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Circular operators

related to some quantum observables

by Wac law Szymański (West Chester, Penn.)

Abstract. Circular operators related to the operator of multiplication by a homomor-
phism of a locally compact abelian group and its restrictions are completely characterized.
As particular cases descriptions of circular operators related to various quantum observ-
ables are given.

1. Introduction. This paper was inspired by the last work of Professor
W lodzimierz Mlak, which he carried out in final years of his life and which he
announced first in [M1] and subsequently presented in a series of papers [M2].
May this paper be a tribute to his memory—the memory of my Professor,
Master, and Friend.

The idea of circular operators is quantum-mechanical and goes back at
least to quantum phase “sine” and “cosine” operators. Its physical origins
are discussed in [I] and [MS]. Mlak in [M1] was the first to introduce a
proper mathematical formulation of these physical properties and began a
systematic investigation of circular operators. In [AHHK] circular opera-
tors were defined which, in Mlak’s terminology, are, actually, (A, 1)-circular
(see below), but the results there concern mostly operators without that
property.

B(H) denotes the algebra of all linear, bounded operators in a complex
Hilbert space H, which, in general, is assumed to be separable, infinite-
dimensional. IH , or simply I, stands for the identity operator in H. Let A
be a densely defined self-adjoint operator in H. Following Mlak, for α ∈ R

(the set of all real numbers), an operator T ∈ B(H) is called (A,α)-circular

if

(C) e−itATeitA = eitαT for each t ∈ R.

The unitary group t→ eitA is called the circulating group for T .
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The roots of this circular relation (C) can, however, be traced to the very
foundations of quantum mechanics, namely, to the Heisenberg uncertainty
principle expressed by the Canonical Commutation Relation (here in Weyl’s
form, for one particle)

(CCR) e−itQeisP eitQ = eitseisP , s, t ∈ R,

where Q is the position operator in L2(R) with the Lebesgue measure on R,
(Qf)(x) = xf(x), x ∈ R, P is the momentum operator

Pf =
1

i

d

dx
f,

and the Planck constant h̄ is set to 1. These operators are self-adjoint,
defined on suitable dense domains (cf. [Ho] or any text on introductory
quantum mechanics).

Moreover, (eisP f)(x)=f(x+s), f ∈ L2(R), x, s ∈ R (cf. e.g. [Ho], p. 62),
i.e., iP is the infinitesimal generator of the unitary group of left translations
s→ Ls:

(Lsf)(x) = f(x+ s), f ∈ L2(R), x, s ∈ R.

Hence (CCR) can be read as follows: Ls is (Q, s)-circular for each s ∈ R.
Circularity is also seen clearly in the “time–energy” uncertainty relation
written in the Weyl form—cf. [Ho], Ch. III, 8, (8.9).

In [M2], part III, Mlak found the form of all (A,−1)-circular operators
with a generalized quantum number operator A. The present paper charac-
terizes certain general circular operators in Theorems (3.1) and (4.3). From
these general results circular operators are completely described in several
physically important cases, e.g., with number operator (in particular, obtain-
ing the just mentioned Mlak result), with position operator (cf. (CCR)), or
with energy time evolution circulating group (“time–energy” uncertainty).

2. Preliminaries. Let (X,µ) be a measure space with a σ-finite mea-
sure µ, i.e., X is a countable union of sets of finite measure. Let K be a
Hilbert space. H = L2(X,K) is the Hilbert space of all (equivalence classes
of) functions f : X → K such that

T
X
‖f(x)‖2 dµ(x) < ∞. An operator B

in H is given by a measurable field X → B(K), x → B(x), if the function
x→ B(x)f(x) is measurable for each f ∈ H and

(Bf)(x) = B(x)f(x) for x ∈ X and

f ∈ D(B) =
{

f ∈ H :
\
X

‖B(x)f(x)‖2 dµ(x) <∞
}

.

If, in addition, supX ‖B(x)‖ < ∞, then such a B is called decomposable

and B ∈ B(H). If u ∈ L∞(X), then the field X → B(K), x → u(x)IK , is
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measurable and the operator

(Df)(x) = u(x)f(x), x ∈ X, f ∈ H,

is called diagonalizable. Clearly, each decomposable operator commutes with
each diagonalizable operator. Very important and non-trivial is, however, the
converse:

(2.1) Each bounded operator in H that commutes with each diagonalizable

operator is decomposable

— cf. Theorem 1 of [D], Ch. II, 5, where one finds a general direct integral
decomposition theory, from which only the necessary facts are recalled here
for a constant field of Hilbert spaces x→ K(x) = K.

Let G be a locally compact abelian (LCA) group. Choose and fix a Haar
measure m in G (cf. e.g. [Ha]). Let K be a Hilbert space. In H = L2(G,K)
the left translation operator Lg by g ∈ G is defined by (Lgf)(x) = f(x+ g)
for x ∈ G, f ∈ H. Since Haar measures are translation-invariant, Lg is a
unitary operator in H and L∗

g = L−1
g = L−g.

Let H be a Hilbert space. A projection always means an orthogonal
projection. Let D(A) ⊂ H be a linear manifold and let A : D(A) → H be a
linear operator. If B ∈ B(H), then [A,B] = 0 means that BD(A) ⊂ D(A)
and (AB −BA)x = 0 for x ∈ D(A).

(2.2) Lemma. Let U ∈ B(H) be unitary , S, T ∈ B(H), and γ, δ be

complex numbers. If U∗SU = γS and U∗TU = δT , then U∗STU = γδST .

P r o o f. U∗STU = U∗SUU∗TU = γSδT .

Some elementary properties of circular operators are gathered in the
following

(2.3) Proposition. Let A be a self-adjoint densely defined operator in

H, let α, β ∈ R and S, T ∈ B(H).

(i) If S is (A,α)-circular , T is (A, β)-circular , then ST is (A,α + β)-
circular.

(ii) T is (A, 0)-circular if and only if [T,A] = 0.

(iii) If T is (A,α)-circular and [S, eitA] = 0 for each t ∈ R, then TS is

(A,α)-circular.

P r o o f. (i) follows from Lemma (2.2). (ii) is a consequence of Proposition
1.0 in [M2], Part I. (iii) is obvious.

3.Circular operators in L2(G,K). Let G be a LCA group with a fixed
Haar measure m. From now on dx will mean dm(x) in the integral notation.
Let K be a Hilbert space and let H = L2(G,K). Suppose a : G → R is
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a homomorphism of G into the additive group R, i.e., a(x + y) = a(x) +
a(y), x, y ∈ G. Let

D(A) =
{

f ∈ H :
\
X

|a(x)|2‖f(x)‖2 dx <∞
}

and define A : D(A) → H by (Af)(x) = a(x)f(x), x ∈ G, f ∈ D(A).
Assume thatD(A) is dense in H. A simple argument, e.g., using the Cay-

ley transform, shows that A is self-adjoint. The following theorem describes
circular operators with circulating group t→ eitA.

(3.1) Theorem. Let g ∈ G.

(i) LgB is (A, a(g))-circular for each decomposable operator B ∈ B(H).
(ii) Suppose additionally that G is σ-compact (i.e., is a countable union

of compact subsets) and that L∞(G) = {u ◦ a : u ∈ L∞(R)}. If T ∈ B(H)
is (A, a(g))-circular , then there is a decomposable operator B ∈ B(H) such

that T = LgB.

P r o o f. (i) First it will be shown that Lg is (A, a(g))-circular. Take
x ∈ X, f ∈ H. Then (eitAf)(x) = eita(x)f(x). Hence

(Lge
itAf)(x) = eita(x+g)f(x+ g) = eit(a(x)+a(g))f(x+ g).

Finally, (e−itALge
itAf)(x) = e−ita(x)eita(x)eita(g)f(x+ g) = eita(g)(Lgf)(x).

Let B ∈ B(H) be a decomposable operator. Since eitA is a diagonalizable
operator, [B, eitA] = 0 for each t ∈ R. By Proposition (2.3)(iii), LgB is
(A, a(g))-circular.

(ii) Suppose now that T is (A, a(g))-circular. As shown in (i), L∗

g = L−g

is (A,−a(g))-circular, because a(−g) = −a(g). By Proposition (2.3)(i), B =
L∗

gT is (A, 0)-circular. By Proposition (2.3)(ii), [B,A] = 0. Thus [B,u(A)]
= 0 for each u ∈ L∞(R). Now, (u(A)f)(x) = (u ◦a)(x)f(x), x ∈ G, f ∈ H.
The assumption L∞(G) = {u ◦ a : u ∈ L∞(R)} implies that B commutes
with each diagonalizable operator in H. Since G is σ-compact, the Haar
measurem on G is σ-finite; cf. [Ha], p. 256, (9). By (2.1), B is decomposable.
Clearly, T = LgB.

The interpretation of this theorem for two particular cases important in
quantum mechanics is now in order.

C a s e 1: G= Z = the group of integers, A is the generalized number

operator. The Haar measure on Z is the counting measure. H=L2(Z,K) can
be seen as

⊕

∞

n=−∞
Kn, Kn = K, i.e., as l2(K) = the space of doubly infinite

square norm-summable sequences of vectors in K. If g = 1, then Lg = L1

is the backward bilateral shift of multiplicity dimK and Ln = (L1)n. Let
a : Z → R be defined by a(n) = n, n ∈ Z. Then (Af)(n) = nf(n), n ∈ Z,
f ∈ H, is the generalized number operator . Further, D(A) = {f ∈ H :
∑

∞

n=−∞
n2‖f(n)‖2 < ∞} is dense in H, because it contains all f ∈ H that
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vanish off a finite subset of Z. Moreover, L∞(Z) = l∞ = the space of all
doubly infinite bounded complex sequences = {u ◦ a : u ∈ L∞(R)}, the
group Z is σ-compact and the Haar measure is σ-finite. Now Theorem (3.1)
reads:

(3.2) Corollary. Let n ∈ Z. Then T ∈ B(H) is (A,n)-circular if and

only if T = LnB with a decomposable operator B.

In the matrix interpretation of operators in H =
⊕

∞

n=−∞
Kn, Kn = K,

a decomposable operator B given by a measurable field Z → B(K), n →
B(n), is a diagonal matrix with the diagonal entries B(n). Hence, in partic-
ular, L−1B is a bilateral forward weighted shift with weights B(n).

(3.3) Corollary. T ∈ B(H) is (A,−1)-circular if and only if T is a

bilateral forward operator weighted shift.

This is exactly Theorem 2.1 of [M2], Part III.

C a s e 2: G is the additive group R, A is the position operator. The
Haar measure m is the Lebesgue measure. Let H = L2(R,K). For g = s ∈
R, (Lsf)(x) = f(x+ s) is the backward translation operator. Consider a =
the identity mapping in R. Then (Af)(x) = xf(x), x ∈ R, f ∈ H, is the
position operator , which will be denoted by Q. Its domain D(Q) = {f ∈ H :T
∞

−∞
|x|2‖f(x)‖2 dx < ∞} is dense in H, because it contains all functions

that vanish outside a finite interval. R is σ-compact. Hence Theorem (3.1)
characterizes circular operators with circulating group t→ eitQ and reads:

(3.4) Corollary. T ∈ L2(R,K) is (Q, s)-circular if and only if there

exists a decomposable operator B ∈ B(L2(R,K)) such that T = LsB.

Operators of the form LsB with a decomposable B ∈ B(H) are contin-
uous analogues of bilateral operator weighted shifts discussed in Case 1.

4. Restrictions to subsets of G. Let G be a LCA group with a
fixed Haar measure m. Let K be a Hilbert space, H = L2(G,K), as at
the beginning of Section 3. Let X be a measurable subset of G. Denote
HX = L2(X,K), with the measure m restricted to X. Define J : HX → H

by

HX ∋ ϕ→ (Jϕ)(x) =
{

ϕ(x) if x ∈ X,
0 otherwise.

Then J is an isometric embedding of HX into H and maps unitarily HX onto
JHX = H0, which consists of all functions f ∈ H that vanish outside X.
The adjoint J∗ : H → HX is the operator of restriction to X:

J∗f = f |X for f ∈ H.
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Moreover, J∗J is the identity operator in HX and JJ∗ is the projection of
H onto H0:

JJ∗f = χXf, f ∈ H,

where χX is the characteristic function of X.

(4.1) Lemma. Suppose an operator B in H is given by a measurable field

G → B(K), x → B(x), on D(B) = {f ∈ H :
T
G
‖B(x)f(x)‖2 dx < ∞}.

Then

(i) B(H0 ∩D(B)) ⊂ H0,

(ii) D(J∗BJ) = {ϕ ∈ HX :
T
X
‖B(x)ϕ(x)‖2 dx < ∞} and J(D(J∗BJ))

= H0 ∩D(B),

(iii) J∗BJ in HX is given by the measurable field X → B(K), x →
BX(x), where BX(x) = B(x), x ∈ X,

(iv) if D(B) is dense in H, then D(J∗BJ) is dense in HX .

P r o o f. H0 ∩D(B) consists of all functions f ∈ D(B) that vanish out-
side X. Hence (i) is clear. To prove (ii) it is enough to notice that\

G

‖B(x)(Jϕ)(x)‖2 dx =
\
X

‖B(x)ϕ(x)‖2 dx for ϕ ∈ HX ,

which is understood that if one integral is finite, so is the other, and they
are equal. If ϕ ∈ D(J∗BJ), then (BJϕ)(x) = B(x)(Jϕ)(x) = B(x)ϕ(x) for
x ∈ X and 0 otherwise. Thus (J∗BJϕ)(x) = BX(x)ϕ(x), x ∈ X, which
proves (iii). Finally, it is elementary that the image of a dense subset of a
Hilbert space under a projection is dense in the range of that projection.
Hence JJ∗D(B) = H0 ∩D(B) is dense in H0. Since J maps unitarily HX

onto H0, (iv) follows from (ii).

Let a : G→ R be a group homomorphism. Let (Af)(x) = a(x)f(x), x ∈
G, f ∈D(A) = {f ∈ H :

T
G
|a(x)|2‖f(x)‖2 dx <∞}. It follows from Lemma

(4.1)(iii) that (J∗AJϕ)(x) = a(x)ϕ(x), x ∈ X, ϕ ∈ D(J∗AJ). Hence

(4.2) (eitJ∗AJϕ)(x) = eita(x)ϕ(x) = (J∗eitAJϕ)(x)

for x ∈ X, ϕ ∈ HX , t ∈ R.

Suppose now that D(A) is dense in H. By Lemma (4.1)(iv), J∗AJ is
densely defined. Thus J∗AJ is self-adjoint. The following theorem charac-
terizes circular operators with circulating group t→ eitJ∗AJ .

(4.3) Theorem. Fix g ∈ G.

(i) J∗LgJC is (J∗AJ, a(g))-circular for each decomposable operator C ∈
B(HX).
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(ii) Suppose G is σ-compact and L∞(G) = {u ◦ a : u ∈ L∞(R)}. If S ∈
B(HX) is (J∗AJ, a(g))-circular , then there exists a decomposable operator

C ∈ B(HX) such that S = J∗LgJC.

P r o o f. To prove (i) it is enough to show that J∗LgJ is (J∗AJ, a(g))-
circular, because, from (4.2), eitJ∗AJ is a diagonalizable operator for t ∈ R,
thus it commutes with each decomposable operator. Proposition (2.3)(iii)
will then finish the proof.

Now notice that

(Lgψ)(x) =

{

ψ(x+ g) if x+ g ∈ X,
0 otherwise,

for each ψ ∈ H0, x ∈ G. Since JHX = H0, for ϕ ∈ HX , x ∈ X, one has
(J∗LgJϕ)(x) = ϕ(x+ g) if x+ g ∈ X and 0 if x+ g 6∈ X. Take x ∈ X such
that x+ g ∈ X. Then

(e−itJ∗AJJ∗LgJe
itJ∗AJϕ)(x) = e−ita(x)eita(x+g)ϕ(x+ g)

= eita(g)ϕ(x+ g) = (eita(g)J∗LgJϕ)(x).

If x ∈ X is such that x + g 6∈ X, then the first and the last expressions in
this equality are 0. Hence J∗LgJ is (J∗AJ, a(g))-circular.

(ii) Let now S ∈ B(HX) be (J∗AJ, a(g))-circular. First it will be shown
that JSJ∗ ∈ B(H) is (A, a(g))-circular, i.e., that

(e−itAJSJ∗eitAf)(x) = eita(g)(JSJ∗f)(x) for f ∈ H, x ∈ G.

If x 6∈ X, then both sides equal 0, because S ∈ B(HX) and (Jϕ)(x) = 0
for ϕ ∈ HX , x 6∈ X. Hence it remains to check this equality for f ∈ H0.
If f ∈ H0, then f = JJ∗f = Jϕ, where ϕ = J∗f ∈ HX . Take x ∈ X, and
using (4.2), compute

(e−itAJSJ∗eitAf)(x) = (J∗e−itAJSJ∗eitAJϕ)(x)

= (e−itJ∗AJSeitJ∗AJϕ)(x) = (eita(g)Sϕ)(x)

= (eita(g)SJ∗f)(x) = (eita(g)JSJ∗f)(x).

Hence JSJ∗ is (A, a(g))-circular. By Theorem (3.1), there exists a decom-
posable operator B ∈ B(H) such that JSJ∗ = LgB. Hence S = J∗LgBJ . It
follows from Lemma (4.1)(i) that BJHX =BH0⊂H0. Hence BJ = JJ∗BJ

and S = (J∗LgJ)(J∗BJ). By Lemma (4.1)(iii), J∗BJ ∈ B(HX) is a decom-
posable operator.

Now, as in Section 3, the interpretation of Theorem (4.3) will be given
for two cases.

C a s e 1: G = Z, m is the counting measure on Z, H = L2(Z,K), a :
Z → R, a(n) = n and (Af)(n) = nf(n), n ∈ Z, is the generalized num-

ber operator. First take X = Z+ = the set of all non-negative integers.
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Then L2(Z+,K) = l2+(K) = the Hilbert space of all square norm-summable
sequences (ϕ(n))∞0 , ϕ(n) ∈ K, and (J∗L−1Jϕ)(n) = ϕ(n − 1) if n ≥ 1,
(J∗L−1Jϕ)(1) = 0. Hence J∗L−1J is the forward unilateral shift of mul-
tiplicity dimK. If HX = L2(Z+,K) is treated as

⊕

∞

n=0Kn, Kn = K,
then a decomposable operator C ∈ B(HX) given by a measurable field
Z+ → B(K), n → C(n), is a diagonal matrix with diagonal entries C(n)
and L−1C is a forward unilateral operator weighted shift with weights C(n).
Finally, (J∗AJϕ)(n) = nϕ(n), n ∈ Z+, ϕ ∈ D(J∗AJ), i.e., J∗AJ is pre-
cisely the quantum number operator N (cf. e.g. [Ho], Ch. III, Section 9).
Hence Theorem (4.3) reads:

(4.4) Corollary. T ∈ B(L2(Z+,K)) is (N,−1)-circular if and only if

T is a forward unilateral operator weighted shift.

This is exactly Theorem 2.0 of [M2], Part III.

Now take Xk = {1, . . . , k}, k ∈ Z. Then HXk
= L2(Xk,K) =

⊕k

n=1Kn,
Kn = K. The operator J∗L−1J is a forward truncated shift of multiplicity
dimK. A decomposable operator C ∈ B(HXk

) given by a measurable field
X → B(K), n → C(n), is a diagonal matrix with diagonal entries C(n)
and L−1C is a truncated operator weighted shift with weights C(n). The
operator Nk = J∗AJ has the form (Nkϕ)(n) = nϕ(n), n ∈ Xk, ϕ ∈ D(Nk),
and thus deserves to be called a truncated number operator .

(4.5) Corollary. T ∈ B(L2(Xk,K)) is (Nk,−1)-circular if and only

if T is a truncated operator weighted shift.

C a s e 2: G is the additive group R, m is the Lebesgue measure, H =
L2(R,K), a : R → R, a(x) = x, x ∈ R, Q is the position operator.

First let X = R+ = the set of all non-negative real numbers, HX =
L2(R+,K). For s ∈ R, L+

s = J∗LsJ is the unilateral translation opera-
tor (L+

s ϕ)(x) = ϕ(x + s) if x + s ≥ 0 and 0 otherwise, for x ∈ R+. Let
(Q+ϕ)(x) = xϕ(x), x ∈ R+, ϕ ∈ D(Q+) ⊂ HX . In particular, Q+ can
be treated as the Hamiltonian—energy operator—for the time evolution
group t → e−itQ+ and L+

−s (s > 0) as the energy shift operator in the
“time–energy” uncertainty relation [Ho], Ch. III, 8.

(4.6) Corollary. T ∈ B(L2(R+,K)) is (Q+, s)-circular if and only if

there exists a decomposable operator B ∈ B(L2(R+,K)) such that T = L+
s B.

Operators of the form L+
s B are continuous analogues of unilateral oper-

ator weighted shifts.

If X is an interval, then Theorem (4.3) gives a similar characterization of
(QX , s)-circular operators, where (QXϕ)(x) = xϕ(x), x ∈ X, ϕ ∈ D(QX) ⊂
L2(X,K), in terms of continuous analogues of truncated operator weighted
shifts.
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