<b$, with $u(a)=\xi u(b)+c$ and $u^{\prime}(b)=\eta u^{\prime}(a)$ is studied by using the generalized method of upper and lower solutions, where $\xi, \eta \geq 0, a, b, c$ are given real numbers, $g(s)=|s|^{p-2} s, p>1$, and f is a Carathéodory function satisfying a Nagumo condition. The problem has a solution if and only if there exists a lower solution α and an upper solution β with $\alpha(t) \leq \beta(t)$ for $a \leq t \leq b$.

1. Introduction. The present paper is a continuation of the papers [1] and [2].

In this paper, we study the following generalized periodic boundary value problem for the one-dimensional p-Laplacian:

$$
\left\{\begin{array}{l}
-\left[g\left(u^{\prime}\right)\right]^{\prime}=f\left(t, u, u^{\prime}\right), \quad \quad t \in I:=[a, b], \tag{1.1}\\
u(a)=\xi u(b)+c, \quad u^{\prime}(b)=\eta u^{\prime}(a),
\end{array}\right.
$$

by using the generalized method of upper and lower solutions. Here $\xi, \eta \geq 0$, a, b, c are given real numbers, $g(s)=|s|^{p-2} s, p>1$, and $f(t, u, v)$ is a Carathéodory function satisfying a Nagumo condition.

We name the problem a generalized periodic boundary value problem since the periodic boundary value problem is its particular case.

We call a function $\alpha: I \rightarrow \mathbb{R}$ a lower solution to problem (1.1) if $\alpha \in$ $C^{1}(I), g\left(\alpha^{\prime}\right) \in A C(I)$, and

$$
\left\{\begin{array}{l}
-\left[g\left(\alpha^{\prime}(t)\right)\right]^{\prime} \leq f\left(t, \alpha(t), \alpha^{\prime}(t)\right) \quad \text { for a.e. } t \in I, \\
\alpha(a)=\xi \alpha(b)+c, \quad \alpha^{\prime}(b) \leq \eta \alpha^{\prime}(a)
\end{array}\right.
$$

where $A C(I)$ is the set of all absolutely continuous functions defined on I.

[^0]Similarly, a function $\beta: I \rightarrow \mathbb{R}$ is called an upper solution to (1.1) if $\beta \in C^{1}(I), g\left(\beta^{\prime}\right) \in A C(I)$, and

$$
\left\{\begin{array}{l}
-\left[g\left(\beta^{\prime}(t)\right)\right]^{\prime} \geq f\left(t, \beta(t), \beta^{\prime}(t)\right) \quad \text { for a.e. } t \in I, \\
\beta(a)=\xi \beta(b)+c, \quad \beta^{\prime}(b) \geq \eta \beta^{\prime}(a) .
\end{array}\right.
$$

A function $u: I \rightarrow \mathbb{R}$ is said to be a solution to (1.1) if it is both a lower solution and an upper solution to (1.1).

We call a function $f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ a Carathéodory function if the following two conditions are satisfied:
(1) for almost all $t \in I$, the function $(u, v) \rightarrow f(t, u, v)$ is continuous on \mathbb{R}^{2}, and
(2) for every $(u, v) \in \mathbb{R}^{2}$, the function $t \rightarrow f(t, u, v)$ is measurable on I.

The function f is said to satisfy a Nagumo condition on the set

$$
D:=\{(t, u, v): t \in I, \alpha(t) \leq u \leq \beta(t), v \in \mathbb{R}\}
$$

for given $\alpha, \beta \in C(I)$ with $\alpha(t) \leq \beta(t)$ on I if there exists a positive measurable function $k \in L_{\sigma}(I), 1 \leq \sigma \leq \infty$, and a positive continuous function $H \in C\left(\mathbb{R}_{+}\right), \mathbb{R}_{+}:=[0, \infty)$ such that

$$
\begin{equation*}
|f(t, u, v)| \leq k(t) H(|v|) \quad \text { a.e. on } D \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{g(A)}^{\infty} \frac{|G(s)|^{(\sigma-1) / \sigma}}{H(|G(s)|)} d s>B^{(\sigma-1) / \sigma}\|k\|_{\sigma} \tag{1.3}
\end{equation*}
$$

where G is the function inverse to g,

$$
\begin{align*}
& A:=\max \{|\beta(a)-\alpha(b)|,|\beta(b)-\alpha(a)|\} /(b-a), \tag{1.4}\\
& B:=\max \{\beta(t): t \in I\}-\min \{\alpha(t): t \in I\} \tag{1.5}
\end{align*}
$$

and

$$
\|k\|_{\sigma}:= \begin{cases}\left(\int_{a}^{b}|k(s)|^{\sigma} d s\right)^{1 / \sigma} & \text { if } \sigma \in[1, \infty) \\ \operatorname{ess} \sup \{|k(t)|: t \in I\} & \text { if } \sigma=\infty\end{cases}
$$

Here we set $B^{0}:=1$ and $|G(s)|^{0}:=1$.
The main result of this paper is as follows.
Theorem 1. Assume that f is a Carathéodory function satisfying a Nagumo condition. Then a necessary and sufficient condition for the problem (1.1) to have a solution u is that there exists a lower solution α and an upper solution β with $\alpha(t) \leq \beta(t)$ on I. Moreover,

$$
\alpha(t) \leq u(t) \leq \beta(t) \quad \text { and } \quad\left|u^{\prime}(t)\right| \leq N \quad \text { on } I
$$

where N is a constant depending only on α, β, g, H and k.

Obviously, Theorem 1 extends and improves Theorem 1 of [1] and Theorem 2.4 of [2].
2. Proof of Theorem 1. The necessity part is obvious. We prove the sufficiency.

Now assume that α and β are lower and upper solutions to problem (1.1), respectively, and $\alpha(t) \leq \beta(t)$ on I. To prove the existence of solutions (1.1), we consider the modified problem

$$
\left\{\begin{array}{l}
-\left[g\left(u^{\prime}\right)\right]^{\prime}+M g\left(u^{\prime}\right) \tag{2.1}\\
\quad=f^{*}\left(t, q(t, u), \frac{d}{d t} q(t, u)\right)+M g\left(\frac{d}{d t} q(t, u)\right), \quad t \in I \\
u(a)=\xi q(b, u(b))+c, \quad u^{\prime}(b)=\eta u^{\prime}(a)
\end{array}\right.
$$

where M is a positive number such that $e^{M(b-a)}>\eta^{p-1}$,

$$
q(t, u):= \begin{cases}\alpha(t) & \text { if } u<\alpha(t), t \in I, \\ u & \text { if } \alpha(t) \leq u \leq \beta(t), t \in I, \\ \beta(t) & \text { if } u>\beta(t), t \in I,\end{cases}
$$

and

$$
f^{*}(t, u, v):= \begin{cases}f(t, u,-N) & \text { if } v<-N, \\ f(t, u, v) & \text { if }|v| \leq N, \\ f(t, u, N) & \text { if } v>N\end{cases}
$$

Here we choose N so large that

$$
N>\max \left\{\left|\alpha^{\prime}(t)\right|,\left|\beta^{\prime}(t)\right|: t \in I\right\}+A
$$

and

$$
\int_{g(A)}^{g(N)} \frac{|G(s)|^{(\sigma-1) / \sigma}}{H(|G(s)|)} d s>B^{(\sigma-1) / \sigma}\|k\|_{\sigma}
$$

(A and B are defined by (1.4) and (1.5) respectively). (1.3) assures the existence of such an N.

Lemma 1. For any $u \in E:=C^{1}(I)$, the following two statements hold:
(1) $(d / d t) q(t, u(t))$ exists for a.e. $t \in I$.
(2) If $u_{0}, u_{j} \in E$ and $u_{j} \rightarrow u_{0}$ in E, then

$$
\frac{d}{d t} q\left(t, u_{j}(t)\right) \rightarrow \frac{d}{d t} q\left(t, u_{0}(t)\right) \quad \text { for a.e. } t \in I
$$

Proof. The proof can be found in $[1,3]$.
Lemma 2. Let u be a solution to (2.1). Then
(1) $\alpha(t) \leq u(t) \leq \beta(t)$ on I, and
(2) $\left|u^{\prime}(t)\right| \leq N$ for all $t \in I$.

That is to say, the solution u is also a solution to (1.1).

Proof. We first prove that $u(t) \leq \beta(t)$ on I. Let $y(t)=u(t)-\beta(t)$. Then we have

$$
\begin{equation*}
y(a)=\xi[q(b, u(b))-\beta(b)] \leq 0, \quad y^{\prime}(b) \leq \eta y^{\prime}(a) . \tag{2.2}
\end{equation*}
$$

Assume now that $y(t)>0$ for some $t \in(a, b]$. Then there exists a point $t^{*} \in(a, b]$ such that $y\left(t^{*}\right)$ is the positive maximum value. We can distinguish two cases.

Case (i): $t^{*}<b$. In this case, $y^{\prime}\left(t^{*}\right)=u^{\prime}\left(t^{*}\right)-\beta\left(t^{*}\right)=0$ and there exists a point $t_{1} \in\left[a, t^{*}\right)$ such that $y\left(t_{1}\right)=0$ and $y(t)>0$ in $\left(t_{1}, t^{*}\right]$. Thus, we have

$$
\begin{aligned}
-\left[g\left(\beta^{\prime}(t)\right)\right]+M g\left(\beta^{\prime}(t)\right) & \geq f\left(t, \beta(t), \beta^{\prime}(t)\right)+M g\left(\beta^{\prime}(t)\right) \\
& =-\left[g\left(u^{\prime}(t)\right)\right]^{\prime}+M g\left(u^{\prime}(t)\right) \quad \text { a.e. on }\left[t_{1}, t^{*}\right]
\end{aligned}
$$

(since $q(t, u(t))=\beta(t)$ and $\left|\beta^{\prime}(t)\right| \leq N$ on $\left[t_{1}, t^{*}\right]$), i.e.,

$$
\frac{d}{d t}\left\{e^{-M t}\left[g\left(u^{\prime}(t)\right)-g\left(\beta^{\prime}(t)\right)\right]\right\} \geq 0 \quad \text { a.e. on }\left[t_{1}, t^{*}\right] .
$$

This shows that

$$
e^{-M t}\left[g\left(u^{\prime}(t)\right)-g\left(\beta^{\prime}(t)\right)\right] \leq e^{-M t^{*}}\left[g\left(u^{\prime}\left(t^{*}\right)\right)-g\left(\beta^{\prime}\left(t^{*}\right)\right)\right]=0 \quad \text { on }\left[t_{1}, t^{*}\right],
$$

i.e., $y^{\prime}(t) \leq 0$ on $\left[t_{1}, t^{*}\right]$. Consequently, we get a contradiction: $0=y\left(t_{1}\right) \geq$ $y\left(t^{*}\right)>0$.

Case (ii): $t^{*}=b$. If $y^{\prime}(b)=0$, we can get a contradiction again as in Case (i). If $y^{\prime}(b)>0$, then by (2.2),

$$
\begin{equation*}
y(a)=0, \quad \eta>0 \quad \text { and } \quad y^{\prime}(a)>0 . \tag{2.3}
\end{equation*}
$$

When $y(t)>0$ in $(a, b]$, we easily obtain

$$
\frac{d}{d t}\left\{e^{-M t}\left[g\left(u^{\prime}(t)\right)-g\left(\beta^{\prime}(t)\right)\right]\right\} \geq 0 \quad \text { a.e. on } I,
$$

as in Case (i), i.e.,

$$
e^{-M b}\left[g\left(u^{\prime}(b)\right)-g\left(\beta^{\prime}(b)\right)\right] \geq e^{-M a}\left[g\left(u^{\prime}(a)\right)-g\left(\beta^{\prime}(a)\right)\right] .
$$

Since $u^{\prime}(b)=\eta u^{\prime}(a)$ and $\beta^{\prime}(b) \geq \eta \beta^{\prime}(a)$, we have

$$
\left(\eta^{p-1}-e^{M(b-a)}\right)\left[g\left(u^{\prime}(a)\right)-g\left(\beta^{\prime}(a)\right)\right] \geq 0,
$$

i.e., $y^{\prime}(a)=u^{\prime}(a)-\beta^{\prime}(a) \leq 0$, which contradicts the assumption $y^{\prime}(a)>0$.

When there is a point $t_{4} \in(a, b)$ such that $y\left(t_{4}\right) \leq 0$, it follows from (2.3) that there exists an interval $\left(t_{2}, t_{3}\right), a \leq t_{2}<t_{3} \leq t_{4}$, such that $y(t)>0$ in $\left(t_{2}, t_{3}\right)$ and $y\left(t_{2}\right)=y\left(t_{3}\right)=0$. Therefore, there is a point $t^{* *} \in\left(t_{2}, t_{3}\right)$ such that $y\left(t^{* *}\right)$ is the positive maximum value of $y(t)$ on $\left[t_{2}, t_{3}\right]$. As in Case (i), we can get a contradiction again. This shows that $u(t) \leq \beta(t)$ on I.

In very much the same way, we can prove that $\alpha(t) \leq u(t)$ on I. (1) is thus proved.

The proof of (2) can be found in $[1,2]$. The Nagumo condition is employed only here.

To prove the existence of solutions to problem (2.1), we define a mapping $\Phi: E \rightarrow E$ by

$$
\begin{aligned}
(\Phi u)(t):= & \int_{a}^{t} G\left(\tau e^{M(r-a)}-\int_{a}^{r} e^{M(r-s)}(F u)(s) d s\right) d r \\
& +\xi q(b, u(b))+c
\end{aligned}
$$

for $u \in E$, where the mapping $F: E \rightarrow L_{\sigma}(I)$ is defined by

$$
\begin{align*}
(F u)(t):= & f^{*}\left(t, q(t, u(t)), \frac{d}{d t} q(t, u(t))\right) \tag{2.4}\\
& +M g\left(\frac{d}{d t} q(t, u(t))\right) \quad \forall u \in E
\end{align*}
$$

and

$$
\begin{equation*}
\tau:=\left[e^{M(b-a)}-\eta^{p-1}\right]^{-1} \int_{a}^{b} e^{M(b-s)}(F u)(s) d s \tag{2.5}
\end{equation*}
$$

Obviously, F is well defined, since for any $u \in E$,

$$
\begin{equation*}
|(F u)(t)| \leq M^{*} k(t)+M g(N) \in L_{\sigma}(I) \tag{2.6}
\end{equation*}
$$

where $M^{*}:=\max \{H(s): 0 \leq s \leq N\}$.
Lemma 3. Φ is a completely continuous mapping.
Proof. Let $w(t)=(\Phi u)(t)$. From the definition of Φ, we have for $u \in E$,

$$
w^{\prime}(t)=G\left(\tau e^{M(t-a)}-\int_{a}^{t} e^{M(t-s)}(F u)(s) d s\right) \in C(I)
$$

and there exists an N^{*}, independent of u, such that

$$
|\tau|,\left|w^{\prime}(t)\right|,|w(t)| \leq N^{*} \quad(t \in I)
$$

This shows that $\Phi(E)$ is a bounded subset of E.
Since the set

$$
\left\{\tau e^{M(t-a)}-\int_{a}^{t} e^{M(t-s)}(F u)(s) d s: u \in E\right\}
$$

is bounded and equicontinuous on I, so is the set $\left\{w^{\prime}(t): u \in E\right\}$. By the Arzelà-Ascoli theorem, $\Phi(E)$ is compact in E.

Let $u_{0}, u_{j} \in E$ and $u_{j} \rightarrow u_{0}$ in E. By Lemma 1 and the dominated convergence theorem, we conclude that as $j \rightarrow \infty$,

$$
\begin{aligned}
\tau_{j} & :=\left[e^{M(b-a)}-\eta^{p-1}\right]^{-1} \int_{a}^{b} e^{M(b-s)}\left(F u_{j}\right)(s) d s \\
& \rightarrow\left[e^{M(b-a)}-\eta^{p-1}\right]^{-1} \int_{a}^{b} e^{M(b-s)}\left(F u_{0}\right)(s) d s=: \tau_{0}
\end{aligned}
$$

and hence $\Phi u_{j} \rightarrow \Phi u_{0}$ in E. This shows that Φ is continuous on E. The proof is complete.

From Lemma 3, the Schauder fixed point theorem asserts that Φ has at least one fixed point in E. Let $u \in E$ be a fixed point of Φ. Then

$$
\begin{aligned}
u(t)= & \int_{a}^{t} G\left(\tau e^{M(r-a)}-\int_{a}^{r} e^{M(r-s)}\left[f^{*}\left(s, q(s, u(s)), \frac{d}{d s} q(s, u(s))\right)\right.\right. \\
& \left.\left.+M g\left(\frac{d}{d s} q(s, u(s))\right)\right] d s\right) d r+\xi q(b, u(b))+c \quad \text { on } I,
\end{aligned}
$$

where τ is determined by (2.5). It is easy to see that the fixed point u is a solution to (2.1). Of course, the u is also a solution to (1.1).

Theorem 1 is proved.

References

[1] W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. 62 (1995), 283-291.
[2] J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tôhoku Math. J. 47 (1995), 327-344.
[3] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221-235.

Daqing Jiang
Department of Mathematics
Northeast Normal University
Changchun 130024, P.R. China

Junyu Wang
Department of Mathematics
Jilin University
Changchun 130023, P.R. China

[^0]: 1991 Mathematics Subject Classification: 34B15, 34B10.
 Key words and phrases: generalized periodic boundary value problem, p-Laplacian, upper and lower solutions, Carathéodory function, Nagumo condition.

 The second author is supported by NNSF of China.

