A generalized periodic boundary value problem for the one-dimensional *p*-Laplacian

by DAQING JIANG and JUNYU WANG (Changchun)

Abstract. The generalized periodic boundary value problem -[g(u')]' = f(t, u, u'), a < t < b, with $u(a) = \xi u(b) + c$ and $u'(b) = \eta u'(a)$ is studied by using the generalized method of upper and lower solutions, where $\xi, \eta \ge 0$, a, b, c are given real numbers, $g(s) = |s|^{p-2}s, p > 1$, and f is a Carathéodory function satisfying a Nagumo condition. The problem has a solution if and only if there exists a lower solution α and an upper solution β with $\alpha(t) \le \beta(t)$ for $a \le t \le b$.

1. Introduction. The present paper is a continuation of the papers [1] and [2].

In this paper, we study the following generalized periodic boundary value problem for the one-dimensional p-Laplacian:

(1.1)
$$\begin{cases} -[g(u')]' = f(t, u, u'), & t \in I := [a, b], \\ u(a) = \xi u(b) + c, & u'(b) = \eta u'(a), \end{cases}$$

by using the generalized method of upper and lower solutions. Here $\xi, \eta \ge 0$, a, b, c are given real numbers, $g(s) = |s|^{p-2}s$, p > 1, and f(t, u, v) is a Carathéodory function satisfying a Nagumo condition.

We name the problem a *generalized periodic boundary value problem* since the periodic boundary value problem is its particular case.

We call a function $\alpha : I \to \mathbb{R}$ a *lower solution* to problem (1.1) if $\alpha \in C^1(I), g(\alpha') \in AC(I)$, and

$$\begin{cases} -[g(\alpha'(t))]' \le f(t, \alpha(t), \alpha'(t)) & \text{for a.e. } t \in I, \\ \alpha(a) = \xi \alpha(b) + c, \quad \alpha'(b) \le \eta \alpha'(a), \end{cases}$$

where AC(I) is the set of all absolutely continuous functions defined on I.

¹⁹⁹¹ Mathematics Subject Classification: 34B15, 34B10.

Key words and phrases: generalized periodic boundary value problem, p-Laplacian, upper and lower solutions, Carathéodory function, Nagumo condition.

The second author is supported by NNSF of China.

^[265]

Similarly, a function $\beta : I \to \mathbb{R}$ is called an *upper solution* to (1.1) if $\beta \in C^1(I), \ g(\beta') \in AC(I)$, and

$$\begin{cases} -[g(\beta'(t))]' \ge f(t,\beta(t),\beta'(t)) & \text{for a.e. } t \in I, \\ \beta(a) = \xi\beta(b) + c, \quad \beta'(b) \ge \eta\beta'(a). \end{cases}$$

A function $u: I \to \mathbb{R}$ is said to be a *solution* to (1.1) if it is both a lower solution and an upper solution to (1.1).

We call a function $f: I \times \mathbb{R}^2 \to \mathbb{R}$ a *Carathéodory function* if the following two conditions are satisfied:

(1) for almost all $t \in I$, the function $(u, v) \to f(t, u, v)$ is continuous on \mathbb{R}^2 , and

(2) for every $(u, v) \in \mathbb{R}^2$, the function $t \to f(t, u, v)$ is measurable on I.

The function f is said to satisfy a Nagumo condition on the set

 $D := \{(t, u, v) : t \in I, \ \alpha(t) \le u \le \beta(t), \ v \in \mathbb{R}\}$

for given $\alpha, \beta \in C(I)$ with $\alpha(t) \leq \beta(t)$ on I if there exists a positive measurable function $k \in L_{\sigma}(I), 1 \leq \sigma \leq \infty$, and a positive continuous function $H \in C(\mathbb{R}_+), \mathbb{R}_+ := [0, \infty)$ such that

(1.2)
$$|f(t, u, v)| \le k(t)H(|v|) \quad \text{a.e. on } D$$

and

(1.3)
$$\int_{g(A)}^{\infty} \frac{|G(s)|^{(\sigma-1)/\sigma}}{H(|G(s)|)} \, ds > B^{(\sigma-1)/\sigma} ||k||_{\sigma},$$

where G is the function inverse to g,

(1.4)
$$A := \max\{|\beta(a) - \alpha(b)|, |\beta(b) - \alpha(a)|\}/(b-a),$$

(1.5) $B := \max\{\beta(t) : t \in I\} - \min\{\alpha(t) : t \in I\}$

and

$$||k||_{\sigma} := \begin{cases} \left(\int_{a}^{b} |k(s)|^{\sigma} \, ds \right)^{1/\sigma} & \text{if } \sigma \in [1, \infty), \\ \text{ess sup}\{|k(t)| : t \in I\} & \text{if } \sigma = \infty. \end{cases}$$

Here we set $B^0 := 1$ and $|G(s)|^0 := 1$.

The main result of this paper is as follows.

THEOREM 1. Assume that f is a Carathéodory function satisfying a Nagumo condition. Then a necessary and sufficient condition for the problem (1.1) to have a solution u is that there exists a lower solution α and an upper solution β with $\alpha(t) \leq \beta(t)$ on I. Moreover,

$$\alpha(t) \le u(t) \le \beta(t)$$
 and $|u'(t)| \le N$ on I .

where N is a constant depending only on α , β , g, H and k.

266

Obviously, Theorem 1 extends and improves Theorem 1 of [1] and Theorem 2.4 of [2].

2. Proof of Theorem 1. The necessity part is obvious. We prove the sufficiency.

Now assume that α and β are lower and upper solutions to problem (1.1), respectively, and $\alpha(t) \leq \beta(t)$ on *I*. To prove the existence of solutions (1.1), we consider the modified problem

(2.1)
$$\begin{cases} -[g(u')]' + Mg(u') \\ = f^* \left(t, q(t, u), \frac{d}{dt}q(t, u) \right) + Mg\left(\frac{d}{dt}q(t, u)\right), \quad t \in I, \\ u(a) = \xi q(b, u(b)) + c, \quad u'(b) = \eta u'(a), \end{cases}$$

where M is a positive number such that $e^{M(b-a)} > \eta^{p-1}$,

$$q(t,u) := \begin{cases} \alpha(t) & \text{if } u < \alpha(t), \ t \in I, \\ u & \text{if } \alpha(t) \le u \le \beta(t), \ t \in I, \\ \beta(t) & \text{if } u > \beta(t), \ t \in I, \end{cases}$$

and

$$f^{*}(t, u, v) := \begin{cases} f(t, u, -N) & \text{if } v < -N, \\ f(t, u, v) & \text{if } |v| \le N, \\ f(t, u, N) & \text{if } v > N. \end{cases}$$

Here we choose N so large that

$$N > \max\{|\alpha'(t)|, |\beta'(t)| : t \in I\} + A$$

and

$$\int_{g(A)}^{g(N)} \frac{|G(s)|^{(\sigma-1)/\sigma}}{H(|G(s)|)} \, ds > B^{(\sigma-1)/\sigma} \|k\|_{\sigma}$$

(A and B are defined by (1.4) and (1.5) respectively). (1.3) assures the existence of such an N.

LEMMA 1. For any $u \in E := C^1(I)$, the following two statements hold:

- (1) (d/dt)q(t, u(t)) exists for a.e. $t \in I$.
- (2) If $u_0, u_i \in E$ and $u_i \to u_0$ in E, then

$$\frac{d}{dt}q(t,u_j(t)) \to \frac{d}{dt}q(t,u_0(t)) \quad \text{for a.e. } t \in I$$

Proof. The proof can be found in [1, 3].

LEMMA 2. Let u be a solution to (2.1). Then

- (1) $\alpha(t) \leq u(t) \leq \beta(t)$ on *I*, and
- (2) $|u'(t)| \leq N$ for all $t \in I$.

That is to say, the solution u is also a solution to (1.1).

Proof. We first prove that $u(t) \leq \beta(t)$ on *I*. Let $y(t) = u(t) - \beta(t)$. Then we have

(2.2)
$$y(a) = \xi[q(b, u(b)) - \beta(b)] \le 0, \quad y'(b) \le \eta y'(a).$$

Assume now that y(t) > 0 for some $t \in (a, b]$. Then there exists a point $t^* \in (a, b]$ such that $y(t^*)$ is the positive maximum value. We can distinguish two cases.

Case (i): $t^* < b$. In this case, $y'(t^*) = u'(t^*) - \beta(t^*) = 0$ and there exists a point $t_1 \in [a, t^*)$ such that $y(t_1) = 0$ and y(t) > 0 in $(t_1, t^*]$. Thus, we have

$$-[g(\beta'(t))] + Mg(\beta'(t)) \ge f(t,\beta(t),\beta'(t)) + Mg(\beta'(t))$$

= -[g(u'(t))]' + Mg(u'(t)) a.e. on [t₁,t^{*}]

(since $q(t, u(t)) = \beta(t)$ and $|\beta'(t)| \le N$ on $[t_1, t^*]$), i.e.,

$$\frac{d}{dt} \{ e^{-Mt} [g(u'(t)) - g(\beta'(t))] \} \ge 0 \quad \text{a.e. on } [t_1, t^*].$$

This shows that

$$e^{-Mt}[g(u'(t)) - g(\beta'(t))] \le e^{-Mt^*}[g(u'(t^*)) - g(\beta'(t^*))] = 0$$
 on $[t_1, t^*]$,
i.e., $y'(t) \le 0$ on $[t_1, t^*]$. Consequently, we get a contradiction: $0 = y(t_1) \ge y(t^*) > 0$.

Case (ii): $t^* = b$. If y'(b) = 0, we can get a contradiction again as in Case (i). If y'(b) > 0, then by (2.2),

(2.3)
$$y(a) = 0, \quad \eta > 0 \text{ and } y'(a) > 0.$$

When y(t) > 0 in (a, b], we easily obtain

$$\frac{d}{dt} \{ e^{-Mt} [g(u'(t)) - g(\beta'(t))] \} \ge 0 \quad \text{ a.e. on } I.$$

as in Case (i), i.e.,

$$e^{-Mb}[g(u'(b)) - g(\beta'(b))] \ge e^{-Ma}[g(u'(a)) - g(\beta'(a))].$$

Since $u'(b) = \eta u'(a)$ and $\beta'(b) \ge \eta \beta'(a)$, we have

$$(\eta^{p-1} - e^{M(b-a)})[g(u'(a)) - g(\beta'(a))] \ge 0,$$

i.e., $y'(a) = u'(a) - \beta'(a) \le 0$, which contradicts the assumption y'(a) > 0.

When there is a point $t_4 \in (a, b)$ such that $y(t_4) \leq 0$, it follows from (2.3) that there exists an interval (t_2, t_3) , $a \leq t_2 < t_3 \leq t_4$, such that y(t) > 0 in (t_2, t_3) and $y(t_2) = y(t_3) = 0$. Therefore, there is a point $t^{**} \in (t_2, t_3)$ such that $y(t^{**})$ is the positive maximum value of y(t) on $[t_2, t_3]$. As in Case (i), we can get a contradiction again. This shows that $u(t) \leq \beta(t)$ on I.

In very much the same way, we can prove that $\alpha(t) \leq u(t)$ on *I*. (1) is thus proved.

The proof of (2) can be found in [1, 2]. The Nagumo condition is employed only here.

To prove the existence of solutions to problem (2.1), we define a mapping $\varPhi: E \to E$ by

$$(\Phi u)(t) := \int_{a}^{t} G\left(\tau e^{M(r-a)} - \int_{a}^{r} e^{M(r-s)} (Fu)(s) \, ds\right) dr + \xi q(b, u(b)) + c$$

for $u \in E$, where the mapping $F : E \to L_{\sigma}(I)$ is defined by

(2.4)
$$(Fu)(t) := f^*\left(t, q(t, u(t)), \frac{d}{dt}q(t, u(t))\right) + Mg\left(\frac{d}{dt}q(t, u(t))\right) \quad \forall u \in E$$

and

(2.5)
$$\tau := [e^{M(b-a)} - \eta^{p-1}]^{-1} \int_{a}^{b} e^{M(b-s)} (Fu)(s) \, ds$$

Obviously, F is well defined, since for any $u \in E$,

(2.6) $|(Fu)(t)| \le M^*k(t) + Mg(N) \in L_{\sigma}(I),$

where $M^* := \max\{H(s) : 0 \le s \le N\}.$

LEMMA 3. Φ is a completely continuous mapping.

Proof. Let $w(t) = (\Phi u)(t)$. From the definition of Φ , we have for $u \in E$,

$$w'(t) = G\left(\tau e^{M(t-a)} - \int_{a}^{t} e^{M(t-s)} (Fu)(s) \, ds\right) \in C(I)$$

and there exists an N^* , independent of u, such that

$$|\tau|, |w'(t)|, |w(t)| \le N^* \quad (t \in I).$$

This shows that $\Phi(E)$ is a bounded subset of E.

Since the set

$$\left\{\tau e^{M(t-a)} - \int_{a}^{t} e^{M(t-s)}(Fu)(s) \, ds : u \in E\right\}$$

is bounded and equicontinuous on I, so is the set $\{w'(t) : u \in E\}$. By the Arzelà–Ascoli theorem, $\Phi(E)$ is compact in E.

Let $u_0, u_j \in E$ and $u_j \to u_0$ in E. By Lemma 1 and the dominated convergence theorem, we conclude that as $j \to \infty$,

$$\tau_j := [e^{M(b-a)} - \eta^{p-1}]^{-1} \int_a^b e^{M(b-s)} (Fu_j)(s) \, ds$$
$$\to [e^{M(b-a)} - \eta^{p-1}]^{-1} \int_a^b e^{M(b-s)} (Fu_0)(s) \, ds =: \tau_0,$$

and hence $\Phi u_j \to \Phi u_0$ in *E*. This shows that Φ is continuous on *E*. The proof is complete.

From Lemma 3, the Schauder fixed point theorem asserts that Φ has at least one fixed point in E. Let $u \in E$ be a fixed point of Φ . Then

$$\begin{aligned} u(t) &= \int_{a}^{t} G\bigg(\tau e^{M(r-a)} - \int_{a}^{r} e^{M(r-s)} \bigg[f^*\bigg(s, q(s, u(s)), \frac{d}{ds}q(s, u(s))\bigg) \\ &+ Mg\bigg(\frac{d}{ds}q(s, u(s))\bigg)\bigg] \, ds\bigg) \, dr + \xi q(b, u(b)) + c \quad \text{on } I, \end{aligned}$$

where τ is determined by (2.5). It is easy to see that the fixed point u is a solution to (2.1). Of course, the u is also a solution to (1.1).

Theorem 1 is proved.

References

- W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. 62 (1995), 283–291.
- [2] J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tôhoku Math. J. 47 (1995), 327–344.
- [3] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221–235.

Daqing Jiang	Junyu Wang
Department of Mathematics	Department of Mathematics
Northeast Normal University	Jilin University
Changchun 130024, P.R. China	Changchun 130023, P.R. China

Reçu par la Rédaction le 5.6.1996