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Borel resummation of formal solutions

to nonlinear Laplace equations in 2 variables

by M. E. Plís (Kraków) and B. Ziemian (Warszawa)

Abstract. We consider a nonlinear Laplace equation ∆u = f(x, u) in two variables.
Following the methods of B. Braaksma [Br] and J. Ecalle used for some nonlinear ordinary
differential equations we construct first a formal power series solution and then we prove
the convergence of the series in the same class as the function f in x.

0. Introduction. We consider a nonlinear Laplace equation of the form

(1) ∆u =

(
∂2

∂x2
1

+
∂2

∂x2
2

)
u = f(x, u)

where x = (x1, x2) ∈ R
2. First we are going to construct a formal power

series solution of (1) and then prove that every such solution is of the same
class as the function f in x. Similar results for some nonlinear ordinary
differential equations were proved by Braaksma [Br], following the ideas of
J. Ecalle.

We denote by L the image of the positive quadrant R
2
+ = R+×R+ under

the unitary matrix 1√
2

(
1−i 1+i
1+i 1−i

)
.

Definition 1 ([Zie1]). A function F of the variable z= (z1, z2) ∈ C
2 is

said to be Laplace holomorphic on L if F is holomorphic on some polydisk
centered at (0, 0) ∈ C

2, can be holomorphically continued to some sectorial
neighbourhood S = S1 × S2 of L with vertex (0, 0), and is of exponential
growth on S, i.e. for every closed subsector S′ = S′

1 × S′
2 ⊂ S there exist

constants c = (c1, c2) and C such that for z ∈ S′,

(2) |F (z1, z2)| ≤ Cec1|z1|+c2|z2|.

Definition 2. A function f of the variable x = (x1, x2) ∈ R
2 is said to

be a 1-sum of a formal power series
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f̂(x) =

∞∑

k,l=0

gkl
1

(x1 + ix2)k+1(ix1 + x2)l+1

if there exists a Laplace holomorphic function F on L such that

f(x) =
\
L

e−xzF (z) dz

and

F (z) =

∞∑

k,l=0

gkl

i2k+l+1k!l!
(z1 − iz2)

k(z2 − iz1)
l

near zero. In that case we say that f is 1-resummable.

In this paper we assume that f(x, u) on the right hand side of (1) is the
1-sum in x of a formal power series

f̂(x, u) =
∞∑

k,l=0

gkl(u)
1

(x1 + ix2)k+1(ix1 + x2)l+1

with coefficients gkl(u) holomorphic for every (k, l) ∈ N
2
0, on some fixed

neighbourhood U of zero in C, and gkl(0) = 0.

Therefore, if we write

f̂(x, u) =

∞∑

k,l=0

( ∞∑

j=1

cjklu
j
) 1

(x1 + ix2)k+1(ix1 + x2)l+1

=
∞∑

j=1

( ∞∑

k,l=0

cjkl

1

(x1 + ix2)k+1(ix1 + x2)l+1

)
uj

then we can write f(x, u) =
∑∞

j=1 cj(x)u
j where cj(x) is the 1-sum of the

formal series
∞∑

k,l=0

cjk,l

1

(x1 + ix2)k+1(ix1 + x2)l+1
,

and f is holomorphic in u on U . Hence, we have cj(x) =
T
L
e−xzTj(z) dz for

some Laplace holomorphic functions Tj . Moreover, Tj are holomorphic on
the same sector S for all j, and the constants c and C in (2) are independent
of j.

Theorem. If Tj(0) 6= 0, then there exists a family of 1-resummable

solutions of equation (1) of the form

u(x) =

∞∑

ν=0

dν
1

(x1 + ix2)ν1+1
· 1

(ix1 + x2)ν2+1
.
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This means that

(3) u(x) =
\
L

e−xzT (z) dz

with T being a Laplace holomorphic function on L. Moreover , every formal

solution û of (1) of the above form is 1-resummable.

The proof will be divided into three parts.

1. Convolution equation. Applying ∆ to u in the form (3) we arrive
at the complex symbol of ∆ as the complex polynomial

P (z1, z2) = z2
1 + z2

2 =

(
1 + i√

2
z1 +

1 − i√
2
z2

)(
1 − i√

2
z1 +

1 + i√
2
z2

)
.

In the new variables

ζ1 =
1 + i√

2
z1 +

1 − i√
2
z2, ζ2 =

1 − i√
2
z1 +

1 + i√
2
z2,

P becomes the polynomial P̃ (ζ1, ζ2) = ζ1 · ζ2, and after changing variables
on the left hand side of (1) we get

∆u(x1, x2) = (P (z1, z2)T )[e−x1z1−x2z2 ]

= (P̃ (ζ1, ζ2)T̃ )[e
−x1( 1−i

2
√

2
ζ1+ 1+i

2
√

2
ζ2)−x2( 1+i

2
√

2
ζ1+

1−i

2
√

2
ζ2)]

= (P̃ (ζ1, ζ2)T̃ )[e
−( 1−i

2
√

2
x1+

1+i

2
√

2
x2)ζ1−( 1+i

2
√

2
x1+ 1−i

2
√

2
x2)ζ2 ].

So we are looking for a solution

ũ(y1, y2) = T̃ [e−y1ζ1−y2ζ2 ] = u

(
1 − i

2
√

2
x1 +

1 + i

2
√

2
x2,

1 + i

2
√

2
x1 +

1 − i

2
√

2
x2

)

of the convolution equation

(4) ζ1ζ2T̃ = f∗T̃

where f∗T̃ =
∑∞

j=1 T̃j ∗ T̃ ∗j with T̃ ∗j denoting the jth convolution power

of T̃ , i.e. T ∗j = T ∗ ... ∗ T (j times). From now on we write T instead of T̃ .
We can assume that T1(0) = 1, for otherwise we modify slightly the

change of variables after dividing equation (1) by T1(0).
Since our existence proof for the solution of (4) essentially follows that

of Braaksma [Br], we shall consider T having the formal expansion

(5) T =
∞∑

k,l=0

dklζ̃
k
1 ζ̃

l
2

with ζ̃p = ζp/Γ (p + 1). Then due to the convolution formula

ζ̃ l ∗ ζ̃k = ζ̃ l+k+1
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we find

f∗T =

∞∑

j=1

∞∑

m1,m2=0

cjm1m2
ζ̃m1

1 ζ̃m2

2 ∗
( ∞∑

k,l=0

dklζ̃
k
1 ζ̃

l
2

)∗j

=

∞∑

j=1

∞∑

m1,m2=0

cjm1m2
ζ̃m1

1 ζ̃m2

2 ∗
∞∑

ν1+...+νj=0

dν1
. . . dνj

ζ̃ν1+...+νj+j−1

=

∞∑

j=1

∞∑

m+ν1+...+νj=0

cjmdν1
. . . dνj

ζ̃m+ν1+...+νj+j

=
∞∑

k=0

( k+1∑

j=1

∑

m+ν1+...+νj=k+1−j

cjmdν1
. . . dνj

)
ζ̃k+1

for k,m, νj ∈ N
2
0, j = (j, j), 1 = (1, 1), k = min{k1, k2}.

Inserting this in (4) we find

(6) dk(k + 1) =

k+1∑

j=1

∑

m+ν1+...+νj=k+1−j

cjmdν1
. . . dνj

,

since

ζ · ζ̃p = (p+ 1)ζ̃p+1.

In particular, we can take d00 arbitrarily (since c100 = 1), d10 = c101d00, d01

= c101d00,

2d20 = c120d00 + c110d10, 2d02 = c102d00 + c101d01,

3d11 = c111d00 + c110d01 + c101d10 + c200d00, . . .

We are going to prove that T defined formally by (5) with coefficients dν

satisfying the recurrence (6) is a holomorphic function of exponential growth
in some sector S.

Before starting the resummation proof for the expansion (5), we consider
the resummation problem with respect to one variable. Therefore, let us
write (5) in the form

T =

∞∑

k=0

T1k(ζ1)ζ̃
k
2

where T1k(ζ1) =
∑∞

l=0 dlk ζ̃
l
1.

In a way similar to that of deriving (6), we find that T1k satisfy the
convolution equation
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ζ1(k + 1)T1k =

k+1∑

j=1

∑

m+ν1+...+νj=k+1−j

T j
m ∗ T1ν1

∗ . . . ∗ T1νj

for k,m, νj ∈ N0, where T j
m =

∑∞
p=0 c

j
pmζ̃

p
1 . For k = 0 this gives

(7) ζ1T10 = T 1
0 ∗ T10,

which is equivalent to the equation

(7′)
d

dt
u0 = c10(t)u0,

in the variable t = 1−i
2
√

2
x1 + 1+i

2
√

2
x2.

For k = 1 we get

2ζ1T11 = T 1
0 ∗ T11 + T 1

1 ∗ T10 + T 2
0 ∗ T ∗2

10

or equivalently

2
d

dt
u1 = c10(t)u1 + c11(t)u0 + c20(t)(u0)

2.

We easily see that the jth equation is linear in uj with u0, . . . , uj−1

regarded as coefficients. Since the solutions of linear equations with re-
summable coefficients are resummable themselves (cf. [Br], [Zie1]), we see
that all T1k are Laplace holomorphic functions. The same is also true for

Tl2(ζ2) =
∞∑

j=0

dlj ζ̃
j
2 .

Now we pass to the proof of the convergence of the formal series (5) with
dν satisfying (6). Since the series (5) satisfies (4), for a fixed N ∈ N0 the
series

TN =
∞∑

l,j=N+1

dlj ζ̃
l
1ζ̃

j
2 = T − SN

satisfies the equation

ζ1ζ2TN = GN (ζ, TN ) =
∞∑

j=1

j∑

k=0

(
j

k

)
Tj ∗ T ∗k

N ∗ S∗(j−k)
N − ζ1ζ2SN

=
∞∑

k=0

( ∞∑

j=k
j≥1

(
j

k

)
Tj ∗ S∗(j−k)

N

)
∗ T ∗k

N − ζ1ζ2SN .

We write

(8) GN (ζ, ψ) =

∞∑

k=0

gk(ζ) ∗ ψ∗k



36 M. E. Pli ś and B. Ziemian

where g0 =
∑∞

j=1 Tj ∗ S∗j
N − ζ1ζ2SN , and gk =

∑∞
j=k

(
j
k

)
Tj ∗ S∗(j−k)

N for
k > 0. The series gk are convergent near (0, 0) due to the remarks about
the resummation problem with respect to one variable and the fact that the
series

∑∞
j=k

(
j
k

)
Tj(ζ)u

j−k is convergent near 0. Moreover, we can see that for
every subsector S′ ⊂ S there exist K and c = (c1, c2) such that for ζ ∈ S′,

(9)

{ |g0(ζ)| ≤ K|ζ1|N+1|ζ2|N+1ec1|ζ1|+c2|ζ2|,

|gk(ζ)| ≤ Kec1|ζ1|+c2|ζ2| for k ≥ 1.

For p = (p1, p2), pi > 0, s = (s1, s2) ∈ R
2, we denote by Ws(p) the

space of functions ψ holomorphic in the polydisc {|ζ1| ≤ p1, |ζ2| ≤ p2} and
such that

‖ψ‖s,p = sup
|ζi|≤pi

|ζ−sψ(ζ)| <∞.

Observe that for ζ ∈ {|ζi| ≤ pi} and s1 > −1, s2 > −1,

|ψ∗m(ζ)| ≤ ‖ψ‖m
s,p

Γ (s1 + 1)mΓ (s2 + 1)m

Γ (m(s1 + 1))Γ (m(s2 + 1))
(10)

× |ζ1|m(s1+1)−1|ζ2|m(s2+1)−1.

Therefore by the properties of the Γ -function the function (8) makes sense
for ψ ∈Ws(p) if s is large enough.

Consider the operator

(11) Rψ(ζ) =
1

ζ
g0(ζ) +

1

ζ
(g1 ∗ ψ)(ζ) +

∞∑

m=2

1

ζ
(gm ∗ ψ∗m)(ζ).

Denoting the summands by R0ψ, Rlinψ and Qψ respectively, for ψ ∈
WN−1(p) and ζ ∈ {|ζi| ≤ pi, i = 1, 2} we get the estimates

(12)





|R0ψ(ζ)| ≤ K|ζ1|N |ζ2|N ,

|Rlinψ(ζ)| ≤ K‖ψ‖N−1,p|ζ1|N−1|ζ2|N−1

(
Γ (N)

Γ (N + 1)

)2

=
K

N2
‖ψ‖N−1,p|ζ1ζ2|N−1,

|Qψ(ζ)| ≤ K

( ∞∑

m=2

‖ψ‖m
N−1,p

Γ (N)2m

Γ (mN)2
|ζ1ζ2|(m−1)N−1

)
|ζ1ζ2|N .

Set M =
∥∥ 1

ζ g0(ζ)
∥∥

N−1,p
. If ‖ψ‖N−1,p ≤ 2M then by choosing p small and

N large we may have (by (12))

‖Qψ‖N−1,p ≤ 1
3M and ‖Rlinψ‖ ≤ 1

3M.

Therefore the operator R acts in the space

BN−1,p = {ψ ∈WN−1(p) : ‖ψ‖N−1,p ≤ 2M}.
Observe that for ψ,ψ + χ ∈ BN−1,p we have
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|(ψ + χ)∗m(ζ) − ψ∗m(ζ)| =

∣∣∣∣
m∑

l=1

(
m

l

)
(ψ∗(m−l) ∗ χ∗l)(ζ)

∣∣∣∣

≤
m∑

l=1

(
m

l

)
‖ψ‖m−l

N−1,p‖χ‖l
N−1,p

Γ (N)2m

Γ (mN)2
|ζ1ζ2|mN−1

≤ Γ (N)2m

Γ (mN)2
|ζ1ζ2|mN−1

m∑

l=1

(
m

l

)
‖ψ‖m−l

N−1,p‖χ‖l
N−1,p.

We have
m∑

l=1

(
m

l

)
‖ψ‖m−l

N−1,p‖χ‖l
N−1,p ≤ ‖χ‖N−1,p

m∑

l=1

(
m

l

)
(2M)m−l(4M)l−1

≤ ‖χ‖N−1,p

4M
(2M + 4M)m =

(6M)m

4M
‖χ‖N−1,p

since ‖χ‖ ≤ ‖ψ + χ‖ + ‖ψ‖ ≤ 4M . Hence

|(ψ + χ)∗m(ζ) − ψ∗m(ζ)| ≤ (6MΓ (N)2)m

4MΓ (mN)2
‖χ‖N−1,p(|ζ1ζ2|)mN−1,

and∣∣∣∣
1

ζ
(gm ∗ ((ψ + χ)∗m − ψ∗m))(ζ)

∣∣∣∣

≤ K

4M

(
(6MΓ (N)2)m

Γ (mN)2
|ζ1ζ2|(m−1)N−1

)
|ζ1ζ2|N‖χ‖N−1,p.

From this and from (12), we derive that

‖R(ψ + χ) −Rψ‖N−1,p ≤ ‖Rlinψ‖N−1,p + ‖Q(ψ + χ) −Qψ‖
≤ 1

3
‖ψ‖N−1,p +K ′‖χ‖N−1,p ≤ 2

3
‖χ‖N−1,p

provided p is small enough. Therefore, for p small and N large, the operator
R is a contraction on BN−1,p. Hence we get a unique function ψN solving
the nonlinear convolution equation

(13) ζ1ζ2ψN = GN (ζ, ψN ), ψN ∈ BN−1,p.

From the construction of GN it follows that for every N (sufficiently
large) the function ψN +SN satisfies the equation (4), hence the kth Taylor
coefficient of ψN (at 0) must satisfy (6) (for ki ≥ N + 1), so T defined
formally by (5) and (6) converges on {|ζi| ≤ pi}.

2.Analytic continuation of solutions. Define S(r)={ζ ∈C : |ζ| ≤ r}
∩ S1 (see Introduction) and let p be such that the solution ψN of (13) is
holomorphic in the interior of S2(p) = S(p) × S(p). We shall extend this
solution to a unique solution on some complex neighbourhood of R

2
+.
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Choose δ, p1 ∈ R+, δ < p1 < p. Define

S0 = S(p1) × S(p),

S+ = {ζ ∈ C
2 : (ζ1 − p1, ζ2) ∈ S(δ) × S(p) or ζ1 = p1},

S1 = S0 ∪ S+.

Then S0 ∩ S+ = {p1} × S(p).
Let W0 denote the space of functions on S1 which are continuous on

S1 \ (S0 ∩ S+) and analytic in its interior. Next define ψ̃ ∈ W0 by setting

ψ̃ = ψN on S0 and ψ̃ ≡ 0 on S+. Introduce the space

VN−1(δ) = {φ ∈ C0(S+) ∩ O(intS+) : sup
ζ∈S+

|ζ−N+1
2 φ(ζ)| <∞}.

For φ ∈ VN−1(δ) define φ0 ∈W0 by extending φ by zero on S0. Then

(φ0 ∗ φ0)(ζ) =
\

C(ζ)

φ0(ζ − γ)φ0(γ) dγ ≡ 0

where C(ζ)=C(ζ1)×C(ζ2), C(ζi) is a path from 0 to ζi. Hence also φ∗m
0 ≡ 0

for m ≥ 2. Clearly, ψ̃∗m = ψ∗m
N on S0 for all m. Therefore (ψ̃ + φ)∗m =

ψ̂∗m +mψ̂∗(m−1) ∗ φ0.
Consequently, for G(ζ, ψ) = GN (ζ, ψ) given by (8) we have

G(ζ, ψ̃ + φ0) = G(ζ, ψ̃) + (B ∗ φ0)(ζ) where

B(ζ) = g1(ζ) +

∞∑

m=2

m(gm ∗ ψ̃∗(m−1))(ζ).

Thus the equation

ζ(ψ̃ + φ0) = G(ζ, ψ̃ + φ0)

gives rise to a linear convolution equation

(14) φ0 = χ+
1

ζ
(B ∗ φ0)(ζ)

for φ0 ∈ VN−1(δ), with χ(ζ) = 1
ζ
G(ζ, ψ̃) − ψ̃.

For ζ ∈ S+ and φ ∈ VN−1(δ) we have

∣∣∣∣
1

ζ
(B ∗ φ0)(ζ)

∣∣∣∣ =

∣∣∣∣
1

ζ

ζ1\
p1

ζ2\
0

B(ζ1 − η1, ζ2 − η2)φ(η1, η2) dη1 dη2

∣∣∣∣

=

∣∣∣∣
1

ζ

ζ2\
0

[ ζ1−p1\
0

B(ζ1− p1 − γ1, ζ2− η2)φ(γ1 + p1, η2) dγ1

]
dη2

∣∣∣∣

≤ 1

|ζ| ‖φ‖N−1

∣∣∣
ζ2\
0

ηN−1
2

[ ζ1−p1\
0

B(τ, ζ2 − η2) dτ
]
dη2

∣∣∣
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with ‖φ‖N−1 = supζ∈S+
|ζ−N+1

2 φ(ζ)|. Now, from the definition of B, we see
that for τ ∈ S(δ) × S(p),

|B(τ)|≤ C

(
1 +

∞∑

m=2

m‖ψN‖m−1
N−1,p

Γ (N)2(m−1)

Γ ((m− 1)N)2
(|τ1| · |τ2|)(m−1)N

)
< M.

Thus for ζ ∈ S+ (and consequently for |ζ1| ≥ p1) we have
∣∣∣∣
1

ζ
(B ∗ φ0)(ζ)

∣∣∣∣ ≤ K‖φ‖N−1|ζN−1
2 | with K =

Mδ

Np1
.

Hence if we take δ < Np1/M , then the operator φ→ 1
ζ
B∗φ0 is a contraction

in the space VN−1(δ). Thus there exists a unique solution φ ∈ VN−1(δ)
satisfying (14). Hence φ = ψN on the interior of S2(p) ∩ S+ and it is clear
that φ extends ψN to S+.

A repeated application of this procedure yields an extension of ψN to
some region U × S(p), where U is a sectorial neighbourhood of R+ in C.
By interchanging variables and proceeding by the same method we get an
extension of ψN to some region S(p) × V with V being a sectorial neigh-
bourhood of R+ in C. Finally, in the same way we obtain an extension of
ψN to some sector U × V .

3. Exponential estimation. It follows from the results on analytic
continuation of the solution of (13) that there exists a function ψ, holomor-
phic in some sector S containing R

2
+, satisfying (13) and such that ζ−N+1ψ

is locally bounded. We shall prove a global exponential estimate: for every
closed subsector S′ ⊂ S,

|ψ(ζ1, ζ2)| ≤ K|ζN−1|ec1|ζ1|+c2|ζ2|

for ζ ∈ S′, with appropriate constants K and c1, c2. The proof is again a
two-dimensional variant of the reasoning given in [Br].

For p > 0 define

M(p) = sup{|ζ−N+1
1 ψ(ζ1, ζ2)| : 0 < |ζ1| < 1, |ζ2| = p, ζ ∈ S′}.

It follows from the local estimates for ψ that M(p) makes sense for each
fixed p > 0. Then for 0 < |ζ1| < 1, |ζ2| = p, ζ ∈ S′,

|ψ(ζ1, ζ2)| ≤M(p)|ζN−1
1 |,

and as in (10),

|ψ∗m(ζ1, ζ2)| ≤M∗m(p)

(
Γ (N)m

Γ (mN)
|ζ(m−1)N−1

1 |
)
|ζ1|N .

Then, by (9), we find that for any ĉ2 > c2,∣∣∣∣
1

ζ
(gm ∗ ψ∗m)(ζ)

∣∣∣∣ ≤ Keĉ2p ∗ qmM∗m(p)|ζ1|N



40 M. E. Pli ś and B. Ziemian

where q is a sufficiently small constant such that
(
Γ (N)m

Γ (mN)
|ζ(m−1)N−1

1 |
)1/m

≤ q for m ∈ N.

Therefore we have for 0 < |ζ1| < 1, |ζ2| = p, ζ ∈ S′,

|ψ(ζ)| = |Rψ(ζ)| ≤ K|ζ1|Neĉ2p +K|ζ1|N
(
eĉ2p ∗

∞∑

m=1

qmM∗m(p)
)

and for all p > 0,

(15) |ζ−N+1
1 ψ(ζ)| ≤ K̃eĉ2p + K̃

(
eĉ2p ∗

∞∑

m=1

qmM∗m(p)
)
.

Denoting the right hand side of (15) by SM we get M(p) ≤ SM(p) for
p > 0.

Consider the equation

(16) N(p) = SN(p).

Under the Laplace transformation

v(s) = LN(s) =

∞\
0

e−psN(p) dp

equation (16) becomes

v(s) =
K̃

s− ĉ2
+

K̃

s− ĉ2
·

∞∑

m=1

(qv(s))m =
K̃

s− ĉ2
· 1

1 − qv(s)

or equivalently

qv2 − v +
K̃

s− ĉ2
= 0.

This equation has a unique solution analytic in 1/s at infinity, of the form

v(s) =
K̃

s
+

∞∑

l=1

bl
sl+1

for s large enough

with coefficients bl ∈ R. Hence

N(p) = K̃ +

∞∑

l=1

bl
l!
pl

is a solution of (16) real-valued for p > 0 and of exponential growth: N(p) ≤
̂̃
Keĉ2p with some

̂̃
K <∞.
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Since M(0) = 0 and N(0) = K̃ > 0, and therefore M(p) ≤ N(p), it
follows from the definition of M that for ζ ∈ S′ ∩ {|ζ| ≤ 1, |ζ2| ≥ 1},

(17) |ψ(ζ)| ≤ ̂̃
K(|ζ1| · |ζ2|)N−1eĉ2|ζ2|.

By the same method we get for ζ ∈ S′ ∩ {|ζ1| ≥ 1, |ζ2| ≤ 1},

(17′) |ψ(ζ)| ≤ ̂̃
K(|ζ1| · |ζ2|)N−1ec̄1|ζ1|.

Now we pass to the global estimate on S′. By (9) we get for c̄i > ci
(i = 1, 2),

|Rψ(ζ)| ≤ K

(
ec̄1|ζ1|+c̄2|ζ2| +

1

|ζ1| · |ζ2|
(
ec̄1|ζ1|+c̄2|ζ2| ∗

∞∑

m=1

|ψ|∗m(ζ)
))

.

Using this for |ζ1| ≥ 1, |ζ2| ≥ 1, since ψ = Rψ, we get

|ψ(ζ1, ζ2)| ≤ K̃
(
e〈c̄,|ζ|〉 + e〈c̄,|ζ|〉 ∗

∞∑

m=1

|ψ|∗m(ζ)
)

As above, under the two-dimensional Laplace transformation we are led
to considering the equation

v(s1, s2) =
K̃

(s1 − c̄1)(s2 − c̄2)
· 1

1 − v(s1, s2)

with v = Lψ. Again we prove that it has a solution v analytic in (1/s1, 1/s2)
at infinity, so ψ satisfies the exponential growth condition.
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