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Covariant differential operators and Green’s functions

by Miroslav Englǐs (Praha) and Jaak Peetre (Lund)

This paper is dedicated to the memory of W lodzimierz Mlak, who was
one of my earliest mathematical acquaintances. We met in 1961/62 when
we both were research associates at the University of Maryland. I remember
vividly W lodzimierz taking driving lessons from his mentor R. E. Fullerton,
who died in a car accident in Spain some years later. Much later we spoke
once over the phone but did not see each other again. The present paper
does perhaps not reflect much of Mlak’s mathematical interests, but at least
it comes in some sense close to the type of PDE that was cultivated at College
Park at the time—I am now referring to the late Alexander Weinstein and
his school.

J. P.

Abstract. The basic idea of this paper is to use the covariance of a partial differential
operator under a suitable group action to determine suitable associated Green’s functions.
For instance, we offer a new proof of a formula for Green’s function of the mth power ∆m

of the ordinary Laplace’s operator ∆ in the unit disk D found in a recent paper (Hayman–
Korenblum, J. Anal. Math. 60 (1993), 113–133). We also study Green’s functions associ-
ated with mth powers of the Poincaré invariant Laplace operator∆. It turns out that they
can be expressed in terms of certain special functions of which the dilogarithm (m = 2) and
the trilogarithm (m = 3) are the simplest instances. Finally, we establish a relationship
between ∆m and ∆: the former is up to conjugation a polynomial of the latter.

0. Introduction. In this paper we investigate Green’s functions associ-
ated with some covariant partial differential operators. The underlying idea
is simple. Let a manifold be given on which there acts a transitive group of
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transformations and consider on it a partial differential operator covariant
with respect to this group action. In order to determine a Green’s func-
tion for this differential operator it suffices, in view of the covariance and
the transitivity, to find it at some fixed point, usually the “origin”. (By
Green’s function we mean, informally, a function G = G(z,w) which, fixing
the second argument w and denoting the differential operator by L and the
delta function at w by δ, satisfies the differential equation LG = δ and, in
addition, appropriate boundary conditions.)

For instance, in Section 1 we give, as a warm-up, a new proof of a for-
mula for Green’s function for the mth power ∆m of the ordinary Laplace’s
operator ∆ in the unit disk D to be found in a recent paper by Hayman–
Korenblum [7]. The formula itself is valid for any number of (real) variables
but to fix ideas we restrict ourselves, as also in most of the rest of this paper,
to the two-dimensional case. The covariance of the operator in this case is
due to Bojarski [4]. Another point made in this connection (Section 2) is
a perhaps novel computation of the constant involved. Again the approach
used is applicable in other cases as well, and in a remark we indicate a proof
of the Bochner–Martinelli formula in several complex variables.

In Sections 3 and 4 we put into play the Möbius invariant Laplace opera-
tor∆ on D equipped with the usual hyperbolic metric (that is, the Laplace–
Beltrami operator with respect to this metric). In Section 3 we determine
the corresponding Green’s function for the operator ∆2, whereas Section 4
is concerned with the generalization of this result to higher powers, the op-
erators ∆m, m > 2; however, in the latter case our result is reasonably
complete only in the simplest case m = 3. It turns out—and this is some-
thing quite unexpected—that the result comes in terms of certain special
functions, so-called logarithmic functions, the dilogarithm Li2 if m = 2 and
the trilogarithm Li3 if m = 3. It is reasonable to expect that the answer
also in the general case (m > 3), not yet settled, will involve more general
logarithmic functions related to the polylogarithm Lim.

In Section 5 we establish a connection between the iterated operators ∆m

and the invariant Laplacean ∆, by showing that the former are polynomials
of the latter.

Finally, in Section 6 we discuss briefly, without going into too much
detail, to what extent the results of this paper can be extended to the case
of several complex variables.

1. The Hayman–Korenblum formula. We seek Green’s function for
the operator ∆m in the unit disc D with Dirichlet boundary conditions
(vanishing of the normal derivatives up to order m − 1).

It is easy to see that ∆m has the fundamental solution

F (z) = cr2m−2 log r2 (r = |z|).
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Here c = cm is a constant whose exact value will be determined in Section 2.
This suggests that the Green’s function taken at the origin be of the form

G(z) = G(z, 0) = c
(
r2m−2 log r2 +

m−1∑

i=0

αi(1 − r2)i
)
.

Introduce the variable t = r2. We must determine the coefficients αi in such
a way that the function

g = tm−1 log t +
m−1∑

i=0

αi(1 − t)i

vanishes at t = 1 together with its derivatives up to order m − 1.

Lemma 1. Fix a number ν. Put f = tν log t and write D = d
dt . Then

(1) Dkf = ν(ν − 1) . . . (ν − k + 1)tν−k log t + aktν−k (k = 0, 1, 2, . . .),

where

(2) ak =

k−1∑

s=0

ν(ν − 1) . . . (ν̂ − s) . . . (ν − k + 1)︸ ︷︷ ︸
k−1 factors

and the sign ̂ means that the corresponding factor is omitted in the product.
If ν 6= 1, . . . , k − 1 then (2) can alternatively be written as

(3) ak = ν(ν − 1) . . . (ν − k + 1)

k−1∑

s=0

1

ν − s
.

P r o o f (by induction over k). Formula (1) is trivial for k = 0 (with
a0 = 0). Suppose (1) holds true for the index k with some constant ak.
Then we find

Dk+1f = ν(ν − 1) . . . (ν − k + 1)(ν − k)tν−k−1 log t

+ ν(ν − 1) . . . (ν − k + 1)tν−k−1 + ak(ν − k)tν−k−1.

This gives (1) for the index k + 1 if we put

(4) ak+1 = (ν − k)ak + ν(ν − 1) . . . (ν − k + 1).

The recursion (4) is likewise solved by induction. Suppose thus that ak

satisfies (2). Then (4) gives

ak+1 =

k−1∑

s=0

ν(ν − 1) . . . (ν̂ − s) . . . (ν − k + 1)(ν − k)

+ ν(ν − 1) . . . (ν − k + 1)

=

k∑

s=0

ν(ν − 1) . . . (ν̂ − s) . . . . . . (ν − k),
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which is (2) with k replaced by k + 1. The truth of (3) is obvious.

Return to the function g. Using Lemma 1 with ν = m − 1, from (1) we
find

Dkg = (m − 1)(m − 2) . . . (m − 1 − k + 1)tm−k−1 log t + aktm−1−k

+
m−1∑

i=0

αii(i − 1) . . . (i − k + 1)(−1)k(1 − t)i−k

(k = 0, 1, . . . ,m − 1), where now (in view of (3) with ν = m − 1)

(5) ak = (m − 1)(m − 2) . . . (m − 1 − k + 1)︸ ︷︷ ︸
k−1 factors

k−1∑

s=0

1

m − 1 − s
.

Putting t = 1 gives

ak + αkk!(−1)k = 0

or, solving out and using (5),

(6) αk =
(−1)k+1

k!
ak = (−1)k+1

(
m − 1

k

) m−1∑

s=m−k

1

s
.

We have thus proved that

(7) G(z) = G(z, 0) = c
(
r2m−2 log r2 +

m−1∑

i=0

αi(1 − r2)i
)

with the αi’s given by (6).

Recall next that if u is any solution of the equation ∆mu = 0 and
ω(z) = (az+b)/(cz+d) is a Möbius transform determined by the unimodular
matrix

(
a b
c d

)
(unimodular means that ad − bc = 1) then the function

v(z) = |e(z)|2(m−1)u(ω(z))

is likewise a solution of the same equation, where we have put e(z) = cz +d.

R e m a r k 1. The simplest proof of this fact, which is a special case of a
theorem of Bojarski [4] valid in any number of dimensions, goes via “Bol’s
lemma” (cf. [6], where several proofs of this elementary result are given) to
the effect that if v(z) is any function and if we put

v1(z) = (e(z))m−1v(ω(z))

then
∂mv1(z)

∂zm
= (e(z))−m−1 ∂mv(ω(z))

∂zm
,

and a similar formula holds with the function

v2(z) = (e(z))m−1v(ω(z))



Covariant differential operators and Green’s functions 81

and the operator ∂
∂z̄ (instead of ∂

∂dz). We also use the fact that

(8) ∆ = 4
∂2

∂z∂z
,

which will do us great service also in what follows.

Now let w be any point in the disc D and choose ω such that ω(w) = 0.
Then it follows that

G(z,w) = G(ω(z), 0)|e(z)|2(m−1) |e(w)|2(m−1) .

In particular, we can take ω(z) = (z − w)/(1 − zw). The corresponding
matrix is not

(
1 −w
−w̄ 1

)
, because the latter is not a unimodular matrix. But

this matrix divided by (1 − |w|2)1/2 is unimodular; then

c =
−w

(1 − |w|2)1/2
, d =

1

(1 − |w|2)1/2
,

implying that

e(z) = cz + d =
1 − zw

(1 − |w|2)1/2
,

e(w) = cw + d = (1 − |w|2)1/2.

By (7) this gives

G(z,w) = c

(
|z − w|2m−2 log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

(9)

+

m−1∑

i=0

αi(1 − |z|2)i(1 − |w|2)i|1 − zw|2(m−1−i)

)
,

where we have also taken account of the well known identity

(10) |1 − zw|2 − |z − w|2 = (1 − |z|2)(1 − |w|2).

The coefficients αi in (9) are still those given by (6).

R e m a r k 2. It is easy to see that (9) agrees, in the case of dimension 2,
with the formula given in [7] (formula (1.6), p. 115). In the two-dimensional
case the latter formula takes the form

G(z,w) = c · (−1)m(m − 1)!(11)

×

∞∑

ν=0

1

(ν + 1)(ν + 2) . . . (ν + m)

(1−|z|2)m+ν(1−|w|2)m+ν

|1 − zw|2+2ν
,
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where the right hand side can also be written in a perhaps more conspicuous
form as

c · (−1)m(m − 1)!|1 − zw|2(m−1)

×

∞∑

ν=0

1

(ν + 1)(ν + 2) . . . (ν + m)

(
(1 − |z|2)(1 − |w|2)

|1 − zw|2

)ν+m

.

In view of the covariance it suffices to take w = 0, as always. Then it is a
question about the identity

g = tm−1 log t +
m−1∑

i=1

αi(1 − t)i(12)

= (−1)m(m − 1)!

∞∑

ν=0

(1 − t)ν+m

(ν + 1)(ν + 2) . . . (ν + m)
,

where the αi’s are given by (6).

P r o o f o f (12). Indeed, by the construction of the αi’s, the Taylor
coefficients of g at t = 1 vanish up to order m − 1. On the other hand,
Lemma 1 also gives

Dmg = (m − 1)!t−1,

Dm+1g = −(m − 1)!t−2,

Dm+2g = (m − 1)!2t−3 etc.,

and quite generally

Dm+µg = (−1)µ(m − 1)!µ!t−1−µ.

Therefore, putting t = 1, we also obtain the remaining Taylor coefficients
and so the identity follows.

It is, apparently, a matter of taste which of the two formulae, (9) or (11),
is the simplest. The authors of [7] say that “it seems surprising that a sim-
ple formula yields [the Green’s function] for all m”. One virtue of (11) is
that it directly implies the constancy of sign. Hayman–Korenblum further
offer the conjecture, even in the higher-dimensional case, that “balls are the
only domains . . . whose Green’s functions . . . have constant sign . . . for
all positive integers m”. Actually, the problem of finding Green’s function
for the operator ∆m was in principle already settled by Tommaso Boggio
[3] in 1905. This author also pointed out the phenomenon of constancy of
sign. According to Hedenmalm [8], Boggio in another, earlier paper [2] had
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raised the question of whether Green’s function of the operator ∆m for an
arbitrary planar domain is of constant sign, a question often referred to as
Hadamard’s conjecture.

2. Evaluation of the constant. We must now determine the con-
stant c = cm of Section 1 such that ∆mF = δ, which will then imply that
∆m

z G = δw (delta function at the origin and at the point w respectively).

Let us begin by describing our procedure in the case m = 1. The guiding
idea is to “smoothen” the function

F (z) = c log |z|2

by replacing it with the function

Fε(z) = c log(|z|2 + ε2),

where ε > 0 is a parameter which is eventually going to be 0. Differentiating
yields

∂Fε

∂z
= c

z

|z|2 + ε2
.

Continuing the differentiation and remembering formula (8) of Section 1
then gives

∆Fε = c·4
∂

∂z

(
z

|z|2 + ε2

)
= c·4

(
1

|z|2 + ε2
−

zz

(|z|2 + ε2)2

)
= c·4

ε2

(|z|2 + ε2)2
.

It follows that if we let ε → 0 then the right hand side converges in the
sense of distributions to a multiple of δ, namely the value of the integral on
the right hand side extended over C. We have to choose c so that this value
becomes unity. As the integral clearly is independent of ε, it suffices to take
ε = 1. We then find\

C

dx dy

(|z|2 + 1)2
= 2π

∞\
0

r dr

(r2 + 1)2
= π

∞\
0

dt

(t + 1)2
= π

[
−

1

1 + t

]∞

0

= π.

Hence it follows that c = c1 = 1/(4π).

R e m a r k 1. Usually one writes log r in place of log r2, as here, and
then the constant is 1/(2π).

Consider now the general case. If

F (z) = c|z|2(m−1) log |z|2,

we consider the “smooth” version

Fε(z) = c(|z|2 + ε2)m−1 log(|z|2 + ε2).
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Using Lemma 1 of Section 1 (we consider for a moment z as an independent
variable!) gives

∂mFε

∂zm = c · (m − 1)!
zm

|z|2 + ε2
.

Continuing the differentiation and using Leibniz’s formula (product rule) we
find that

∆mFε = c · 4m(m − 1)!
∂m

∂zm

(
zm

|z|2 + ε2

)

= c · 4m(m − 1)!

m∑

k=0

(−1)k

(
m

k

)
k!zk

(|z|2 + ε2)1+k

× m(m − 1) . . . (m − (m − k) + 1)zm−(m−k)

= c · 4mm!(m − 1)!
m∑

k=0

(−1)k

(
m

k

)
|z|2k

(|z|2 + ε2)1+k

= c · 4mm!(m − 1)!
1

|z|2 + ε2

(
1 −

|z|2

|z|2 + ε2

)m

= c · 4mm!(m − 1)!
ε2m

(|z|2 + ε2)m+1
.

As in the case m = 1 we conclude that ∆mFε tends to a multiple of δ. In
order that this multiple be unity, the integral of this function must again be
unity. We have\

C

dx dy

(|z|2 + 1)1+m
= 2π

∞\
0

r dr

(r2 + 1)1+m

= π

∞\
0

dt

(t2 + 1)1+m
= π

[
−1

m

1

(1 + t)m

]∞

0

=
π

m
.

Thus we conclude that

c = cm =
1

4m(m − 1)!2π
.

In particular, we have

c1 =
1

4π
, c2 =

1

16π
, c3 =

1

64 · 4π
,

c4 =
1

256 · 36π
, c5 =

1

1024 · 576π
etc.

We may summarize what is proven up to now as follows.

Scholium 1. In order to indicate the dependence on m, let us in our
notation for Green’s function append a subscript , thus writing G = Gm.
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Then we have

G1 =
1

4π
log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

,

G2 =
1

16π

(
|z − w|2 log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

+ (1 − |z|2)(1 − |w|2)

)
,

G3 =
1

256π

(
|z − w|4 log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

+ (1 − |z|2)(1 − |w|2)|1 − zw|2 −
3

2
(1 − |z|2)2(1 − |w|2)2

)
,

G4 =
1

9216π

(
|z − w|6 log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

+ (1 − |z|2)(1 − |w|2)|1 − zw|4

−
5

2
(1 − |z|2)2(1 − |w|2)2|1 − zw|2 +

11

6
(1 − |z|2)3(1 − |w|2)3

)
,

and so forth.

R e m a r k 2 (on formulae of the Bochner–Martinelli type). The method
used here has general character and may also be applied in higher-dimensio-
nal cases. It is particularly useful in the context of several complex variables.
As an illustration let us indicate a proof of the classical Bochner–Martinelli
formula itself. To this end consider in C

n the following differential form of
bidegree (n, n − 1):

k =

n∑

i=1

(−1)i−1kidz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn,

where

ki = c ·
zi

|z|2

and c = cn is a suitable constant. (Points in C
n are denoted by z =

(z1, . . . , zn), |z|2 = |z1|2 + . . . + |zn|2.) Indeed, as we shall now indicate,
it is possible to choose c in such a manner that

(1) dk = δ dz1 ∧ . . . ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn,

or equivalently, if we want to avoid differential forms and exterior derivatives,
in terms of a divergence:

(2)

n∑

i=1

∂ki

∂zi
= δ.
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In order to prove (1) and (2) one just has to introduce the regularization

ki
ε = c ·

zi

|z|2 + ε2
(ε > 0)

and proceed as before to compute the divergence, afterwards making ε = 0.
In particular, we can determine the constant:

c = cn =
n!

πn
.

But (1) (or (2)) is just the infinitesimal form of the Bochner–Martinelli
formula. Integrating we find the corresponding finite formula:

f(z) =
(−1)n(n−1)/2n!

(2πi)n

×
\

∂Ω

f(w)

n∑

i=1

zi − wi

|z − w|2
dw1∧ . . . ∧ d̂wi∧ . . . ∧ dwn∧ dw1∧ . . . ∧dwn.

Here Ω is any bounded domain in C
n with smooth boundary ∂Ω and f

is an arbitrary holomorphic function in Ω, continuous up to the boundary.
Taking n = 1 we obtain the classical Cauchy formula. In the same way one
can establish other more complicated formulae associated with the names
of mathematicians such as Fantappiè, Leray, Koppelman, Henkin, Ramirez,
Øvrelid, Berndtsson, Andersson (cf. e.g. [1]).

3. A second order invariant Green’s function. Let us put into play
the partial differential operator

∆ = (1 − |z|2)2∆,

where ∆ is, as before, the ordinary Laplacean. The operator ∆ is primarily
considered over the unit disc D and it is well known that it is invariant under
conformal automorphisms of D (= Möbius maps of D onto itself). In fact, as
noted already in the introduction, ∆ is nothing but the Laplace–Beltrami
operator associated with the hyperbolic or Poincaré metric in D—perhaps
it might be called the Laplace–Beltrami–Poincaré operator.

R e m a r k 1. More generally, one can consider the covariant operator

∆α,β = (1 − |z|2)2∆ + 4αz
∂f

∂z
+ 4βz

∂f

∂z
− 4αβf.

It is covariant in the sense that it intertwines with the group action

f(z) 7→ f(ω(z))(e(z))α(e(z))β .

Here α and β are given numbers, usually real ones, and
(

a b
c d

)
is an arbitrary

unimodular pseudo-unitary matrix; pseudo-unitary means that d = a, c = b.
It is clear that taking α = β = 0 gives back the previous special case, ∆0,0
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= ∆. Actually, two operators ∆α,β and, say, ∆α1,β1
are similar provided

α1 = α + κ, β1 = β + κ for some number κ. Indeed, the corresponding
intertwining map is of the form

(1) f(z) 7→ f1(z) = (1 − |z|2)−κ/2(1 − |z|2)−κ/2f(z);

if f(z) transforms with biweight (α + 2, β + 2) then f1(z) transforms with
biweight (α1 + 2, β1 + 2). This follows from the well known relation

1 − |ω(z)|2 =
1 − |z|2

|e(z)|2
.

We also refer to [15], Section 5, where the same transformation is considered
in the context of general bounded symmetric domains. In Section 5 of the
present paper we shall make use of the transformation (1) in a special case.

Returning to the operator ∆, we remark likewise that its iterates ∆2,
∆

3 etc. are conformally invariant. In this section we only consider the case
of the square∆2 and, in particular, we wish to determine the corresponding
invariant Green’s function.

If f is any radial function (smooth in D\{0}) then putting |z|2 = r2 = t
we may write

(2) ∆f = 4(1 − t)2[tf ′]′ = 4(1 − t)2[tf ′′ + f ′] (radial part),

where the stroke ′ is used to designate derivatives with respect to t. For later
use we write down the formula

(3) ∆(fu) =∆f · u + 8(1 − t)2tf ′u′ + f∆u.

We seek a basis for the solutions of the differential equation ∆2f = 0, it
can thus be viewed as a fourth order ordinary differential equation. In the
case of ∆ itself such a basis is provided by the two functions f0 ≡ 1 and
g0 = log t (= log |z|2). Taking them as part of our basis we need two more
functions f1 and g1, say. We require f1 to be regular at t = 0 and to vanish
there, and we seek g1 of the form

(4) g1 = log t · f1 + ϕ1,

where ϕ1 is assumed to be regular at t = 0 and to vanish there. Furthermore
we require that

(5) ∆f1 = 4f0, ∆g1 = 4g0.

Then automatically ∆2f1 = 0, ∆2g1 = 0.

By the first half of (4) it is clear that we must have

f1 =
\1

t

\ 1

(1 − t)2
=
\1

t

t

1 − t
=
\ 1

1 − t
= − log(1 − t).
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Here we use the sign
T

to indicate the primitive, normalized to vanish at
t = 0. From (4) and (5) we obtain, using (3),

∆g1 =∆f1 · log t + 8(1 − t)2f ′
1 +∆ϕ1

or, if we take account of the second formula in (5) and that we know already
f1 (in particular that f ′

1 = 1/(1 − t),

∆ϕ1 = −8(1 − t).

Integrating implies that

ϕ1 =
\1

t

\−2(1 − t)

(1 − t)2
= −2

\1
t

\ 1

1 − t
= 2

\log(1 − t)

t
= −2Li2(t),

where Li2 stands for the dilogarithm (for the dilogarithm and related func-
tions see the monograph [13]; cf. also [14] (1)):

Li2(t) := −
\log(1 − t)

t
=

∞∑

n=1

tn

n2
.

In particular, we note that Li2(1) = ζ(2) = π2/6. Using (4) we finally obtain

g1 = − log t · log(1 − t) − 2Li2(t).

We may summarize our result as follows.

Lemma 1. A basis for radial solutions (in D\{0}) of the differential equa-
tion ∆2f = 0 is given by the four functions

f0 ≡ 1, g0 = log t, f1 = − log(1−t), g1 = − log t·log(1−t)−2Li2(t),

or , if we restore the variable z,

f0 ≡ 1, g0 = log |z|2, f1 = − log(1 − |z|2),

g1 = − log |z|2 · log(1 − |z|2) − 2Li2(|z|
2).

This basis is essentially unique, in the sense made precise in the above dis-
cussion.

R e m a r k 2. We note that obviously

(6) g0(t) + f1(1 − t) = 0.

(1) We cannot resist pointing out here that, although the dilogarithm had been stud-
ied earlier by Euler and Landen, the very word was first used by the little known and
nowadays (even in his home town Lund) not much esteemed Swedish mathematician Carl
Johan Danielsson Hill (1793–1875) in his 1828 paper [10]. At some stage of our investiga-
tion, P. J. H. Hedenmalm suggested that we use the notation ∆· in place of ∆. We were
therefore somewhat amused when we later learnt that Hill in his 1830 dissertation [11]
had introduced the Thor function for which he employed the notation D- .
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On the other hand, one has the following well known formula due to Euler
(see [13], p. 5):

Li2(t) =
π2

6
− log t · log(1 − t) − Li2(1 − t).

Therefore one sees that one also has

(7) g1(t) + g1(1 − t) = −
π2

3
.

The beautiful identities (6) and (7) can be explained by a rather unexpected
symmetry property of the equation ∆2f = 0, still for radial functions: it is
invariant under the transformation f(t) 7→ f(1 − t). This follows from the
formula

(8) ∆2 = s2
{
s2t2D4 + 5st(s − t)D3 + 2(s2 + t2 − 4st)D2 − 2(s − t)D

}
,

which is readily verified by hand. In (8) we have put s = 1−t and D = d
dt . In

particular, it follows thus that if we have two linearly independent solutions
of ∆2f = 0, then we can construct out of them a full basis.

We are now looking for a radial fundamental solution G = G(z), that is,
we demand that∆2G = δ, where δ is the delta function at the origin. As G

must be smooth at the origin, it must be a linear combination of the three
functions f0, f1 and g1, thus excluding g0 = log |z|2, which is not smooth
there. Next, we require that G vanish for |z| = 1. This excludes f1 as well.
Thus G must be of the form

G = G(t) = c ·

[
log t · log

(
1

1 − t

)
− 2Li2(t) + C

]
,

or, in terms of z,

G = G(z) = c ·

[
log |z|2 · log

(
1

1 − |z|2

)
− 2Li2(|z|

2) + C

]
.

Looking at the expansion at the origin, G(t) = c · (t log t + . . .), we convince
ourselves that the outer constant must be c = c2 = 1/(16π) (see Section 2).
To find the inner constant C we make |z| = 1. This gives C = π2/3. Thus
we end up with the formula

G(z) = G(z, 0) =
1

16π
·

[
log |z|2 · log

(
1

1 − |z|2

)
− 2Li2(|z|

2) +
π2

3

]
.

This is our sought Green’s function at the origin. Using the invariance
it is now easy to write down the corresponding formula for Green’s function
at any point w ∈ D:
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Theorem 1. Green’s function for the operator ∆2 is given by

G(z,w) =
1

16π
·

[
log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

log
|1 − zw|2

(1 − |z|2)(1 − |w|2)
(9)

− 2Li2

(∣∣∣∣
z − w

1 − zw

∣∣∣∣
2)

+
π2

3

]
.

Here we have used formula (10) of Section 1.

R e m a r k 3. This reminds of the formula for Green’s function for the
operator ∆. Let us write for a moment the latter, omitting the constant 4π,
as

G(z,w) = log

∣∣∣∣
z − w

1 − zw

∣∣∣∣
2

;

also put (essentially the logarithm of the Berezin kernel)

H(z,w) = log
|1 − zw|2

(1 − |z|2)(1 − |w|2)
.

Then we can write (9) in the conspicuous form

G(z,w) =
1

16π
·

[
G(z,w) · H(z,w) − 2Li2(exp G(z,w)) +

π2

3

]
.

From this we see, in particular, that (9) is not only Möbius invariant, but
also conformally invariant. In other words, in view of the Riemann mapping
theorem, we can state our result for any simply connected planar domain.
There also arises the natural question of what can be said in the case of
multiply connected domains. Let us mention that Green’s function for the
operator ∆2 (ordinary bi-Laplacean, not the invariant one!) in a circular
annulus has been considered in [5].

R e m a r k 4 (positivity). Let us show that the function G(z,w) is pos-
itive in D\{w}; this is a small contribution to the Boggio–Hadamard prob-
lem (see Remark 2 in Section 1; cf. also [5]). It clearly suffices to take
w = 0. In other words, it suffices to show that the function g1 = g1(t)
(recall that G = c(g1 + C)) is monotone. Differentiating the relation
g1 = − log t · log(1 − t) − 2Li2(t) yields

g′1 = −
log(1 − t)

t
+

log t

1 − t
+ 2

log(1 − t)

t
=

log(1 − t)

t
+

log t

1 − t
< 0.

Thus g1 is a decreasing function.

R e m a r k 5. A Green’s function usually solves a boundary problem, so
what does our function G solve? Let f be a smooth function with compact
support in D and set
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u(z) =
\\
D

G(z,w)f(w)
dx dy

(1 − |w|2)2
.

Then the function u is the unique solution of the equation ∆2u = f sub-
ject to the boundary condition u(z) = O(d(z) log(1/d(z)), where d(z) =
dist(z, ∂D) is the distance to the boundary. Indeed, the most general solu-
tion of the equation ∆2u = 0 on D can be written as

u(z) =

∞∑

n=−∞

un(r)r|n|eniθ (z = reiθ),

where

un(r) = an + bn

∞∑

k=1

r2k

|n| + k
.

When r → 1, the last sum has the asymptotics ∼ log(1/d(z)). Thus the
condition u(z) = O(d(z) log(1/d(z)) forces that un ≡ 0, and the claim con-
cerning uniqueness follows.

4. On the higher order case. In this section we make an attempt to
extend the result to the case of the higher powers ∆m, m > 2. However, we
will obtain a conclusive result only for m = 3.

Consider first, quite generally, the differential equation ∆mf = 0, where
f is again a radial function. We seek a basis of solutions of the form f0, f1, . . .
. . . , fm−1, g0, g1, . . . , gm−1 recursively determined by

(1) f0 ≡ 1, g0 = log t, ∆fi = 4fi−1, ∆gi = 4gi−1 (i > 0).

We write
gi = fi log t + ϕi

and require that fi and ϕi be regular at t = 0 and vanish there up to order
i − 1:

fi = O(ti), ϕi = O(ti) (i > 0).

As in Section 3, it now follows from (1) (and (3) in Section 3) that

(2) ∆ϕi = 4ϕi−1 − 8(1 − t)2f ′
i .

We must solve this equation, along with the third equation in (1), viz.

(3) ∆fi = 4fi−1.

Note that in (2)–(3) all functions are regular at t = 0.
Consider for a while the general inhomogeneous equation ∆f = 4h,

where f and h are regular radial functions with Taylor developments

f = a0 + a1t + a2t
2 + . . . and h = c0 + c1t + c2t

2 + . . .

We must determine f when h is given. Inserting into the equation we find
the recursion
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a1 = c0,

−2a1 + 4a2 = c1,

(n − 1)2an−1 − 2n2an + (n + 1)2an+1 = cn (n > 1);

thus a0 remains undetermined and we may always take it to be zero. (Putting
a−1 = 0 we can achieve that the equation on the last line is formally true
for all n = 0, 1, 2, . . .) This gives

a1 = c0, a2 = 1
4 (2c0 + c1), a3 = 1

9 (3c0 + 2c1 + c2) etc.,

and, quite generally,

(4) an =
1

n2

n−1∑

k=0

(n − k)ck (n > 0).

We also note that if c0 = c1 = . . . = ci−2 = 0 then a0 = a1 = . . . = ai−1 = 0,
that is, if h = O(ti−1) then f = O(ti). In particular, it is clear that iterating
the transformation (4) we obtain, starting with f1 ≡ 1, the coefficients of
f1, f2, . . . solving the recursion (3).

Example 1. Taking c0 = 1, c1 = c2 = . . . = 0 gives a1 = 1, a2 = 1
2 ,

a3 = 1
3 etc.; in other words, we recover the Taylor expansion of the function

f1 = − log(1 − t). Continuing, if we take instead c0 = 0, c1 = 1, c2 = 1
2
,

c3 = 1
3

etc. we get

a1 = 0, an =
1

n2

n−1∑

k=1

(n − k)
1

k
(n > 1).

The last equality may also be written as

an =
1

n

n−1∑

k=1

1

k
−

n − 1

n2
=

1

n

n−1∑

k=1

1

k
−

1

n
+

1

n2
.

Thus we find that

f2 = 1
2 log2(1 − t) + log(1 − t) + Li2(t).

Here we have used the fact that

log(1 − t) = −

∞∑

n=1

tn

n
, log2(1 − t) = 2

∞∑

n=2

n−1∑

k=1

1

k

tn

n
.

Let us now turn our attention to formula (2). Consider quite generally
the equation ∆f = 4h − 8(1 − t)2j′, where the function j has the Taylor
coefficients d0, d1, . . . :

j = d0 + d1t + d2t
2 + . . . ,

letting a0, a1, . . . and c0, c1, . . . be those of f and h respectively. As before,
we obtain, as a generalization of (4),
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(5) an =
1

n2

n−1∑

k=0

(n − k)ck − 2
dn

n
(n > 0).

Example 2. Taking c0 = c1 = . . . = 0, d0 = 0, d1 = 1, d2 = 1
2 ,

d3 = 1
3 etc., corresponding to ϕ0 = 0 and f1 = − log(1 − t) respectively,

gives an = −2/n2 (n > 0), which corresponds to ϕ1 = −2Li2(t), as we knew
already. Next we take

c0 = 0, ck = −
2

k2
(k = 1, 2, . . .), dk =

1

k

k−1∑

j=1

1

j
−

1

k
+

1

k2
.

This, apparently, corresponds to admitting the functions h = ϕ1 = −2Li2(t)
and j = f2 = 1

2 log2(1− t) + log(1− t) + Li2(t) (cf. Example 1 ultra). After
some manipulations, one finds

ϕ2 = 2[Li2(t) · log(1 − t) + M3(t) + Li2(t) − Li3(t)].

Here Li3 stands for the trilogarithm, defined by the formula (cf. [13], Chap. 6)

Li3(t) :=
\Li2(t)

t
=

∞∑

n=1

tn

n3
,

while the function M3 is defined as

(6) M3(t) =
\log2(1 − t)

t
.

(It is easy to verify a posteriori by differentiation that ϕ2 is indeed the
function that we were looking for, so we will not go into details.)

R e m a r k 1. The function M3 is closely related to a function introduced
by Kummer and denoted by Λ3 in [13] (see e.g. formula (6.114)). It is also
in a simple way connected with the trilogarithm. To see this put s = 1 − t.
Then one has

M3(t) =

t\
0

log2(1 − t)

t
dt = K −

s\
0

log2 s

1 − s
ds,

where we have put

K =

1\
0

log2(1 − t)

t
dt (2).

Integrating the last integral twice by parts gives

(2) Using Mathematica we found the numerical value K = 2.4041138063191885708.
In fact, setting t = 0 in the formula below for the function M3 one sees that indeed
K = 2ζ(3) (= 2· Apéry’s constant); this was also kindly pointed out to us by Prof. Lewin
(personal communication).
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s\
0

log2 s

1 − s
ds = − log(1 − s) · log2 s + 2

s\
0

log(1 − s)

s
· log s ds

= − log(1 − s) · log2 s − 2Li2(s) · log s + 2

s\
0

Li2(s)

s
ds.

Thus one finds

M3(t) = K + log t · log2(1 − t) + 2Li2(1 − t) · log(1 − t) − 2Li3(1 − t);

this formula seems to be essentially due to Kummer (cf. [13], formula
(6.113)).

The information contained in Examples 1 and 2 may be summarized as
follows.

Scholium 1. The differential equation ∆3f = 0 has a basis of radial
solutions {f0, f1, f2, g0, g1, g2}, where gi = fi log t + ϕi (i = 0, 1, 2) and

(7)

f0 ≡ 1, f1 = − log(1 − t),

f2 = 1
2

log2(1 − t) + log(1 − t)+ Li2(t),

ϕ0 = 0, ϕ1 = −2Li2(t),

ϕ2 = 2[Li2(t) · log(1 − t) + M3(t) + Li2(t) − Li3(t)],

where again, generally speaking , Lim (m = 2, 3, . . .) stands for the polyloga-
rithm, while the function M3 is defined by formula (6).

From Scholium 1 we may read off the boundary behavior of these func-
tions; in particular,

f0(0) = 1 (trivial!), f1(t) = t+O(t2), f2(t) = 1
4
t2 +O(t3) as t → 0.

In fact, it is easily seen that this is a special case of a general result:

(8) fm(t) =
1

(m!)2
tm + O(tm+1) as t → 0.

The above computations can, in principle, be continued to yield a basis
of radial solutions also in the case of the equation ∆mf = 0 when m > 3.
However, it seems that in general it is not very easy to express the functions
fi and ϕi in terms of known special functions. (Maybe one should simply
promote these functions to the level of special functions of their own right!)

Returning to our original question concerning the determination of the
Green’s function G = Gm of the operator ∆m (m > 2), it is, in view of (8)
and the other properties of our basis, natural to seek its radial part in the
form

(9) Gm(t) = (m!)2cm(gm−1 + A0f0 + A1f1 + . . . + Am−1fm−1),
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where cm is the constant determined in Section 2 and A0, A1, . . . Am−1 are
certain yet undetermined coefficients. At least it is clear that we have the
crucial relation ∆mGm = δ.

Example 3. If m = 1, then we have A0 = 0, which agrees with G1 =
(4π)−1 log t (= G1). If m = 2, we take A0 = C = π2/3 and A1 = 0, which
likewise agrees with the result in Section 3.

In general, the Ai’s have to be chosen in such a way that the function
vanishes at t = 1 up to a suitable (maximum) order.

Let us look at the case m = 3. Then (9) takes the form

G3(t) = (3!)2c3(g2 + A0f0 + A1f1 + A2f2).

Put once more s = 1 − t, so that s = 0 if t = 1. From (7) we infer that

(10)
f0 ≡ 1 (again trivial), f1 = − log s, f2 = 1

2 log2 s + O(log s);

ϕ2 = π2

3 log s + K ′ + o(1) as s → 0.

where K ′ = 2{K +π2/6− ζ(3)} with K as in Remark 1 (3). We now choose

A0 = −K ′, A1 = π2

3 , A2 = 0.

Then we achieve G3 = O(s log2 s) as s → 0 or t → 1. To sum up, we have
thus established the following result.

Theorem 1. The partial differential operator ∆3 has invariant Green’s
function G3 = G3(z,w), whose radial part is given by

G3(t) =
1

64π

(
f2 · log t + ϕ2 − K ′f0 +

π3

3
f1

)
,

where the functions f0, f1, f2, ϕ2 are provided by formula (7), while the con-
stant K ′ is as in (10). One has, for w fixed ,

G3(z,w) = O(d(z) log2d(z)),

where d(z) is the distance to the boundary.

We expect that a similar result holds also for m > 3, that is, we have
an invariant Green’s function Gm satisfying Gm(z) = O(d(z) logm−1 d(z))
at the boundary. But as we so far do not possess a sufficiently explicit
representation of the functions in the corresponding basis, we are unable to
prove it. At any rate, in view of the fact that the present paper is already
quite long, it seems not to be advisable to try and include anything more
about m > 3 here.

5. Connection between ∆m and the invariant Laplacean ∆. In
this section we shall relate the iterates ∆m (m = 0, 1, . . .) of the ordinary

(3) In view of footnote (2) one has K′ = 2(ζ(3) + ζ(2)).
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Laplacean ∆ to the invariant one ∆. This is done by invoking the operator

Lm = (1 − |z|2)m+1∆m(1 − |z|2)m−1.

It is readily seen (using what was said in Remark 1 in Section 3) that this
is an invariant operator.

Now we recall a general fact about symmetric spaces, viz. that the al-
gebra of invariant differential operators on a symmetric space of rank r is
isomorphic to a polynomial algebra in r variables (cf. [9], Section II.4.3, es-
pecially Proposition II.4.11). The disc D is a (Hermitean) symmetric space
of rank one, and in this case one can take the single generator to be the
invariant Laplace–Beltrami operator ∆. Therefore we know a priori that
Lm must be a polynomial in ∆. We wish to identify this polynomial. Here
is the result:

Theorem 1. We have

(1) Lm = pm(∆),

where pm is the polynomial

(2) pm(λ) =
m∏

j=1

(λ − 4j(j − 1)).

Thus, in particular ,

p1(λ) = λ, p2(λ) = λ2 − 8λ, p3(λ) = λ3 − 32λ2 + 192λ etc.

R e m a r k 1. In [15] the case of the corresponding compact symmetric
space, i.e. the Riemann sphere S2, was considered. It was proved that the
operator DmDm can be expressed as a polynomial of the “compact” ana-
logue of the operator∆(α,0) (cf. Remark 1 in Section 3) on the sphere. Here

D is the invariant Cauchy–Riemann operator on S2,

D = (1 + |z|2)2
∂

∂z
,

and D is its adjoint (it depends on which metric we are using, that is,
the value of α; see Section 6). But a corresponding result is true also in
the present non-compact situation and it then turns out that if α = 0
one obtains exactly the same polynomial as in Theorem 1. One only has
to make formal changes, replacing the expression 1 + |z|2, related to the
Bergman kernel, by 1 − |z|2, etc. Thus we can draw the conclusion that
we have a relation of the type Lm = DmDm. In this case the definition
reads:

D = (1 − |z|2)2
∂

∂z
.
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The proof of Theorem 1 given below is not very hard but before turning
to it let us have a look at two special cases: m = 1, which is trivial, and
m = 2, because treating this case directly reveals one interesting feature.

Example 1 (m = 1). It is clear that L1 = ∆ = (1 − |z|2)2∆, which
agrees with p1(λ) = λ.

Example 2 (m = 2). It is convenient to put w = 1 − |z|2. Then we can
write

L2 = w3∆2w = w2 · w∆2w.

We shall also use the same letter w to denote the operation of multiplication
by the function w. Let us further invoke the Euler operator E, viz.

E = z
∂

∂z
+ z

∂

∂z
.

Then one has the relations

(3)

∆w = w∆ − 4E − 4,

∆E = E∆ + 2∆,

Ew = wE + 2w − 2,

or

[w,∆] = 4(E + 1),

[E,∆] = −2∆,

[E, w] = 2(w − 1);

the bracket [ ] is used to designate the commutator of operators. Using the
formulae (3) we find

w∆2w = (∆w + 4E + 4)(w∆ − 4(E + 1))(4)

= ∆w2∆ − 4∆w(E + 1) + 4(E + 1)w∆ − 16(E + 1)2

= w−2
∆

2 − 4(∆wE − Ew∆) − 4(∆w − w∆) − 16(E2 + 2E + 1).

The penultimate term in this formula is equal, again in view of (3), to
−4(−4E− 4) = 16(E + 4). In order to treat the third term from the end we
write

Ew∆ = E∆w + 4E2 + 4E = ∆Ew − 2∆w + 4E2 + 4E

= ∆wE + 2∆w − 2∆ − 2∆w + 4E2 + 4E.

Inserting this information into (4) gives finally L2 = L2
1−8L1, in agreement

with p2(λ) = λ2 − 8λ.

R e m a r k 2. The left equations in (3) express the fact that the op-
erators ∆, w and E span together with the identity operator 1 a four-
dimensional Lie algebra. (Indeed, if we are willing to replace E by E1 = E+1
and w by w1 = w − 1, these equations become even somewhat simpler and
we have the constituting relations of sl(2).) So, in principle, our theorem
can be viewed as a result about an enveloping algebra. However, we were
not successful in our attempt to prove Theorem 1 along these lines.
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P r o o f o f T h e o r e m 1. It is convenient to introduce the variable
s = 1 − t = 1 − |z|2. Then the radial part of ∆ is given by

∆f = 4s2((1 − s)f ′)′ if f = f(s).

We observe that ∆sk = 4k(k − 1)sk − 4k2sk+1. Iterating from k = 1 to
k = m gives

(5)

m∏

k=1

[∆− 4k(k − 1)]s = (−1)mm!24msm+1.

Next, if P (s) is any polynomial in s of degree p and leading coefficient c,
then ∆P (s) is a polynomial in s of degree p− 1 and with leading coefficient
−4p2c. Setting P (s) = sm and iterating m times, we see that

∆msm = (−1)mm!24ms0,

that is,

(sm+1∆msm−1)s = (−1)mm!24msm+1,

which is the same right hand side as in the formula (5).
Finally, using the covariance we infer that the relation

sm+1∆msm−1f =

N∏

k=1

[∆− 4k(k − 1)]f

holds not only for f = s, but for any function f .

A l t e r n a t i v e p r o o f (via the upper halfplane). By conformal invari-
ance it suffices to prove the corresponding result for the upper (Poincaré)
halfplane {z : y > 0}. The rôle of the invariant Laplacean in the disc is then
taken over by the differential operator 4y2∆, for which we retain the same
notation ∆, while we put

Lm = (2y)m+1∆m(2y)m−1.

Thus we have to establish the validity of (1) with this new interpretation
of Lm and ∆. Let us work with the functions yσ, where σ stands for any
complex number. These functions are eigenfunctions of∆ with eigenvalue λ:

∆yσ = λyσ with λ = 4σ(σ − 1).

Using this it is easy to see that

Lmyσ = pm(λ)yσ

and the proof is completed by an argument similar to the one used in the
previous proof. (Using further a simple density argument, this proof works
even without the a priori knowledge that Lm must be a polynomial in ∆,
which, as we know, is a deep result on invariant partial differential operators
on symmetric spaces.)
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R e m a r k 3 (on Green’s functions). Theorem 1 above suggests the ques-
tion of what can be said about differential operators of the form p(∆), where
p is an arbitrary polynomial, in general, and Green’s functions of such op-
erators in particular. For instance, in view of the result in Remark 4 in
Section 3 it is a legitimate question to ask for which polynomials p it is true
that the corresponding Green’s function is positive. To fix ideas let us first
assume that p is a polynomial of degree 2 with two distinct roots a and b, i.e.
p(λ) = (λ − a)(λ − b)—thus the non-degenerate situation. Then, according
to a remark by Alexander Weinstein (cf. [17], p. 136), every solution u to
the partial differential operator

(∆− a)(∆− b)u = 0

can be written as a sum u = ua+ub, where (∆−a)ua = 0 and (∆−b)ub = 0.
Therefore, in principle, the problem is reduced to degree one. Let us look at
radial solutions of any of these two equations, that is, functions f = f(t),
with t = r2 = |z|2 as before, such that

(1 − t)2[tf ′′ + f ′] − λf = 0,

where 4λ stands for any of the numbers a or b. If we put s = 1 − t, we can
write this equation as

s2(s − 1)f ′′ + s2f ′ + λf = 0,

which is again a special case of the more general ordinary differential equa-
tion

(6) s2(s − 1)f ′′ + [(a + b + 1)s + (α + β − 1)]sf ′ + (abs − αβ)f = 0,

namely the special case a = b = 0, α, β = 1/2 ± ̺, where we have put
λ + 1/4 = ̺2. It follows from the marvellous book [12], (19), p. 425, that
the general solution of equation (6) is of the form

(7) f = sαy(a + α, b + α;α − β + 1; s),

where y( , ; ; ) is an ad hoc notation for the (generic) hypergeometric func-
tion. It follows from (7) that in our case one has

f(s) = s1/2+̺y(1/2 + ̺, 1/2 + ̺; 1 + 2̺; s)

or, equivalently, in terms of the variable t,

f(t) = (1 − t)1/2+̺y(1/2 + ̺, 1/2 + ̺; 1; t).

In particular, we thus have the regular (at s = 0 or t = 1) solution f1 given
by

f1(s) = s1/2+̺F (1/2 + ̺, 1/2 + ̺; 1 + 2̺; s)

and also the regular (at t = 0) solution f2 given by

f2(t) = (1 − t)1/2+̺F (1/2 + ̺, 1/2 + ̺; 1; t),
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where F = 2F1( , ; ; ) is the standard notation for the Gauss hypergeometric
function. Note that if λ = 0, in which case we can take ̺ = 1/2, the former
formula gives the function log t or 1. Thus, summarizing our discussion and
abstracting, we may conclude that Green’s function also in the general case
(p an arbitrary polynomial) may be expressed in terms of known “higher
transcendental functions”, hypergeometric functions or degenerate cases of
them. As essentially an illustration of this fact we may mention that the
dilogaritm Li2(x) can be obtained from the function F (ε, ε; 1;x) by letting
ε → 0 (see [13], p. 30).

6. On the case of several complex variables. In this section we
discuss to what extent the results of this paper can be generalized to the
case of several complex variables. However, most of what we say here belongs
to the category of general nonsense, but we hope to be able to return to this
topic later on and do some more substantial work.

First of all we observe that the natural generalization of Bojarski’s theo-
rem [4] to higher dimensions is in the real, and involves conformal mapping.
As biholomorphic transformations in several variables are conformal only
in rare cases, we may conclude that the Euclidean Laplacean is not very
productive from the present point of view: The results of Sections 1–2 have
their natural extensions in the context of real variables. On the other hand,
the invariant Laplacean of Sections 3–4 has an obvious counterpart in sev-
eral variables: it is the Laplace–Beltrami operator in the ball of C

n equipped
with the Bergman metric. Now the ball is a rank one symmetric domain.
More generally, we could allow bounded symmetric domains of higher rank,
but then we have the additional difficulty that the Laplace–Beltrami op-
erator does not generate the whole algebra of invariant differential opera-
tors on the symmetric domain in question (cf. what was said about this
in the second paragraph of Section 5). What remains of Section 5 is, how-
ever, the connection between invariant partial differential operators and the
iterates of the invariant, or—perhaps better—covariant, Cauchy–Riemann
operator D (in the one-dimensional case embodied in the result from [15]
mentioned in Remark 1 of the said section). Let us elaborate on this point
somewhat.

Consider first quite generally the situation when there is given a Kähler
manifold Ω of dimension n and an Hermitean vector bundle E of rank N over
Ω. In terms of local holomorphic coordinates z = (z1, . . . , zn) the metric
on Ω is given by

ds2 = hij(z)dzidzj .

Similarly, picking a system of local trivializing sections eα = eα(z) (α =
1, . . . , N) the metric on E is given by certain coefficients aαβ = aαβ(z)
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defined by the formula

aαβ(z) = (eα(z), eβ(z))z ,

where (·, ·)z denotes the inner product in the fiber Ez of E over the point
with local coordinate z.

N o t e. Here and in what follows we use liberally the usual conventions
of tensor calculus, including the summation convention.

Let T cΩ = T ′Ω ⊕ T ′′Ω be the usual splitting of the complex tangent
bundle of Ω into its holomorphic and anti-holomorphic components. Its
dual, the complex cotangent bundle T c∗Ω, admits a corresponding splitting,
giving in turn rise to the splitting d = d′ + d′′ of the operation of exterior
differentiation into its holomorphic and anti-holomorphic parts (thus d′′ is
just another notation for the ∂-operator). By the F. Riesz lemma we have
a canonical anti-holomorphic equivalence

T ′′∗Ω
̺
≈ T ′Ω

induced by the metric on Ω. Composing with d′′ we get a holomorphic linear
mapping

(1) D = ̺ ◦ d′′ : E → T ′Ω ⊗E (“covariant” Cauchy–Riemann operator).

Explicitly: In terms of the local data just introduced we have

(2) Df = hij ∂fα

∂zj
∂i ⊗ eα, with ∂i =

∂

∂zi
.

Here hij denotes the inverse of the matrix hij , while f stands for any smooth
section of E with local coefficients fα = fα(z) (α = 1, . . . , N). If we restrict
f to be square integrable with respect to the Kähler (or Liouville) measure µ
on Ω, we may view D as a linear operator on the Hilbert space L2(Ω,µ,E).
Therefore we can put into play its adjoint D,

D : T ′Ω ⊗ E → E.

Explicitly:

(3) Dg = aαβ 1

deth
∂j(det haγβgjγ)eα.

Here det h stands for the determinant of the matrix hij , while g is any
smooth section of the bundle T ′Ω ⊗E with local coefficients gjα, aαβ being
the inverse of the matrix aαβ .

One virtue of the above construction of the Cauchy–Riemann operator D
is that it can be iterated. Starting with a section f of E and having formed
Df , which is a section of T ′Ω ⊗ E, we apply the same construction to the
case when the bundle E is replaced by T ′Ω ⊗ E. This produces a section,
written D2f , of the latter section. In the same way we can define D3,D4, . . .
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We can likewise define iterates of the adjoint operator: D2,D3, . . . The local
expressions for these iterated operators are given by formulae which are
straightforward generalizations of our previous (2) and (3), only many more
indices are involved. We can also form, for each m = 1, 2, . . ., the operator
Lm = DmD

m
. It is clear that Lm : E → E. In particular, if E is the trivial

line bundle, then E = C, N = 1, and Lm thus turns out to be a scalar
operator.

Let us now apply the above to the case when Ω is an Hermitean sym-
metric space, in particular a bounded symmetric domain, denoting by G

the corresponding group of biholomorphic automorphisms. We also assume
that G operates by metric preserving transformations on E. Then it is clear
that the operators D and D intertwine with the group actions and so do
their iterates and other composites. (This means, in particular, that we are
allowed to remove the quotes around the word “covariant” in formula (1).)
Likewise, it transpires that the operator Lm is covariant, invariant if E = C.
This is the generalization of the corresponding operator in Section 5 that we
have in mind.

Problem 6.1. Restricting ourselves to the scalar case (E = C) it is
now natural to ask what is the bearing of the operators Lm to the general
invariant partial differential operator on our Hermitean symmetric space Ω.
Thus, in particular: Is it true that the operators Lm (m = 1, 2, . . .) generate
the algebra of all invariant partial differential operators on Ω? Ideally, one
might even hope that, if r denotes the rank of Ω, the first r of them might
suffice.
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