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On a property of weak resolvents
and its application to a spectral problem

by Yoicur UETAKE (Poznaii)

Abstract. We show that the poles of a resolvent coincide with the poles of its weak
resolvent up to their orders, for operators on Hilbert space which have some cyclic proper-
ties. Using this, we show that a theorem similar to the Mlak theorem holds under milder
conditions, if a given operator and its adjoint have cyclic vectors.

1. Introduction. For a linear bounded operator A : X — X, where
X is a Hilbert space, we define a complex-valued function ¢(z) = (¢, (21 —
A)71b), which we call a weak resolvent, due to Fong, Nordgren, Radjavi,
and Rosenthal (cf. [3], [15]). Here b,c € X, and (f,g) denotes the scalar
product of the vectors f and g. Nordgren et al. considered this function
in the study of the invariant subspace problem. Earlier, in the 1960’s, in
the model theory of operators, Sz.-Nagy and Foiag introduced this kind of
functions (cf. [17]). Also, in the study of the spectral problem, Mlak proved
the following theorem, which also concerns model theory. See also Lebow
[12] and Nikol’skii [14].

THEOREM 1 ([13]). If, for every b,c in X, 2z~ Lp(271) = (¢, (I — 2A)~1b)
€ H', then o(A) < 1. Here o(A) is the spectral radius of A. m

Janas [7] and Jakdébczak and Janas [6] have extended the above theorem
to several commuting operators.

During the 1960’s, Lax and Phillips developed a scattering theory (cf.
[11]). Meanwhile, during the same period, engineers developed indepen-
dently a control theory, initiated by, among others, Kalman (cf. [9], [8]).
Surprisingly enough, the above kind of abstract operator theory and these
two theories have been shown to be related to one another by Adamyan and
Arov (see references in [11]) and Helton ([4], [5]). The weak resolvent cor-
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responds to a scattering matrix in scattering theory and a transfer function
(or a frequency response function) in control theory, respectively. The above
Mlak theorem is also related to the input-output stability of control systems
(cf. [8]).

In our paper, we show that if both A and its adjoint have cyclic vectors,
then the poles of the resolvent of A and their orders exactly coincide with
those of the weak resolvent of A. Next, using this result, we show that such
operators, a result similar to Mlak’s theorem holds under milder conditions.

Notations which we use are as follows:

D = {z:|z| < 1} (open unit disc in the complex plane),
D = {z:|z| <1} (closed unit disc in the complex plane),
T ={z:|z| =1} (unit circle in the complex plane),

H' = {f(z) analytic in D : sup,, SE” |f(ret)|do = ||f|]1 < +oo}
(Hardy space with p = 1).

2. Main theorems

DEFINITION. We say that bis cyclic for Aiff )~ , Spanj_o{A¥b} = X. =

The following lemma is known as the Popov—Belevich-Hautus—
Rosenbrock test in control theory for the finite-dimensional case (cf. [8]).
To make the paper self-contained, we include the result with a proof for the
infinite-dimensional case.

LEMMA 1. If b is cyclic for A and x is an eigenvector of A*, i.e., for
some zy € C, A*x = zpx, x # 0, then (b,z) # 0.

Proof. Suppose (b,z) = 0. Then
(Ab,x) = (b, A"x) = 2zp(b,x) =0,
(A?D,x) = (Ab, A*x) = 20(Ab, ) = 0,

(AFb,z) = (AR 710, A% ) = 20(A* b2y =0 (k=1,2,...),

Thus = € U, , Spanj_,{A*b} = X. However, this contradicts the assump-
tion that b is cyclic for A. This completes the proof. m

In the following theorem and its proof, a pole is an isolated (not accu-
mulating) pole.

THEOREM 2. Let (2I — A)~1 be meromorphic in an open neighborhood
of zo. Further, let b be cyclic for A and c be cyclic for A*. Then the weak
resolvent p(2) = {(c, (I — A)~1b) has a pole of order m at z = 2z if and only
if the resolvent (zI — A)~! has a pole of order m at z = z.
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Proof. “If”. Write (21 — A)~! in the following form:
(21 — A" =B_(2—20) " + B_(sn_1)(z — 20)" ™Y 4+ B
+B1(Z—Zo)—|-...
From this,
(Z(]I - A)B_m =0.
Suppose B_,,b # 0. Then, since A* is cyclic for ¢ by assumption, we have
(¢, B_;;b) # 0 by Lemma 1, and thus the weak resolvent ¢(z) has a pole
of order m at z = z5. Now we show B_,,b # 0. Define the Riesz projection
E(zy): X — X by
1

B(z) = 5~ (I — A)~" dz,
C

where C', the path of integration, is a small circle about zg containing no
other spectral point of A. As is well known, F(z) is a projection from X
onto X (z9) = E(z9)X and A commutes with E(zg). For the spectral theory
used in this proof see, e.g., [1], [2], [10]. For each n =0,1,2,... and z € C
define a subspace R(z;n) of X by

R(z;n) ={x: (2 — A)"z = 0}.

For each z € C define the index v(z) to be the least integer such that
R(z;v(%)) = R(%;v(z) + 1). Then obviously

{0} = R(20) ¢ R(z;1) & ... & R(z30(2)) = R(z;v(z) + 1).
From this we see that
dim R(zo;v(z0)) > v(20).

It is known that X (zg) = R(z0,v(20) and that if zo is a pole of (21 — A)~1
of order m then v(zy) = m. Therefore

dim X (z9) > m.
It is also known that
B_p=(A— D" 'E(z), k>1.
Recalling that A commutes with E(zp), we get
B_mb=(A—2I)™" ' E(20)b = E(20)(A — 20I)™ 'b.

If B_,,b=0, then E(z9)A™ b is a linear combination of E(zq)b, E(zo)Ab,
.oy B(20)A™2p and thus so is E(z)A*b for k > m. Since b is cyclic for A,

dim X (z9) = dim E(z0)X = dim E(zp) U Spanj_o{A*b} =X <m —1.
n=0

However, this contradicts the fact that dim X (z9) > m.
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“Only if”. Let
(s = A)7" = B_y(z = 20) ™" + B_geop)(z = 20) "7V 4

Since
p(2) = (¢, (21 — A)"'b)

= (¢, B_gb)(z — 20) * + (¢, B_-1)b) (z — 20) "7V ..,

k must be > m. Now suppose k > m + 1. Then by the previous discussion
deriving the “if” part, ¢(z) has a pole zg of order k, which is greater than m.
However, this contradicts the fact that ¢(z) has a pole zg of order m. Thus
k must be equal to m. =

Remark. An analogous theorem holds for finite-dimensional linear sys-
tems (cf. [8]). In [5], Helton has proved an analogous theorem for the infinite-
dimensional continuous time case by embedding a (continuously controllable
and observable) system into a Lax—Phillips scattering model and using the
result of the Lax—Phillips scattering theory. m

We now show a result similar to Mlak’s theorem (Theorem 3 below). We
need the following lemma.

_ Lemwma 2. If h(z) € Hl_(md is meromorphic in an open set including
D, then h(z) has no pole in D.

Proof. By the definition of H! we see that h(z) € H' is analytic in D
and thus has no pole in D. So we prove that h(z) hasno pole on T. A function
h(z) that is meromorphic in an open set containing T may have only a finite
number of poles on T, since if there exist an infinite number of poles on T,
then there exists an accumulating point on T since T is compact. However,
this contradicts the definition of meromorphic functions (see, e.g., [16]). Let
the finite number of poles of h(z) on T (and thus in D) be z1,. .., 2. Then
at each point z;, i = 1,...,m, h(z) can be written locally in the form

h(2) = ni(2) + ¥i(2),

where
T]Z(Z) = b,m(z — Zi)im + ...+ bil(z — Zi)il, bznz #£0,i=1,...,m,
and v;(z) is analytic in a neighbourhood of z;. Since n;(z), i =1,...,m, is

analytic in D — {z;}, it is easily seen that
m
Y(z) = h(z) =) mi(2)
i=1
is analytic in D. Thus h(z) can be written as

h(z) = ¥(2) + Y mi(z).
i=1
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Multiplying h(z) by
q(z) = (z — 21)
and noting that g(z1) # 0, we obtain
c
q(2)h(z) = P + p(2) + q(2)¢(2),

where p(z) is a polynomial and ¢ # 0. Since p(z), ¢(2) and ¥(z) are holo-
morphic in D and thus bounded in D, if h(z) € H' then

n1—1( n1—1

z2—20)" . (2= zm)"™ = (2 — 21) 9(2),

27
c
su — | db
< § ret — z
< sup § la(re™)] - [h(re™)] + pCre™®)| +la(re™®)| - (™)) a9
<%0
< Q.

Thus ¢/(z — 21) € H'. However, this is obviously impossible, which follows
immediately from the celebrated Hardy inequality, i.e.,

}: |an | 1
< —
n:1n+1 - 7THfH1

for f(z) = ag + a1z + azz? + ... € H'. Therefore h(z) has no pole in D. m

We can now prove the following theorem.

THEOREM 3. Assume that (I — zA)~L is meromorphic in an open set
including D. Let b be cyclic for A and c be cyclic for A*. If 27 p(271) =
{e,(I —zA)~1b) € HY, then o(A) < 1.

Proof. By the assumption and Lemma 2, 2~ *p(z~1) has no pole in D.
Thus ¢(2) = (¢, (2] — A)~1b) has no pole in C — D = {z : |2| > 1}. Hence,
by Theorem 2, (2I — A)~! has no pole in C — D. Therefore o(A4) < 1. Now
suppose o(A) = 1. Then there exists an infinite sequence z1, za, ... in o(A),
the spectrum of A, such that |z;| — 1. Since the spectrum of A is compact,
a subsequence of {z;} has a limit point zy € o(A) on T. However, again by
Lemma 2 and Theorem 2, this is impossible. Thus o(4) < 1. =
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