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Classifications and existence of nonoscillatory solutions of

second order nonlinear neutral differential equations

by Wantong Li (Zhangye)

Abstract. A class of neutral nonlinear differential equations is studied. Various clas-
sifications of their eventually positive solutions are given. Necessary and/or sufficient
conditions are then derived for the existence of these eventually positive solutions. The
derivations are based on two fixed point theorems as well as the method of successive
approximations.

1. Introduction. Neutral nonlinear differential equations of the form

(1) (r(t)(x(t) − p(t)x(t − τ))′)′ + f(t, x(t − δ)) = 0

have been studied by a number of authors [2]–[5]. In particular, Lu in [4]
studied the equation

(x(t) − p(t)x(t − τ))′′ + f(t, x(t − δ)) = 0

and obtained classifications of its nonoscillatory solutions as well as neces-
sary and/or sufficient conditions for their existence.

Here, we will assume that τ is a positive number, δ is a nonnegative
number, p(t) ∈ C([t0,∞), R+) and 0 ≤ p(t) ≤ p < 1 for t ≥ t0 and r(t) ∈
C([t0,∞), (0,∞)). We further assume that for any t ≥ t0, f is continuous
as a function of x ∈ R and xf(t, x) > 0 for x 6= 0, t ≥ t0.

In this paper we consider the classification of all nonoscillatory solutions
of (1) in the cases

∞\
t0

1

r(u)
du < ∞ and

∞\
t0

1

r(u)
du = ∞

and give necessary and/or sufficient conditions for their existence.
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Hereafter, the term solution of (1) is always used to denote a real function
x(t) satisfying (1) for which supt≥t1

|x(t)| > 0 for any t1 ≥ t0. We assume
that (1) always has such solutions. A solution of (1) is called nonoscillatory

if it is eventually positive or eventually negative. Otherwise it is called os-

cillatory . Equation (1) is called oscillatory if all its solutions are oscillatory.
We use the functions R(s, t) and R(s) defined by

R(s, t) =

t\
s

1

r(u)
du and R(s) =

∞\
s

1

r(u)
du,

where s ≥ t0. We also let R0 = limt→∞ R(t0, t).

We shall say that condition (H) is met if the following hold:

(H1) xf(t, x) > 0 for x 6= 0, t ≥ t0, and f(t, x1) ≥ f(t, x2) for x1 ≥ x2

> 0 or x1 ≤ x2 < 0, t ≥ t0;

(H2) 0 ≤ p(t) < p < 1 for t ≥ t0.

Let x(t) be a solution of (1). We will define a function y(t) associated
with x(t) by

(2) y(t) = x(t) − p(t)x(t − τ), t ≥ t0.

Note that if x(t) is eventually positive, then the fact that

(r(t)y′(t))′ = −f(n, x(t − τ)) < 0

for all large t implies that y′(t) is of constant positive or constant negative
sign eventually. This fact, in turn, implies that y(t) is eventually positive or
eventually negative.

In the following sections, we first give some lemmas which are interesting
in their own right and then discuss the existence and asymptotic behavior
of nonoscillatory solutions of the differential equation (1) for R0 < ∞ and
R0 = ∞ respectively.

2. Preparatory lemmas. In this section, we will give some lemmas
which are important in proving our results in Sections 3 and 4.

Lemma 1. Suppose that (H) holds. Let x(t) be an eventually positive (neg-

ative) solution of (1) and let y(t) be defined by (2). Then y′(t) is eventually

of constant sign.

Lemma 2. Suppose that (H) holds. Let x(t) be an eventually positive

(negative) solution of (1) and let y(t) be defined by (2).

(i) If R0 = ∞ and limt→∞ x(t) = 0, then y(t) is eventually increasing

(decreasing) and negative (positive) and limt→∞ y(t) = 0.
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(ii) If lim supt→∞ x(t) > 0 (resp. lim supt→∞(−x(t)) > 0), then y(t) is

eventually positive (respectively negative).

P r o o f. (i) Let x(t) be an eventually positive solution of (1). If
limt→∞ x(t) = 0, then limt→∞ y(t) = 0. Suppose to the contrary that
y(t) > 0 for all large t. Then y′(t) < 0 for all large t. From (r(t)y′(t))′ < 0,
we obtain

(3) y(t) ≤ y(s) + r(s)y′(s)

t\
s

1

r(u)
du = y(s) + r(s)y′(s)R(s, t)

for t ≥ s, where s ≥ t0 such that x(t) > 0 for t ≥ s. Since r(t)y′(t) is
eventually decreasing, we can choose t1 so large that r(t1)y

′(t1) < 0, thus,
r(s)y′(s) < r(t1)y

′(t1) = −a1 for s ≥ t1. Therefore

(4) y(t) ≤ y(s) − a1R(s, t), a1 > 0.

If R0 = ∞, taking the limit as t → ∞ on both sides of the last inequality
and in view of limt→∞ y(t) = 0, we see that

y(s) ≥ ∞,

which is a contradiction.
(ii) Let x(t) be an eventually positive solution of (1) and lim supt→∞ x(t)

> 0. Then y(t) > 0. If not, we have y(t) < 0 for all large t. If x(t) is
unbounded, then there exists a sequence {tk} which tends to infinity and is
such that

x(tk) = max
t≤tk

x(t)

and limk→∞ x(tk) = ∞. Then, from (2), we have

y(tk) = x(tk) − p(tk)x(tk − τ) ≥ x(tk)(1 − p).

From the above inequality we obtain limk→∞ y(tk) = ∞. This is a contra-
diction. If x(t) is bounded, then there is a sequence {tk} which tends to
infinity and is such that

lim
k→∞

x(tk) = lim sup
t→∞

x(t) = L > 0.

Since limk→∞ x(tk − τ) ≤ L, we have

0 ≥ lim
k→∞

y(tk) ≥ L(1 − p) > 0.

This is also a contradiction and the proof is complete.

Lemma 3. Suppose that (H) holds. Let x(t) be an eventually positive

(negative) solution of (1) and let y(t) be defined by (2). If R0 = ∞, then

y′(t) > 0 (respectively y′(t) < 0) for all large t.

P r o o f. Suppose x(t) is an eventually positive solution of (1) and let y(t)
be defined by (2). We assert that y′(t) > 0 for all large t. If limt→∞ x(t) = 0,
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in view of part (i) of Lemma 2, the conclusion holds. If lim supt→∞ x(t)
> 0, by part (ii) of Lemma 2, we have y(t) > 0 for all large t. Suppose
to the contrary that y′(t) is eventually negative. Note that in view of (1),
(r(t)y′(t))′ = −f(t, x(t − δ)) < 0 for all large t. Thus there is t1 ≥ t0 such
that y(t) > 0, y′(t) < 0 and (r(t)y′(t))′ < 0 for all t ≥ t1. Then

y(t) ≤ y(t1) + r(t1)y
′(t1)

t\
t1

1

r(s)
ds → −∞,

which is a contradiction. The proof is complete.

The following lemma is independent of equation (1), and is obtained by
Lu in [4].

Lemma 4. Suppose that 0 ≤ p(t) ≤ p < 1, x(t) > 0 (resp. x(t) < 0) and

y(t) is defined by (2).

(i) If limt→∞ p(t) = p0 (with 0 ≤ p0 < 1) and limt→∞ y(t) = a (with

|a| < ∞), then limt→∞ x(t) = a/(1 − p0).
(ii) If limt→∞ y(t)=∞ (resp. −∞), then limt→∞ x(t)=∞ (resp. −∞).

3. The case R0 < ∞. We have already remarked that if x(t) is an
eventually positive solution of (1), then y(t) and y′(t) are also of constant
sign eventually. These sign regularities provide additional asymptotic infor-
mation as will be seen in the following two lemmas.

Lemma 5. Suppose that (H) holds. If x(t) is a nonoscillatory solution

of (1), then y(t) defined by (2) is eventually increasing or decreasing and

limt→∞ y(t) = L exists, where L is a finite constant.

P r o o f. Suppose x(t) is an eventually positive solution of (1). If
limt→∞ x(t) = 0, then limt→∞ y(t) = 0. If lim supt→∞ x(t) > 0, by part
(ii) of Lemma 2, we have y(t) > 0 for all large t. Thus, there exists t1 ≥ t0
such that x(t − δ) > 0 and y(t) > 0 for t ≥ t1. It follows from (1) that
(r(t)y′(t))′ < 0, that is,

(5) y(t) < y(s) + r(s)y′(s)

t\
s

du

r(u)

for t ≥ s, s ≥ t1. If there exists a t2 ≥ t1 such that y′(t2) ≤ 0, then it follows
from (5) that y(t) < y(s) for t > s ≥ t2. This means that y(t) is eventually
decreasing. If y(t) is eventually decreasing, it follows from y(t) > 0 that
limt→∞ y(t) = L exists and |L| < ∞. If there does not exist an s ≥ t1 such
that y′(s) ≤ 0, then y′(s) > 0 for all s ≥ t1. This means y(t) is eventually
increasing. From (5), we have

(6) y(t) < y(s) + r(s)y′(s)R(s, t).
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Since R0 < ∞ and y′(t) > 0, we see that y(t) is bounded. Therefore
limt→∞ y(t) = L exists and |L| < ∞.

Similarly, we can discuss the case when x(t) is an eventually negative
solution of (1). The proof is complete.

Lemma 6. Suppose that (H) holds. If x(t) is a nonoscillatory solution of

(1) and y(t) is defined by (2), then there exist two positive constants a1, a2

and t1 ≥ t0 such that either

a1R(t) ≤ y(t) ≤ a2 or − a2 ≤ y(t) ≤ −a1R(t)

for all t ≥ t1.

P r o o f. Let x(t) be an eventually positive solution of (1). By Lemma 1,
y(t) is eventually of constant sign. We have four cases to consider:

(i) y(t) > 0 and y′(t) > 0 eventually;
(ii) y(t) > 0 and y′(t) < 0 eventually;
(iii) y(t) < 0 and y′(t) > 0 eventually;
(iv) y(t) < 0 and y′(t) < 0 eventually.

We shall only consider cases (i) and (ii) in detail, since the other two
cases are similar.

(i) If y(t) is eventually increasing, then (6) holds. From Lemma 5, there
exists a positive constant a2 such that y(t) ≤ a2. Since we are assuming
y(t) is positive and increasing and since R(t) → 0 as t → ∞, there exists a
positive constant a1 and t1 ≥ t0 such that y(t) ≥ a1R(t) for all t ≥ t1.

(ii) If y(t) is eventually decreasing, then, from (6),

y(s) ≥ y(t) − r(s)y′(s)R(s, t).

By Lemma 5, limt→∞ y(t) = L ≥ 0. Taking the limit as t → ∞ on both
sides of the last inequality, we can see that

y(s) ≥ L − r(s)y′(s)R(s).

Since r(t)y′(t) is eventually decreasing, we can choose t1 so large that
r(t1)y

′(t1) < 0; then r(s)y′(s) ≤ r(t1)y
′(t1) = −a1 for all s ≥ t1. There-

fore

y(s) ≥ a1R(s)

for s ≥ t1, where a1 > 0 is independent of s. Changing s to t, we can see
that

y(t) ≥ a1R(t), a1 > 0

for t ≥ t1.
Similarly, we can prove the case when x(t) is an eventually negative

solution of (1). This completes the proof.

The following result is one of the main classification theorems.
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Theorem 1. Suppose that (H) holds and that limt→∞ p(t) = p0, where

0 ≤ p0 < 1. Then any nonoscillatory solution of (1) must belong to one of

the following four types:

S(b, a, c): x(t) → b =
a

1 − p0
6= 0, y(t) → a 6= 0,

r(t)y′(t) → c (t → ∞),

S(b, a,∞): x(t) → b =
a

1 − p0
6= 0, y(t) → a 6= 0,

r(t)y′(t) → ±∞ (t → ∞),

S(0, 0, c): x(t) → 0, y(t) → 0, r(t)y′(t) → c 6= 0 (t → ∞),

S(0, 0,∞): x(t) → 0, y(t) → 0, r(t)y′(t) → ±∞ (t → ∞),

where a, b, c are some finite constants.

P r o o f. Suppose that x(t) is a nonoscillatory solution of (1). By Lemmas
1 and 5, y(t) is eventually of constant sign and limt→∞ y(t) = L, where L
is a finite constant. So there are only two possibilities: limt→∞ y(t) = a 6= 0
or limt→∞ y(t) = 0, where a is a finite constant. According to Lemma 4,
limt→∞ x(t) = b 6= 0 or limt→∞ x(t) = 0.

In addition, by our assumption that xf(t, x) > 0 for x 6= 0 we see from
(1) that r(t)y′(t) is eventually decreasing or increasing. Again there are only
two possibilities: limt→∞ r(t)y′(t) = c or limt→∞ r(t)y′(t) = ±∞, where c is
a finite constant.

From the above discussion, we see that x(t) must belong to one of the
four types as stated, except that we have not yet shown that for the case
S(0, 0, c), the constant c 6= 0. We do this next.

Suppose x(t) is a nonoscillatory solution of (1) which belongs to S(0, 0, c),
that is, limt→∞ x(t) = 0, limt→∞ y(t) = 0, and limt→∞ r(t)y′(t) = c. Then
c 6= 0. In fact, consider functions y(t) and R(t). From our assumption, it is
easy to see that

lim
t→∞

y(t) = 0, lim
t→∞

R(t) = 0, R′(t) < 0,

and

lim
t→∞

y′(t)

R′(t)
= lim

t→∞
−r(t)y′(t) = −c.

By l’Hopital’s theorem, limt→∞(y(t)/R(t)) exists, and

lim
t→∞

y(t)

R(t)
= lim

t→∞

y′(t)

R′(t)
= −c.

If y(t) is eventually positive, then, by Lemma 6, there exist two positive
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constants a1 and a2 such that a1R(t) ≤ y(t) ≤ a2. Thus y(t)/R(t) ≥ a1;
that is, a1 ≤ −c. It follows that c 6= 0. If y(t) is eventually negative, then
by Lemma 6, there exist two positive constants a1 and a2 such that −a2 ≤
y(t) ≤ −a1R(t). Thus y(t)/R(t) ≤ −a1, which means −c ≤ −a1. Once more
it follows that c 6= 0, which completes the proof.

Next we derive two existence theorems.

Theorem 2. Assume that (H) holds and limt→∞(R(t− τ)/R(t)) = 1. A

necessary and sufficient condition for (1) to have a nonoscillatory solution

x(t) which belongs to S(0, 0, c) is that

(7)

∞\
t0

|f(t, λR(t − δ))| dt < ∞

for some λ 6= 0.

P r o o f. Necessity . Let x(t) be any nonoscillatory positive solution of
(1) which belongs to S(0, 0, c), i.e., limt→∞ x(t) = 0, limt→∞ y(t) = 0 and
limt→∞ r(t)y′(t) = c 6= 0. Without loss of generality we may assume that
c < 0. Since r(t)y′(t) is monotone, there exist two positive constants λ1, λ2

and t1 ≥ t0 such that −λ1 ≤ r(t)y′(t) ≤ −λ2 for t ≥ t1. It follows that

−λ1R(t, s) ≤ y(s) − y(t) ≤ −λ2R(t, s)

for s > t, t ≥ t1. Let s → ∞; then −λ1R(t) ≤ −y(t) ≤ −λ2R(t). That is,
λ2R(t) ≤ y(t) ≤ λ1R(t). On the other hand, by (1),

r(t)y′(t) = r(t1)y
′(t1) −

t\
t1

f(s, x(s − δ)) ds.

Since limt→∞ r(t)y′(t) = c < 0, we have

∞\
t1

|f(s, x(s − δ))| ds < ∞.

Furthermore, since (H) holds, by y(t) ≤ x(t), we have

f(s, x(s − δ)) ≥ f(s, y(s − δ)) ≥ f(s, λ2R(s − δ)).

This means that
∞\
t1

|f(s, λ2R(s − δ))| ds < ∞.

Sufficiency . Suppose that (7) holds for λ > 0. A similar argument can be
applied if λ < 0. Since limt→∞(R(t−τ)/R(t)) = 1, we may choose p < A < 1
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and t1 ≥ t0 such that p(t)R(t − τ)/R(t) ≤ A and

(8)

∞\
t1

f(s, λR(s − τ)) ds < a(1 − A),

where a = λ/2. Consider the equation

x(t) = p(t)x(t − τ) + R(t)
[

(1 − A)a +

t\
t1

f(s, x(s − δ)) ds
]

(9)

+

∞\
t

R(s)f(s, x(s − δ)) ds

for t ≥ t1 + max{δ, τ}. It is easy to see that a solution of (9) must also be
a solution of (1). We shall show that (9) has a nonoscillatory solution x(t)
which belongs to S(0, 0, c) by means of the method of successive approxima-
tions. Consider the sequence {xk(t)} of successive approximating sequences
defined as follows:

x1(t) = 0, t0 ≤ t ≤ t1,

xi+1(t) = (Fxi)(t), t ≥ t1, i = 1, 2, . . . ,

where F is defined by

(Fx)(t) = p(t)x(t − τ) + R(t)
[

(1 − A)a +

t\
t1

f(s, x(s − δ)) ds
]

(10)

+

∞\
t

R(s)f(s, x(s − δ)) ds

for t ≥ t1 + max{δ, τ}, and (Fx)(t) = (Fx)(t1 + max{δ, τ}) for t1 ≤ t ≤
t1 + max{δ, τ}. In view of (H1), it is easy to see that

0 ≤ xi(t) ≤ xi+1(t), t ≥ t1, i = 1, 2, . . .

On the other hand,

x2(t) = (Fx1)(t) = a(1 − A)R(t) ≤ 2aR(t), t ≥ t1,

and inductively, we have

(Fxi)(t) ≤ 2p(t)aR(t − τ) + (1 − A)aR(t) + (1 − A)aR(t)

≤ 2AaR(t) + 2(1 − A)aR(t) = 2aR(t)

for i ≥ 2. Thus, by means of Lebesgue’s dominated convergence theorem, we
see that Fx = x. Furthermore, it is clear that x(t), and hence its associated
function y(t), converges to zero (since R(t) does). Finally, in view of (9), we
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see that

−(1 − A)a > r(t)y′(t) = − (1 − A)a −

t\
t1

f(s, x(s − δ)) ds

> − (1 − A)a −

t\
t1

f(s, λR(s − δ)) ds

> − (1 − A)a − (1 − A)a = −2(1 − A)a,

which implies limt→∞ r(t)y′(t) = c 6= 0 as required. The proof is complete.

Theorem 3. Assume that (H) holds and that limt→∞ p(t) = p0, where

0 ≤ p0 < 1. A necessary and sufficient condition for (1) to have a nonoscil-

latory solution x(t) which belongs to S(b, a, c) or S(b, a,∞) is that

(11)

∞\
t2

1

r(s)

s\
t1

|f(u, λ)| du ds < ∞

for some λ 6= 0 and t2 ≥ t1 ≥ t0.

P r o o f. Necessity . Let x(t) be any nonoscillatory positive solution of
(1) such that limt→∞ x(t) = b > 0. By (2), we have limt→∞ y(t) = a =
b(1−p0) > 0, which means that y(t) is eventually positive and monotonically
tends to a. Thus there exist two positive constants c1, c2 and t1 ≥ t0 such
that c1 ≤ y(t) ≤ c2 for t ≥ t1. It follows from (1) that

y(t) = y(s) + r(t1)y
′(t1)

t\
s

1

r(u)
du −

t\
s

1

r(u)

u\
t1

f(v, x(v − δ)) dv du.

Taking the limit as t → ∞ on both sides of the last equality, we obtain

a = y(s) + r(t1)y
′(t1)

∞\
s

1

r(u)
du −

∞\
s

1

r(u)

u\
t1

f(v, x(v − δ)) dv du.

This means that

(12) 0 ≤

∞\
s

1

r(u)

u\
t1

f(v, x(v − δ)) dv du < ∞.

By (H), we have f(t, c1) ≤ f(t, y(t−δ)) ≤ f(t, x(t−δ)). It follows from (12)
that

∞\
s

1

r(u)

u\
t1

f(v, c1) dv du < ∞.

Sufficiency . Suppose that (11) holds for λ > 0. A similar argument can
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be applied if λ < 0. Choose t1 ≥ t0 so large that

(13)

∞\
s

1

r(u)

u\
t1

f(v, λ) dv du < (1 − p)a,

where a = λ/2. Consider the equation

(14) x(t) = p(t)x(t − τ) + (1 − p)a +

∞\
t

1

r(u)

u\
t1

f(v, x(v − δ)) dv du.

It is easy to verify that a solution of (14) must also be a solution of (1).
Consider the Banach space Φ of all bounded real functions x(t) with norm
supt≥t1

|x(t)|, endowed with the usual pointwise ordering ≤: for x, y ∈ Φ,
x ≤ y is equivalent to x(t) ≤ y(t) for t ≥ t1. Then Φ is partially ordered.
Define a subset Ω of Φ as follows:

Ω = {x ∈ Φ : (1 − p)a ≤ x(t) ≤ 2a, t ≥ t1}.

For any subset B ⊂ Ω, it is obvious that inf B ∈ Ω and supB ∈ Ω. We also
define an operator F : Ω → Φ as

(Fx)(t) = p(t)x(t − τ) + (1 − p)a +

∞\
t

1

r(u)

u\
t1

f(v, x(v − δ)) dv du, t ≥ t1.

The mapping F satisfies the assumptions of Knaster’s fixed point theo-
rem [1]. Namely, it satisfies the following:

(i) F maps Ω into itself. Indeed, if x ∈ Ω, by (13), we have

(1 − p)a ≤ (Fx)(t) ≤ 2p(t)a + (1 − p)a + (1 − p)a ≤ 2pa + 2(1 − p)a = 2a.

(ii) By (H), F is nondecreasing. That is, for any x, y ∈ Ω, x ≤ y implies
that Fx ≤ Fy.

By Knaster’s fixed point theorem [1], there exists an x ∈ Ω such that
Fx = x, that is, x(t) is a nonoscillatory solution of (1) which belongs to
S(b, a, c) or S(b, a,∞). Note that b 6= 0. Since x ∈ Ω and by (2) and
Lemma 4, limt→∞ y(t) = a and limt→∞ x(t) = a/(1 − p0) = b 6= 0 must
exist. This completes the proof.

4. The case R0 = ∞. When R0 = ∞, the asymptotic behaviors of
the nonoscillatory solutions of (1) are quite different from those obtained in
Section 3.

Lemma 7. Suppose that (H) holds. If x(t) is an eventually positive (neg-

ative) solution of (1) and lim supt→∞ x(t) > 0 (resp. lim supt→∞(−x(t))
> 0), then there exist two positive constants a1, a2 and t1 ≥ t0 such that the

function y(t) defined by (2) is monotonically increasing (decreasing) and



Classifications and existence of nonoscillatory solutions 293

(15) a1 ≤ y(t) ≤ a2R(t1, t) (resp. −a2R(t1, t) ≤ y(t) ≤ −a1)

for all t ≥ t1.

P r o o f. Let x(t) be an eventually positive solution of (1) and
lim supt→∞ x(t) > 0. Then, by part (ii) of Lemma 2, we have y(t) > 0
eventually. Thus, there exists s ≥ t0 such that x(t) > 0 and y(t) > 0 for all
t ≥ s. It follows from (1) that (r(t)y′(t))′ < 0 and thus r(t)y′(t) is eventu-
ally decreasing. By Lemma 3, and in view of R0 = ∞, we have y′(t) > 0
eventually. Thus, y(t) is eventually increasing and r(t)y′(t) is positive. By
(3) we then see that (15) holds. This completes the proof.

Theorem 4. Suppose that (H) holds and limt→∞ p(t) = p0, where 0 ≤
p0 < 1. Then any nonoscillatory solution of (1) must belong to one of the

following five types:

S(0, 0, 0): x(t) → 0, y(t) → 0, r(t)y′(t) → 0 (t → ∞),

S(0, 0, c): x(t) → 0, y(t) → 0, r(t)y′(t) → c 6= 0 (t → ∞),

S(b, a, 0): x(t) → b =
a

1 − p0
6= 0, y(t) → a 6= 0,

r(t)y′(t) → 0 (t → ∞),

S(∞,∞, c): x(t) → ∞, y(t) → ∞, r(t)y′(t) → c 6= 0 (t → ∞),

S(∞,∞, 0): x(t) → ∞, y(t) → ∞, r(t)y′(t) → 0 (t → ∞),

where a, b, c are some finite constants.

P r o o f. For any nonoscillatory solution of (1), without loss of generality,
we may suppose that x(t) is an eventually positive solution. If limt→∞ x(t)
= 0, then, by part (i) of Lemma 2, limt→∞ y(t) = 0 and y′(t) > 0 for all
large t. Since (r(t)y′(t))′ < 0 for all large t, we have

lim
t→∞

r(t)y′(t) = c ≥ 0.

If lim supt→∞ x(t) > 0, in view of part (ii) of Lemma 2, we have y(t) > 0
for all large t. By Lemma 7, we know that y(t) is eventually increasing,
and r(t)y′(t) is positive and decreasing. Thus there exist only the following
possibilities:

lim
t→∞

y(t) = a, 0 < a < ∞, or lim
t→∞

y(t) = ∞,

and

lim
t→∞

r(t)y′(t) = c ≥ 0.

Since r(t)y′(t) is eventually decreasing and limt→∞ r(t)y′(t) = c, we have

r(t)y′(t) ≥ c, i.e., y′(t) ≥
c

r(t)
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for all large t. Integrating the inequality, we obtain

(16) y(t) ≥ y(s) + c

t\
s

1

r(u)
du.

If c > 0 and R0 = ∞, it follows that

lim
t→∞

y(t) = ∞.

By Lemma 4, we have limt→∞ x(t) = ∞. If c = 0 and limt→∞ y(t) = a
(resp. ∞), then, by Lemma 4, it follows that limt→∞ x(t) = b = a/(1 − p0)
(resp. ∞). Therefore x(t) must belong to one of the five types as stated. The
proof is complete.

Next we derive several existence criteria for the nonoscillatory solutions
of (1).

Theorem 5. Assume that (H) holds and limt→∞ p(t) = p0, where 0 ≤
p0 < 1. A necessary and sufficient condition for (1) to have a nonoscillatory

solution which belongs to S(b, a, 0) is that

(17)

∞\
t0

1

r(u)

∞\
u

|f(v, λ)| dv du < ∞

for some λ 6= 0.

P r o o f. Necessity . Let x(t) be a nonoscillatory solution of (1) which
belongs to S(b, a, 0), i.e.,

lim
t→∞

x(t) = b, lim
t→∞

y(t) = a, and lim
t→∞

r(t)y′(t) = 0.

Without loss of generality, we may suppose that b > 0. By (2), it follows that
limt→∞ y(t) = a = b(1 − p0) > 0. Then there exist two positive constants
c1, c2 and t1 ≥ t0 such that

(18) c1 ≤ y(t) ≤ c2 for t ≥ t1.

On the other hand, by (1),

(19) r(t)y′(t) = r(s)y′(s) −

t\
s

f(u, x(u − δ)) du

for t ≥ s ≥ t1. After taking the limit as t → ∞ on both sides of (19) and
using limt→∞ r(t)y′(t) = 0, we obtain

(20) r(s)y′(s) =

∞\
s

f(u, x(u − δ)) du
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for s ≥ t1. Now it follows from (20) that

(21) y(s) = y(t1) +

s\
t1

1

r(u)

∞\
u

f(v, x(v − δ)) dv du

for s ≥ t1. Let s → ∞. Then

a = y(t1) +

∞\
t1

1

r(u)

∞\
u

f(v, x(v − δ)) dv du.

Therefore

(22)

∞\
t1

1

r(u)

∞\
u

f(v, x(v − δ)) dv du < ∞.

By (H), f(t, c1) ≤ f(t, y(t − δ)) ≤ f(t, x(t − δ)), so (17) holds.

Sufficiency . Without loss of generality we may assume that (17) holds
for λ > 0. Then there exists t1 ≥ t0 such that

∞\
t1

1

r(u)

∞\
u

f(v, λ) dv du < (1 − p)a,

where a = λ/2. Now consider the equation

(23) x(t) = p(t)x(t − τ) + (1 − p)a +

t\
t1

1

r(u)

∞\
u

f(v, x(v − δ)) dv du

for t ≥ t1. Consider the Banach space Φ of all bounded real functions x(t)
with norm supt≥t1

|x(t)|, endowed with the usual pointwise ordering ≤: for
x, y ∈ Φ, x ≤ y is equivalent to x(t) ≤ y(t) for t ≥ t1. Then Φ is partially
ordered. Define a subset Ω of Φ as follows:

Ω = {x ∈ Φ : (1 − p)a ≤ x(t) ≤ 2a, t ≥ t1}.

If x(t) ∈ Φ, let also

(Fx)(t) = p(t)x(t − τ) + (1 − p)a

+

t\
t1

1

r(u)

∞\
u

f(v, x(v − δ)) dv du, t ≥ t1.

Then, by using Knaster’s fixed point theorem and Lemma 7, we can show
that there exists a nonoscillatory solution of (23), and thus of (1), which
belongs to S(b, a, 0). We omit the details. The proof is complete.
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Theorem 6. Assume that (H) holds.A necessary and sufficient condition

for (1) to have a nonoscillatory solution which belongs to S(∞,∞, c) is that

(24)

∞\
t1

|f(u, λR(t1, u − δ))| du < ∞

for some λ 6= 0 and t1 ≥ t0.

P r o o f. Necessity . Suppose that x(t) is an eventually positive solution
of (1) which belongs to S(∞,∞, c). That is,

(25) lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = ∞, lim
t→∞

r(t)y′(t) = c > 0.

Then it follows from (15) and (16) that there exist two positive constants
c1, c2 and t1 ≥ t0 such that

(26) c1R(t1, t) ≤ y(t) ≤ c2R(t1, t)

for t ≥ t1. On the other hand, by (1),

(27) r(t)y′(t) = r(t1)y
′(t1) −

t\
t1

f(u, x(u − δ)) du.

Let t → ∞ on both sides of (27); we obtain

(28)

∞\
t1

|f(u, x(u − δ))| du < ∞.

Since (H) holds, f(t, c1R(t1, t − δ)) ≤ f(t, y(t − δ)) ≤ f(t, x(t − δ)) and we
can conclude from (28) that (24) holds for some λ 6= 0 and t1 ≥ t0.

Sufficiency . Without loss of generality, we may assume that (24) holds
for λ > 0 and t1 ≥ t0. Then there exists t2 ≥ t1 such that

∞\
t2

f(u, λR(t1, u − δ)) du < (1 − p)a,

where a = λ/2. Now consider the equation

x(t) = p(t)x(t − τ) + (1 − p)aR(t1, t) +

t\
t2

R(t2, u)f(u, x(u − δ)) du(29)

+ R(t1, t)

∞\
t

f(u, x(u − δ)) du

for t ≥ t2. We introduce the Banach space Φ of all bounded real functions
x(t) which satisfy

sup
t≥t2

|x(t)|

R(t1, t)
< ∞,
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with the norm

‖x‖ = sup
t≥t2

|x(t)|

R(t1, t)
.

Φ is considered to be endowed with the usual pointwise ordering ≤: for
x, y ∈ Φ, x ≤ y is equivalent to x(t) ≤ y(t) for t ≥ t2. Then Φ is partially
ordered. Define a subset Ω of Φ and an operator F : Ω → Φ as follows:

Ω = {x ∈ Φ : (1 − p)aR(t1, t) ≤ x(t) ≤ 2aR(t1, t), t ≥ t2},

and for x(t) ∈ Φ,

(Fx)(t) = p(t)x(t − τ) + (1 − p)aR(t1, t)

+

t\
t2

R(t2, u)f(u, x(u − δ)) du

+ R(t1, t)

∞\
t

f(u, x(u − δ)) du, t ≥ t2.

Similarly to the proof of Theorem 3, we can show that there exists a nonoscil-
latory solution of (29), and hence also of (1), which belongs to S(∞,∞, c).
This completes the proof.

Theorem 7. Assume that (H) holds. A sufficient condition for (1) to

have a nonoscillatory solution which belongs to S(∞,∞, 0) is that

(30)

∞\
t0

R(t0, u)|f(u, λ1R(t1, u − δ))| du = ∞

and

(31)

∞\
t0

|f(u, λ2R(t1, u − δ))| du < ∞

for some λ1, λ2 such that λ1λ2 > 0 and t1 ≥ t0.

P r o o f. Without loss of generality, we may assume λ1 > 0, λ2 > 0. Take
t2 ≥ t1 such that for t ≥ t2,

(32)
λ1

R(t1, t)λ2
+ p(t) +

1

λ2

∞\
t2

f(u, λ2R(t1, u − δ)) du < 1.



298 W. T. Li

Define an operator F as

(Fx)(t) =
λ1

R(t1, t)
+

R(t1, t − τ)

R(t1, t)
p(t)x(t − τ)

+
1

R(t1, t)

t\
t1

R(t1, u)f(u,R(t1, u − δ)x(u − δ)) du

+

∞\
t

f(u,R(t1, u − δ)x(u − δ)) du, t ≥ t2,

and

(Fx)(t) = Fx(t2), t1 ≤ t ≤ t2,

and let x1(t) = 0, xi+1(t) = (Fxi)(t), t ≥ t1, i = 1, 2, . . . By (H) and
induction, it is easy to see that 0 ≤ xi(t) ≤ xi+1(t), t ≥ t1, i = 1, 2, . . . On
the other hand, x2(t) ≤ λ2, t ≥ t1. It follows from (32) that

(33) xi+1(t) ≤ λ2

[

λ1

R(t1, t)λ2
+ p(t) +

1

λ2

∞\
t2

f(u, λ2R(t1, u − δ)) du

]

≤ λ2.

By induction, we have xi(t) ≤ λ2 for t ≥ t1, i = 1, 2, . . . Let

lim
i→∞

xi(t) = x∗(t), t ≥ t2.

Using Lebesgue’s dominated convergence theorem, we get

x∗(t) = (Fx∗)(t), t ≥ t1.

By (32) and (33), it is easy to see that

λ1

R(t1, t)
≤ x∗(t) ≤ λ2.

Set

z(t) = R(t1, t)x
∗(t), t ≥ t1.

Then we have λ1 ≤ z(t) ≤ λ2R(t1, t) and

z(t) = λ1 + p(t)z(t − τ) +

t\
t1

R(t1, u)f(u, z(u − δ)) du

+ R(t1, t)

∞\
t

f(u, z(u − δ)) du, t ≥ t2.

Again set

w(t) = z(t) − p(t)z(t − τ);
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then, by (30), we have limt→∞ w(t) = ∞. From part (ii) of Lemma 2, it
follows that limt→∞ z(t) = ∞. Since

r(t)w′(t) =

∞\
t

f(u, z(u − δ)) du,

it follows that limt→∞ r(t)w′(t) = 0. This means z(t) is a positive solution
of (1) that belongs to S(∞,∞, 0), which completes the proof.

Theorem 8. Assume that (H) holds, that |p(t)−p(s)| ≤ K|t−s| and that

r(t) is nondecreasing. Furthermore, suppose that there exist K1 > K2 > 0
such that

(34) p(t)eK1τ > 1 ≥ p(t)eK2τ ,

and for large t1 and t ≥ t1,

(35) (p(t)eK1τ − 1)e−K1t ≥

∞\
t

1

r(u)

∞\
u

f(v, e−K2(v−δ)) dv du.

Then (1) has a nonoscillatory solution x(t) ∈ S(0, 0, 0).

P r o o f. Set

Ω = {x ∈ C[0,∞) :

e−K1t ≤ x(t) ≤ e−K2t, |x(t) − x(s)| ≤ L|t − s|, t ≥ s ≥ t0},

where L ≥ max{K,K1}. It is easy to show that Ω is nonempty, bounded,
convex and closed in Φ defined to be all bounded real functions x(t) with
norm supt≥t0

|x(t)|.
Define an operator F on Ω as

(36) (Fx)(t) =



















p(t)x(t − τ) −

∞\
t

1

r(u)

∞\
u

f(v, x(v − δ)) dv du, t ≥ t2,

exp

(

ln((Fx)(t2))

t2
t

)

, t0 ≤ t ≤ t2,

where t2 ≥ t1, and for given α, p < α < 1, let

(37)
1

r(t)

∞\
t2

f(s, e−K2(s−δ)) ds ≤ (α − p(t))L, t ≥ t2,

and

(38) α + e−K2(t−τ) ≤ 1, t ≥ t2.

The mapping F satisfies the assumptions of Schauder’s fixed point theorem.
Namely, it satisfies the following:

(i) F maps Ω into Ω. For any x ∈ S, by (34) and (35) we obtain

(Fx)(t) ≤ p(t)x(t − τ) ≤ p(t) exp(−K2(t − τ)) ≤ exp(−K2t),



300 W. T. Li

(Fx)(t) ≥ p(t) exp(−K1(t − τ)) −

∞\
t

1

r(u)

∞\
u

f(v, exp(−K2(v − δ))) dv du

= exp(−K1t) + (p(t) exp(K1τ) − 1) exp(−K1t)

−

∞\
t

1

r(u)

∞\
u

f(v, exp(−K2(v − δ))) dv du

≥ exp(−K1t),

and so

(39) K2 ≤
− ln((Fx)(t2))

t2
≤ K1.

For any s ≥ t ≥ t2, by (37) and (38) we get

|(Fx)(s) − (Fx)(t)| ≤
[

(p(s) + exp(−K2(t − τ)))L

+
1

r(t)

∞\
t

f(u, exp(−K2(u − δ))) du
]

|s − t|

≤ [exp(−K2(t − τ)) + α]L|s − t| ≤ L|s − t|,

and for t0 ≤ t ≤ s ≤ t2,

|(Fx)(s)−(Fx)(t)|=

∣

∣

∣

∣

exp

(

ln((Fx)(t2))

t2
s

)

−exp

(

ln((Fx)(t2))

t2
t

)∣

∣

∣

∣

≤L|s−t|.

Hence, F maps Ω into Ω.

(ii) F is continuous. Let xi(t) ∈ Ω such that

lim
i→∞

‖xi − x‖ = 0.

Since Ω is closed, x ∈ Ω. Then, by (36), we get

|(Fxi)(t) − (Fx)(t)|

≤ p(t)‖xi − x‖ +

∞\
t2

1

r(u)

∞\
u

|f(v, xi(v − δ)) − f(v, x(v − δ))| dv du

≤ p‖xi − x‖ +

∞\
t2

1

r(u)

∞\
u

|f(v, xi(v − δ)) − f(v, x(v − δ))| dv du.

By the continuity of f and Lebesgue’s dominated convergence theorem, it
follows that

(40) lim
i→∞

sup
t≥t2

|(Fxi)(t) − (Fx)(t)| = 0.
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We can easily show that

(41) sup
t0≤t≤t2

|(Fxi)(t) − (Fx)(t)| ≤ |ln((Fxi)(t2)) − ln((Fx)(t2))|.

Using (40) and (41), it is easy to show that

lim
i→∞

‖Fxi − Fx‖ = 0.

(iii) F (Ω) is precompact. Let x ∈ Ω and s, t ≥ t2. Then by (37) we have,
for s > t,

|(Fx)(t) − (Fx)(s)| =

∣

∣

∣

∣

p(t)x(t − τ) − p(s)x(s − τ)

+

∞\
s

1

r(u)

∞\
u

f(v, x(v − δ)) dv du

−

∞\
t

1

r(u)

∞\
u

f(v, x(v − δ)) dv du

∣

∣

∣

∣

≤ |p(t)x(t − τ) − p(s)x(s − τ)|

+

∣

∣

∣

∣

t\
s

1

r(u)

∞\
u

f(s, x(v − δ)) dv du

∣

∣

∣

∣

≤ |p(t)x(t − τ) − p(s)x(s − τ)|

+

∣

∣

∣

∣

∞\
s

1

r(u)

∞\
u

f(s, x(v − δ)) dv du

∣

∣

∣

∣

≤ 2e−K2(t−τ) + (p(t)eK1τ − 1)e−K1t.

Since e−K1t → 0 and e−K2(t−τ) → 0 as t → ∞, we conclude from the above
inequalities that, for any given ε > 0, there exists t3 ≥ t2 such that for all
x ∈ Ω, and s, t ≥ t3,

|(Fx)(t) − (Fx)(s)| < ε.

This means that F (Ω) is relatively compact in the topology of the Fréchet
space C[t0,∞).

Similarly to Theorem 2 in [4] and using Schauder’s fixed point theorem
we can conclude that there exists an x ∈ Ω such that x = Fx. That is, x(t)
is a positive solution of (36) and thus also of (1). Since limt→∞ x(t) = 0, by
Lemma 2, it follows that limt→∞ y(t) = 0 and limt→∞ y′(t) = 0. The proof
is complete.

We close this paper by remarking that it would not be difficult to extend
all the results in this paper to an equation whose nonlinear term has the
form

f(t, x(t − δ1), . . . , x(t − δm)).
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